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We give a simple explanation of the Swendsen-Wang algorithm for Potts models in terms of a
joint model of Potts spin variables interacting with bond occupation variables. We then show how
to generalize this representation, as well as the corresponding Monte Carlo algorithm, to arbitrary
models. We give initial results of tests of the new algorithm on the two-dimensional XY model.

Two decades ago, Fortuin and Kasteleyn! ~* found an
interesting mapping between the Potts model’ and a
correlated bond-percolation model called the random-
cluster model. Very recently, Swendsen and Wang® have
exploited this mapping to devise an extraordinarily
efficient Monte Carlo algorithm for Potts models, which
appears®’ to have far less critical slowing down than the
standard single-spin-update algorithms.® In this paper
we give a simple explanation of the Fortuin-Kasteleyn
representation and the Swendsen-Wang algorithm in
terms of a joint model of interacting Potts spins and bond
occupation variables. We then show how this representa-
tion, as well as the corresponding Monte Carlo algo-
rithm, can be generalized to any model.” We conclude by
giving initial results of tests of the new algorithm on the
two-dimensional XY model.

Consider a finite-volume g state Potts model defined by
the probability distribution
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where J;>0 for all i,j (ferromagnetism),
pij=1—exp(—J;;), and du, is the counting measure.
Consider next a random-cluster model' ~* with parameter
g, i.e., a model of bond occupation variables nyj =0,1
with the probability distribution
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where @({n}) is the number of connected components
(including one-site components) in the graph whose edges
are the bonds having n;;=1, and dp, is again counting
measure. Finally, let us define a joint model,'® which for
lack of imagination we call the Fortuin-Kasteleyn-
Swendsen-Wang (FKSW) model, having g-state Potts
spins o; at the sites and occupation variables n;; on the
bonds, with joint probability distribution
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By performing explicitly in (3) the summation over either
the {0} or the {n] variables, it is easy to verify the fol-
lowing facts about the FKSW model.

(i) Zpoys =Zrc=Zrxsw-

(ii) The marginal distribution on the Potts variables
{0} is precisely the Potts model d pp .

(iii) The marginal distribution on the bond occupation
variables {n} is precisely the random-cluster model
dpgc

(iv) The conditional distribution of the {n} given the
{o} is as follows: independently for each bond (ij), one
sets n;;=0 in case 0,0, and sets n;;=0,1 with proba-
bility 1—p;;,p;;, respectively, in case 0, =0 ;.

(v) The conditional distribution of the {o} given the
{n} is as follows: independently for each connected clus-
ter, one sets all the spins o; in the cluster to the same
value, chosen equiprobably from the set {1,...,q}.

The joint model (3) makes it easy to understand both
the Fortuin-Kasteleyn representation and the Swendsen-
Wang Monte Carlo algorithm. Indeed, the Fortuin-
Kasteleyn identities"'>* are immediate consequences of
facts (ii), (iii), and (v). The Swendsen-Wang algorithm
simulates the joint model (3) by alternately applying the
conditional distributions (iv) and (v)—that is, by alter-
nately generating new bond occupation variables (in-
dependent of the old ones) given the spins, and new spin
variables (independent of the old ones) given the bonds.
(Both of these operations can be carried out in a comput-
er time of order volume.''='3) The joint model (3) can
also be used to derive Griffiths-type correlation inequali-
ties for Potts models.* !4 13

Consider now an arbitrary statistical-mechanical model
with dynamical variables {¢} and probability distribution

du({¢})=2"" [I'bI Wy ({]) |duo{4}), @

where the Boltzmann weight is decomposed as a product
of terms W, which we assume normalized to 0< W, <1,
and du, is some a priori measure (which is usually a prod-
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uct measure, though it need not be). In most applications
the terms W, in (4) would be associated with sites, links,
or plaquettes of a regular lattice, but they need not have
any geometric significance at all. We now introduce, for
each b, a real-valued variable k, taking values in the
interval [0,1], and use the trivial identity W,
= f(l)e( W, —k,)dk,. This leads us to define a joint mod-
el of the variables {¢}] and {«}, with probability distribu-
tion

d/j‘joint({qs}’{'(}): _]omt He(Wb ¢})-Kb

Xdpo{¢}) ][] dx, , (5)
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where dk, is Lebesgue measure on [0,1]. It is immediate-
ly obvious that the joint model (5) has the following prop-
erties.

( ) Z Zj()ln'

(ii’) The marginal distribution on the {¢} variables is
precisely the original model dp.

(iv’) The conditional distribution of the {«} given the
{@} is as follows: independently for each “bond” b, k, is
a real number uniformly distributed in the interval
[0, Wy, ({$])].

