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Methods of extrapolating the t-expansion series
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We present four new methods in addition to the standard methods of extrapolating the t-

expansion series and make a comprehensive comparison of these procedures by applying them to
the t series for three quantum systems. We have found that by writing the series as a ratio of de-

creasing exponentials it is possible to devise methods that are significantly more accurate than the
standard methods for low-order series. By studying the function t (E) we have found a procedure
that is more accurate than the standard methods for all t-series orders in two of the test systems.

I. INTRODUCTION

The t expansion' is a nonperturbative method that cal-
culates ground-state expectation values of many-body
systems described by lattice Hamiltonians. The idea
behind the method is that for any variational state

~
gp),

the normalized state

and the following information.
(1}E(t) is a monotonically decreasing function. This is

because the derivative of Eq. (1.2) is —(bE ) .
(2) d E/dt )0. This can be seen by writing the mass

gap (the difference between the first excited state and the
ground state) as

g B E/Bt
2 BE/Bt

is a better approximation to the true vacuum for any
finite value of t. As long as the initial state

~ gp) has an
overlap with the true ground state, quantities such as

are guaranteed to converge to their true ground-state ex-
pectation values in the limit t ~ Oo.

Of particular interest is the ground-state energy densi-

(1.2)

which can be written as a power series in the parameter t:

( t)n t2
E(t}=g &H" +')'=I, I,t+I, —+—

The coefficients &H" +')' are connected moments of the
Hamiltonian and are defined recursively as

&Hn+1)c
& q ~

Hn+1
~ q )

II QUANTUM SYSTEMS

where g is the coupling constant of the theory.
(3) E(t) rapidly goes to a constant, so dE/dt goes to

zero as t goes to infinity.
(4) dE/dt is integrable.
Since we only have a finite power series we know that

E(t) will not be well behaved for large values of t There. -

fore we must have criteria for knowing what t to trust the
series for and a means of extrapolating the series for
larger t.

Until recently, the only procedure used to extrapolate
the t series were the Pade and D-Fade methods. ' These
methods are reliable for series with moderate to high or-
ders of t, but become unreliable for low orders. In fact,
the more accurate of the two methods, the D-Pade
method, can only be used for series of order greater than
2. This paper examines several new practical procedures
for approximating the t-expansion series for large values
of t. First we discuss the three quantum-mechanical sys-
tems to which the t expansion will be applied. Then we
examine in detail the approximation methods and com-
pare the results of each.

A. The harmonic oscillator

In order to calculate the limit E(t~~ ) for the power
series one must know all of the connected moments,
which is not possible in any real system. All of the
knowledge that we have about the function E(t) is its
finite power series

In this test system, we express the partition function
explicitly by expanding

~ gp& in the basis of the energy
eigenstates of the system. The partition function Z(t) is
defined in terms of the energy as

N
( t)nE(t)= g, I„+)

n=0 n'
(1.3) (2. 1)
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Comparing this with Eq. (1.2) gives

z(t)=(q,
l

e (2.2)

where x=4/g . The link operators E& and UI are the
color-electric field and the SU(2) group elements satisfy-
ing

By writing
l

1(to) =g„ob„ l
n ) with H

l
n )

—(n+»'=(n+ —,')
l

n ) and b„=e '"+" r we get

Q

ÃI' UI ij= Ul'fill .
2

(2.g)

Z(t)= y e (&+]) re —In+3r2~t Z(0)
n=0

(2.3)

B. The U(1}one-plaquette lattice gauge theory

The application of the t expansion to lattice gauge
theories is discussed in detail in Refs. 1 and 2. For
periodic QED in 2+1 space-time dimensions, the t ex-

pansion is used to calculate the vacuum energy

Large y corresponds to the system having a very large
probability of being in the ground state; small y corre-
sponds to the system having nearly equal probability of
being in any of the eigenstates. For practical reasons X,
the number of states in which

l fo) is expanded in terms
of, is chosen here to be no bigger than 50. From (2.3} the
asymptotic value of the vacuum energy is analytically
given as 1 —,'. We applied our methods to this test system

by writing Z(t) and E(t) as power series to see how well

our methods recover the true vacuum energy.

Out of every four links that compose a plaquette one con-
structs the product trU =tr(U&UzU3 'U4 '). The state

l ito) is taken to be the ground state of the strong-
coupling Hamiltonian so that

Et
I

it'o& =0 .

Again, we will analyze the series for the vacuum energy
density to order t as calculated by Mathews, Snyderman,
and Bloom.

III. METHODS AND RESULTS

As stated in the Introduction, these methods are used
in conjunction with the t expansion to calculate ground-
state energies of quantum-mechanical systems. The
Pade, D-Pade, and connected-moment-expansion (CMX)
methods have been documented and we include them for
completeness and comparison. In this section we apply
these various methods to the t-expansion series up to or-
der t for three quantum systems and evaluate the merits
of each.

(WolHe '"l@o&
E(t)= (2.4)

A. Fade method

The standard procedure for extending the range for a
series is to express it as a ratio of polynomials with orders
LandM,

where H is the Kogut-Susskind Hamiltonian:

2 2

(2.5)

Pt(t)
E(t)= (3.1)

g
2

H= gE,'+x g(2 —trU, }
p

(2.7}

H=QEt g(U +—U ), (2.6)
I p

g is the coupling constant, y =2/g, and N is the num-
ber of plaquettes (usually infinite). Uz is the ordered
product of the link operators U& which are elements of
the U(1) group. Since Et are their conjugate variables,
the first term of (2.6) is the Casimir operator of the U(1)
group on every link. The calculation of E(t,y) is based
on the vacuum of the strong-coupling limit so that
Et l Po) =0. For N =1 there are four links to be
summed on in (2.6). This model is a particularly good ex-
ample on which to test our methods because the exact
answer may be found by diagonalizing the Hamiltonian
in a large basis of strong-coupling states. The weak-
coupling limit for the one-plaquette system is
E(g =0)=1. We will analyze the vacuum energy densi-
ty to order t, as calculated by Horn.

C. The SU(2) lattice gauge theory

In 3+1 dimensions, the Hamiltonian for this model is

where L+M is less than or equal to the order of E(t).
Since we expect E(t) to tend smoothly to its exact value
as t ~ ~, only diagonal approximants are used. Howev-
er, if we are satisfied with the computation of E(t) for a
finite value of t, then we may use all approximants with
M )L. None of these approximants, including the diago-
nal Pade, are guaranteed to behave properly for all values
of t. The usual criterion used to determine the range in
which the Fade calculation can be trusted is that several
Fade approximants must agree over this range for a given
value of L+M. We will refer to this as the Pade cri-
terion. Generally, for a given value of L +M one of the
approximants (usually the diagonal Pade) will have a
larger range than the others; but with the Pade criterion
there is no way of determining this. This is particularly
true if there are very few approxirnants. Also in its stated
form, it is difBcult to implement the Pade criterion in a
machine calculation.

We present a simpler and more accurate cutoff for E(t)
and the Fade approximants by trusting the series on1y to
where dE(t) jdt becomes positive or zero for the first
time, or when the second derivative of E (t) becomes neg-
ative or zero for the first time. Figure 1 represents typi-
cal Pade approximants for the energy density t series, and
exhibits the general features discussed above. For this di-
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is only valid for small t, so we expect the cutoff procedure
applied to the t series not to show any drastic improve-
ments for moderate increases in the order. The results
verify this. Since the range of the series is extended by
the Fade approximants, we expect the cutoff to be closer
to the actual ground state. At each order, we have found
this to always be true for some values of L and M. This is
demonstrated in the diagrams since the Pade results are
always more accurate than the direct t-series results.
Second-order perturbation theory implies that dE(y)/dy
is a monotonically decreasing function and strong-
coupling expansions tell us that dE( ~ )/dy=0. So
dE(y)/dy should be a positive function and we cannot
trust E(y) for values of y where its derivative is negative.
This means that we should make E (y) be a constant rath-
er than turn down in our diagrams. In the U(1) and
SU(2) systems, the cutoff procedure used with the [4,4]
Pade approximant produces oscillatory behavior in the
weak-coupling regime. This signals the breakdown of the
method. Since this occurs past the point where
dE(y)/dy becomes negative, it has no effect on the final
results.

Our results indicate that it is possible to choose an op-
timum finite value of t for the Pade approximants to the t
series and that the most accurate approximant need not
be the diagonal one. %'e also conclude that the off-
diagonal approximants are best for very low orders
(t, t ) and near-diagonal approximants are best for
higher orders (t to t )

B. D-Pade method

Pi (r)
E(t)= f d~.