(v') The conditional distribution of the {#} given the
{k} is the restriction of the a priori measure du, to the set
of {¢] satisfying the constraints W, ({¢}) >k, for all b.

The analogy with (1)-(3) is clear. Indeed, the Potts
model is the special case of (4) and (5) in which the partial
Boltzmann factors W, take only the two values 1 and
Wy mine SO that all relevant information in the real-valued
variables k, is, in fact, contained in the dichotomous
variables n, =0(k, —wp, nin)-

The ferromagnetic Potts case does, however, have sim-
plifying features not possessed by the general case. First,
the marginal distribution on the {«} variables is not, in
general, simple. [The weight factor W({«}) for this dis-
tribution is precisely the partition function of the condi-

TABLE 1. Susceptibility X (first data row) and autocorrelation time 7
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tional ensemble (v’). But this partition function is not
usually expressible in closed form.] Second, the condi-
tional distribution of {¢}] given {«}] is not, in general,
amenable to static Monte Carlo simulation—that is,
there does not, in general, exist a simple (e.g., order-
volume) algorithm to generate independent samples from
this distribution. Nevertheless, a legitimate Monte Carlo
algorithm for simulating the joint distribution (5) can be
based on alternately applying the conditional distribution
(iv') and any updating process which leaves invariant the
conditional distribution (v'). In what follows, we shall use
the term pure Swendsen-Wang (SW) algorithm to denote
one which uses independent samples from the conditional
distribution (v'), and extended SW algorithm to denote
one which uses a more general updating strategy. The
critical slowing down of an extended SW algorithm will
be a combination (product?) of the critical slowing down
in the corresponding pure SW algorithm along with the
critical slowing down, if any, in the auxiliary updating
process.

Consider, for example, a ferromagnetic XY model with
probability distribution

du({6})=Z ' [] exp{Blcos(6;, —6;,)—11}[] 6, , (6)
(if) i

where the first product runs over nearest-neighbor pairs

(ij). Then the conditional distribution of {6} given {«}

is simply the Haar measure []; d 0, restricted to the set of

{0} satisfying the constraints |6, — 6, | <A, where
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This is a zero-temperature step model'® with random {A}
(bond disorder). Unfortunately, we know of no efficient
way to generate independent samples from the step-model
distribution. Nevertheless, it is easy to devise heat-bath
and multigrid'”~!° algorithms which leave the step-model

2 (second data row) for

two-dimensional XY model on 16 16 lattice. Standard error is shown in parentheses. The numbers
m, and m, are the numbers of heat-bath sweeps before and after coarsening. Multigrid with =0 is
equivalent to m, 4 m, sweeps of the heat-bath method. Note that B, ;;ci=1.13 (Ref. 19).

Extended Multigrid
Swendsen-Wang (m,=1,m,=1)
ry=0
B n=20 n=40 (Heat bath) y=2

0.88 57.3 (0.6) 56.4 (0.7) 57.3 (0.6) 55.7 (0.7)
5.4 (0.4) 5.4 (0.5) 7.9 (0.5) 2.6 (0.2)

0.92 76.4 (0.6) 75.0 (0.6) 754 (0.6) 75.4 (0.7)
5.2 (0.4) 5.5 (0.4) 2 (0.6) 2.5 (0.2)

0.96 92.8 (0.5) 92.4 (0.6) 92.5 (0.5) 93.8 (0.6)
0 (0.3) 6.1 (0.4) 6.1 (0.4) 0 (0.1)

1.00 106.9 (0.4) 1066 (0. 5) 106.2 (0.5) 106.2 (0.5)
3.6 (0.2) 0 (0. 6.5 (0.4) 1.7 (0.1)

1.04 117.3 (0.4) 1176 (0 117.5 (0.4) 117.4 (0.4)
3.4 (0.2) 2 (0. 4.9 (0.3) 3 (0.1)

1.13 134.2 (0.4) 134.4 (0.2) 134.3 (0.3)
1.6 (0.1) 3.2 (0.1) 0.8 (0.1)
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TABLE II. Same as Table I, on 32 X 32 lattice.