M

First we write the integrand as

(3.2)

The D-Pade method forms Pade approximants to
dE(t)/dt. It then integrates to find E(t). This method
allows the use of [L,L+M] Fade approximants for
M &2, thereby offering more approximants to be corn-
pared for a given value of L+M than in the diagonal
Pade case. The D-Pade method yields more accurate re-
sults than the diagonal Pade method. See, for example,
Figs. 2 and 3(a) where the best Pade results are con-
sistently less accurate than the D-Pade result. This is be-
cause our knowledge of the derivative is accurate near
t =0 and becomes worse for increasing values of t.
Hence when E(t) is reconstructed by integration, the
effect of the error in the approximation to dE(t)/dt for
r =to will not show up until the value of t is significantly
greater than to. So the ground-state energy is of the form

of integration as well as complex poles near the real axis,
~,- =y;+is. In order for the integral to be defined we ex-
press it in terms of the Cauchy principal value as follows:

1
Gf7+l7T .

Since E(t) is the eigenvalue of a Hermitian operator we
take the real part of the integral to get

(3.3)

For a function f (t,y) of more than one variable this
method is generalized by forming Fade approximants to
B f(t,y)/ByBt in the parameter t Th. en we integrate
from t =0 to t = ~ to form Bf /By and finally integrate
with respect to y to reconstruct f (y). We refer to this
specific form of the D-Pade method as a D2-Pade approx-
imant. Another advantage of forming a Pade approxi-
mant to the derivative of E(t) is that if the derivative of
E vanishes quickly enough, then no cutoff is needed in
the integration over t. In our calculations, only in the
case of the harmonic oscillator does a cutoff of t substan-
tially improve the results.

The denominator of (3.2) must be at least 2 orders
higher than the numerator. Therefore, the lowest-order
D-Pade approximant one can safely form is the [0,2],
which requires up to the t term in the series. As expect-
ed for a given order, the approximants with largest
M —L values are the most accurate except in the
harmonic-oscillator case. There, we have already seen
that the derivative does not vanish sufficiently fast.

The first graph in Fig. 4 includes the results of the D2-
Pade method applied to the SU(2) system. Analogous to
the improvement of the D-Fade over the Fade method, by
integrating over y=2/g~ as well as t we see that the
second derivative with respect to y will generally have the
correct sign for a larger value of y in the D2-Pade
method than in the D-Fade case. This can easily be seen
in the D2-Pade [1,6] and D-Pade [1,6] graphs. Compar-
ing, for example, the t CMX and t extended CMX
(ECMX) results for the SU(2) system in Figs. 4 and 7
below, we see that a similar relationship holds for these
two methods. For low orders the D2-Pade method shows
no improvement over the D-Pade method; however, for
higher-order series the D2-Pade procedure substantially
improves the results for small values of the coupling con-
stant.

C. Connected-moment expansion

where the r s represent the m roots of QM (r ) and
M )L +2. The integral becomes

In general, the integral wi11 have poles along the path

The CMX method ' for extrapolating the function for
large t is based on expressing E(t) not as a ratio of poly-
nomials but as a set of decreasing exponentials according
to the formula

E(t)=E(t —+~)+ g AJ exp( b, t), b, &0 . (3—.4)
j=1

To find E„,the powers of t on both sides of this equation
are equated to get
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Pl =Il E—„=g AJ,
j=p

Pk= I—
k
——g A b"-', k)1.

j=0

(3.5)

It is postulated in Ref. 5 that P, can be expressed in
terms of the other P's as

series as exponentials have is that if one has an odd-order
power series then the last order is not included in the ap-
proximation. As indicated by the singularity at g =0.8
in the t CMX result of Fig. 3, the inverse of the matrix
in (3.13) will not always exist. If this occurs we must dis-
card the answers in this region.

D. Laplace method

P, = g Wk(P2, P3, . . . )

k=1

and it is noted that the function Sk defined by

k = k k+2 k+1
2

A A (b bb —)(bb )"
i j =1

(3.6)

(3.7)

The Laplace method follows the procedure in the
harmonic-oscillator system and expands

~
$0) in terms of

the eigenfunctions of the Hamiltonian as

~q, )= y gb„n)
n=p

has the same form as Pk. Hence, S, may also be ex-
pressed as in Eq. (3.6):

with H
i

n ) = A,„ i
n ) so that for finite volume V, the par-

tition function is

Sl ——g Wk(S2 S3 )
k=1

(3.8) Z(r)=(b, e '+b, e '+ ), b, , A, , )0.
From this the energy density is

(3.14)

or

l 3 2 g ~k( 2 4 3& 3 5 4&'''}
k=1

(3.9) E(r)=
—I A.

O
bPXPe +b 1 X1e +

—I k.o
—t A.

1

bPe +b1e +
(3.15)

Solving for P1 gives

p2
Pl + g ~k( 2P4 P3 P3P5 P4 ' ' ')~P3

2 2 2

k=1

(3.10)

Comparing this with (3.6) yields the recursion relation

2W, =P2/P3,
(3.1 1)

bP 61
G(s)= + + ~ ~ ~

s+ko s+A, ,
(3.16)

We note that the lowest pole of G (s) corresponds to —Ao

and that its residue is positive. We use this knowledge by
solving for z (t) in terms of the t-expansion series, E(t) as

where 0 & Ao & A, , & A,2 & so A,o V is the lowest-lying en-

ergy eigenvalue. If we take the Laplace transform of
z(t)=Z(t)', G(s)= J "oe "z(t)dt we get

~k+1( 2& 3~ ' ) 3 ~k( 2 4 P3~P3P5 P4i ~ ~ ~ }

Substituting P, back in the first equation of (3.5) gives

z(t)=z(0)exp —J E(t')dt'
0

For small t we may expand this as a Taylor series

(3.17)

1 ( I4I2 I3)—E =I1-
I3 3 IsI3 —I4

(3.12)

Z2 2
Z3 3z(i)= o+ztz+li + r + '''

2! 3!
(3.18)

We form G(s) by taking the Laplace transform of (3.18),
This may be written as

G(s)=
ZO Z1 Z2

+ 2 + 3 +
s s

(3.19)

E„=I,—(I, I„)
I3 In +1

I +, . - I2„

I2
and define the variable u —= 1/s so that

G(u)=u(zo+zlu+z2u + ) . (3.20)

(3.1 3)

where n is the number of terms in (3.12).
A disadvantage the methods that approximate the

We may write this as a ratio of polynomials by forming a
Pade approximant to the terms in parentheses. To know
which L,M values should form our Pade approximant we
look at (3.16). In terms of u, this is written

u[bo(1+flu)(1+A2u) . +b, (1+A )(o1u+X2u } + . ]G(u)=
(1+Eau)(1+A.lu }(1+A,2u ) . (3.21)
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So we see that our Pade approximant should be a

[L,M]=[n —l, n] approximant:

1.2

P„,(u)
G(u)=u

n u
(3.22) 0.8

where the order of Q„(u) (or value of M) corresponds to
the number of exponentials to which we are approximat-
ing z(t). In order to form the [n —l, n] Pade approxi-
mant, we must have coefficients in the t series to order
2(n —1). Having written G(u) in this manner, we know
that the smallest real negative root of Q„(1/u) with a
positive residue is —A,o.

We expect Fade approximants of analytic functions
with various singularities to display these singularities
but the approximants may also have extraneous poles
with nearby zeros known as defects. If the function f (t)
is analytic near t =a but has a Fade approximant,

PL(t)
g(t)=

RM = i(t)(t —a)

with a pole at t =a, then the approximant will only agree
with the series when its residue is very small at the spuri-
ous pole. Therefore, if a pole has a residue that is
significantly smaller ( =10 times smaller) than the next
biggest pole, we discard it and take the next largest pole.
Two other characteristics of defects are that they are
transient in going from one Pade approximant to the next
and they are often associated with successive approxi-
mants (hL =1 or b,M =1 or both) being nearly equal.

In Figs. 5-8 we compare the low- and high-order re-
sults of the new extrapolation methods (inverse, Laplace,
E of F, and ECMX) applied to the harmonic oscillator,
U(1), and SU(2) systems for various values of the coupling
constant. As with the previous methods, these graphs
represent the more accurate results for a given order.
For the Laplace method problems occur involving the
roots of Q„(u) for larger n's due to defects, and we know
that the results cannot be trusted in these regions. For t
series up to order t' in the U(1) system all of the energy

(3
LU

0 4

0
0 1

g2

FIG. 6. The new methods applied to the U(1) series. As in
the D-Pade, Laplace, and ECMX cases, the inversion method
agrees well with the weak-coupling limit of 1.

density results are well behaved. As we increase the or-
der, the results monotonically approach the exact values.
For the [6,7] Laplace, the energy density agrees with the
exact answer for g as low as g =0.1, where
E(g )=0.9878.