Extended Multigrid
Swendsen-Wang (m=1,m,=1)
=0
B n=20 n =40 n =80 (Heat bath) y=2
0.92 135.8 (4.2) 1387 6) 141.3 (3.0) 142.4 (2.2) 139.6 (3.0)
10.4 (1.8) ( 7) 11.0 (1.3) 30.5 (2.6) 5.4 (0.7)
0.96 219.4 (6.2) 2367 (5.8) 2279 (3.4) 223.0 (2.9) 227.1 (3.9)
17.5 (3.8) 13.3 (2.8) 11.4 (1.4) 42.3 (4.3) 6.9 (0.9)
1.00 312.7 (5.3) 308.9 (3.2) 311.4 (2.1) 309.2 (3.0)
15.3 (3.1) 11.5 (1.4) 27.0 (2.2) 5.0 (0.6)
1.04 373.8 (1.4) 372.9 (1.6) 372.8 (1.6) 373.3 (2.2)
6.2 (0.4) 8.1 (0.6) 20.5 (1.4) 3.6 (0.4)
1.13 459.1 (1.1) 460.0 (0.9) 459.8 (0.9)
1.4 (0.1) 11.0 (0.6) 1.1 (0.1)

distribution invariant. Our experiments on multigrid al-
gorithms for the two-dimensional step model based on
standard geometric coarsening (2"X2" blocks with
piecewise-constant injection) were not particularly suc-
cessful: significant critical slowing-down was observed,
in fact more than is found in a straight multigrid simula-
tion of the XY model.'"® We think, however, that more
efficient multigrid algorithms for the step model can be
devised, based on nonstandard coarsenings which are
adapted to the particular pattern of coefficients {A} ob-
served on each grid.? In order to study the dynamic crit-
ical behavior of SW-type algorithms for the two-
dimensional XY model independently from the problem
of devising a good updating procedure for the step model,
we made runs in which a standard multigrid updating for
the random step model is applied n times for each fixed
set of {k}. As n— o this simulates the performance of
the pure SW algorithm.

The results of these simulations are shown in Tables
I-III. We have also included data'® on heat-bath and
multigrid algorithms, for purposes of comparison. Here
X is the susceptibility per lattice site, and Tint, M2 is the in-

tegrated autocorrelation time for the squared magnetiza-

tion (which is one of the slowest modes?'), defined by

lnt % z pAA ’ (8)
t=—oc
where p,,(¢) is the normalized time-autocorrelation
function for the observable 4. Error bars were deter-
mined by standard procedures of statistical time-series
analysis.?

It can be seen that the SW and multigrid algorithms
behave for the XY model in a qualitatively similar way:
there is significant critical slowing down (with roughly
the same dynamic critical exponent as in the heat-bath al-
gorithm) on the high-temperature side of finite-size-
shifted criticality, but no critical slowing down whatsoev-
er on the low-temperature side. Apparently the SW and
multigrid algorithms are effective in creating spin waves,
but not in creating widely separated vortex-antivortex
pairs. Unfortunately, for the SW algorithm we do not
have a good physical understanding of why this is the
case.

From a practical point of view, the performance of the
(extended) SW algorithm for the XY model is mildly
disappointing: equally good results can be obtained with

TABLE III. Same as Table I, on 64 X 64 lattice.

Extended Multigrid
Swendsen-Wang (m=1,m,=1)
y=0

B n=20 n=40 n=280 (Heat bath) y=2
0.92 163.5 (4.8) 165.6 (9.1) 167.2 (4.7) 156.2 (4.9)
10.6 (1.2) 13.2 (2.8) 53.5 (6.1) 5.6 (0.7)
0.96 376.6 (13.6) 389.6 (21.1) 371.7 (9.0) 370.1 (13.1)
25.0 (4.5) 29.3 (8.2) 122.5 (14.9) 11.8 (2.1)
1.00 781.1 (36.5) 756.0 (28.2) 803.5 (22.7) 793.2 (12.4) 799.3 (19.7)
54.4 (20.8) 31.5 (9.2) 24.0 (6.1) 147.0 (19.5) 17.5 (3.8)
1.04 1137.5 (16.8) 1164.5 (13.2) 1146.0 (16.0) 1156.6 (7.9) 1174.4 (8.6)
. 17.0 (3.6) 12.3 (2.2) 16.2 (3.4) 91.9 (9.7) 5.3 (0.6)
1.13 1572.4 (3.4) 1581.6 (5.0) 1575.8 (3.5)
3(0.1) 34.5 (3.1) 4 (0.1)
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the multigrid algorithm, at a vastly reduced computation-
al cost. But from a physical point of view we find these
results encouraging: they show that the (extended) SW
algorithm lies in a different dynamic universality class
from the standard single-spin-update algorithms. This
fact, combined with the extraordinary performance of the
SW algorithm for Potts models,®’ suggests that appropri-
ate generalizations of the Swendsen-Wang idea could lead
to significant reductions in critical slowing down. What
is needed, therefore, is a good physical understanding of
the dynamic properties of the SW algorithm. More gen-
erally, one would like to understand how the introduction
of auxiliary variables (like our {«}) affects the dynamic
critical behavior. In our view, further work, both numer-

ical and theoretical, on a variety of models is now in or-
der.?
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