E. Extended-connected-moment expansion

N—:1+ Q b„, 5„—:A,„—A,o .
n=1

So that

As in the Laplace method, this method expresses E(t)
as a ratio of decreasing exponentials. The difficulty with
this approach, as with the CMX and Laplace methods, is
finding the b's and A. 's so that the Taylor expansion for
(3.15) agrees with all orders of the t-expansion series.
Once this is achieved, we are assured that E(t) will
behave properly as t~ ~. Because of the agreement
with the t-expansion series, E(t) will behave properly for
small t as well.

There is no loss of generality in defining bo ——1 in Eq.
(3.15). For convenience we also define

2.0

b, o,e
E(t)=A o+

1+bze
(3.23)

1.9

1.8

where r is the number of exponentials in the numerator
and denominator of (3.23). If we want to express E(t) as

1.6

1.4
lN(0, 1)

0.5 1.0 1.5 2.0

FIG. 5. The new methods (inverse, Laplace, E of F, and
ECMX) applied to the harmonic-oscillator series. For the E of
F method, the [L,M] means the [M,L] Pade approximant for
F(5) in Eq. (3.38).

0
0

2/g 2

FIG. 7. The new methods applied to the SU(2) series.
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which have the same structure as Eqs. (3.5) so that we
can write

gz
A,o

——I)— (3.30)

0
0

2/g 2

FIG. 8. Ten iterations of the ECMX method applied to the
SU(2) series for terms up to t' with an initial value of
P l

——I l
—EECMX(~).

Since the g's depend on the unknown P, , we must solve
(3.30) iteratively. In (3.27) we must have an initial esti-
mate of A,o. Because the answer for the ECMX energy
quickly converges for any reasonable initial values, we
are free to choose from any of the methods for an initial
estimate of A,o. We will use the lower-order ECMX re-
sults. The zeroth-order result is simply the constant term
in the t series. So for second order in t we use
P, =I, —EEGMx, o, for the first iteration and

a ratio of n exponentials then we must have 2n + 1 terms
in our t-expansion series. It is also clear that the asymp-
totic value of E(t~~) is )j.o. Now we write E(t) as a
power series by expanding the exponentials

E(r)=Aoi

2

S, —tS, +—S +

t
1 —tS& + S2+

2T
2

(3.24)

Since the denominator is small we may write

2

E(r)=Ap+ S] tS2+ S3+2!

x(1—h+h' —h'+ . ), (3.25)

where

I, =Ao+S„ I2 ——S2 —S, ,

I3 S3 3SiS2+2Si .

As in the CMX method we define

P&
—=I& —A.o, P„=I„, n )1,

so that

Pi ——Si, P2 ——S2 —Si,
P3 ——S3 —3SiS2+2S, .

These equations may be written as

P, =S, , g2 =P2+P, =S2,
g3:P3 +3g2P, —2P, =S3

(3.26)

(3.27}

(3.28)

(3.29)

S„=(b|51+b25~+ )/N,
2

h = —tS, +—S,+2!

To find the b's and A, 's we equate the coefficients of the
power series in (3.25) with the t-expansion series

2

E(r) =I, I,r+I, +— —
3

2T

We compute out to the second order in t, which corre-
sponds to one exponential in (3.23), and obtain

(3.31)

From this we get P
&

——I i
—A,o,

g2(Pl)'
A,o' ——I, —

g3(P'i )

and so forth. This is easily generalized for a t-expansion
series with an arbitrary number of terms.

For the t series studies, the Laplace and ECMX
methods give the same results. One advantage ECMX
has over the Laplace method is that one does not have to
deal with the subtle task of finding defects. The problem
of finding defects may also be solved by noting that any
differences between the Laplace (if we have not searched
for defects) and ECMX methods are caused by defects.
Figure 8 illustrates the rapid convergence of the ECMX
iteration process. The first graph corresponds to the t
ECMX results.

(3.32)

F. Inversion method

r(E)= g d„E".
n=0

(3.33)

As described in the Fade method section the cutoff t, for
the series E(t) corresponds to the value of r where
dE(t)ldt becomes zero for the first time, or when the
second derivative of E(t) becomes negative or zero for
the first time. So if we take the derivative of t and form a
Pade approximant

dt (E) PL (E)
dE QM(E)

(3.34)

then the smallest real zero of Q (E) that corresponds to a
value of t (E) greater than or equal to t, is taken to be the

This method takes advantage of the fact that since
t(E) has a much shorter range than E(t), it should be
better behaved than E(t). We have already stated that
E(t) rapidly decreases to a constant so that its derivative
for t ~ oo should be zero. This means that the value of E
at which the derivative of t (E) become infinite is the
value of E(t) where dE(t)ldt becomes zero. We take
this to be E(t~). We implement this by inverting
E(t) thus
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G. Eof F

Though this method is not more accurate than the
Pade method, we include it for completeness. As with
the inversion method we try to improve the behavior of
E(t) by expressing the t series as a function of a more
compact variable than t. Suppose we define
5(t)—:1 —Z(t) and invert this equation to get

t (5)=d, +d, 5+d,5'+, 0 & 5 & 1 .

Equation (2.1) tells us that

1 1

1 —5 dt(5)

(3.35)

(3.36)

Therefore if we write the derivative of t as

value for E(t~ ~ ).
For the inverse method, the one root of the [n, 1] Pade

approximant is always a reasonable estimate of the
ground-state energy density and, if they exist, the roots of
Qst(E) for larger M are more accurate. In the SU(2) sys-

tern the results for the t series for order greater than 4 do
not improve the low-order results. This is due to the
nonexistence of positive real roots less than E(t =0) for
large values of y. After varying the application of the in-

verse method to this system and seeing no change in the
results, we conclude that the nonexistence of proper roots
for large y is a result of the power series and not the cal-
culation. For the harmonic-oscillator and U(1) systems,
the inverse method is more accurate than all of the other
methods for high-order series. For these two systems, the
inverse method is closer to the exact answers than the
CMX, Fade, and D-Fade methods for all of the orders we
studied and is comparable to the ECMX/Laplace
method for low orders. We have also noted that in all
three systems the [0,1] inverse result is the same as the
second-order CMX result. It is not completely clear why
this is true. The major drawback of the inverse method is
that there are more defects and they are harder to detect
than in the Laplace method. While the ECMX method
may be used as a check for defects in the Laplace
method, there is no similar check for the inverse method.

The function E(5) actually is better behaved than E(t)
and the cutoff procedure is really only needed in the U(1)
case where improvement is drastic. Figures 5 —7 contain
graphs of the E of F results. Since E(5) has the same
general behavior as E(t) we expect the E of F method to
have results similar to the Pade method. The t approxi-
mants yield inaccurate answers but the results at higher
orders are comparable to those obtained with the Fade
method. Like the Pade method for higher orders, the
near-diagonal approximants are the most accurate. Be-
cause of numerous poles in F(5)=QL(5)/Pst(5), the
cutoff procedure is very difficult to use for U(1) series. As
a result, the approximants for g &1.2 are not well
behaved in Fig. 6.

IV. CONCLUSION

We have seen that in the strong-coupling region all of
the methods agree. Also, as we increase the order of the t
series, the methods generally become more accurate.
Through the Laplace and ECMX methods, we have suc-
cessfully expressed the t series as a ratio of decreasing ex-
ponentials by two independent methods and have shown
that this ansatz produces very stable results. The
ECMX/Laplace method converges rapidly and for, the
SU(2) system, essentially requires only three terms in the
t series to give the asymptotic value for E(t). It is impor-
tant to note that all the methods may produce singulari-
ties that are inherent to each method. We summarize the
results for the three systems by stating that (1) for general
orders the inverse and ECMX/Laplace methods are the
most accurate, (2) for low orders the E of F method is
comparable to the Fade and D-Pade methods which are
not as accurate as the CMX, inverse, or ECMX/Laplace
methods, and (3) for higher orders the inverse,
ECMX/Laplace, and D-Pade methods are the most accu-
rate; the E of F, Fade, and CMX are the least accurate.

Of course these are generalities and should be so treat-
ed since the accuracy of the methods will depend on the
system to which they are applied. However, we can say
that these new procedures provide an excellent comple-
ment to the prior methods of extrapolating the t-
expansion series, and in some cases greatly surpasses
them in accuracy.

dt(5)
d5

1

1 —6
F(5) (3.37) ACKNOWLEDGMENTS

we are assured that

1

F(5) (3.38)

where 6=1 corresponds to t = ac. We then extend the
range of E (5) by forming Pade approximants to it.
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