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Static minimum-energy path from a vacuum to a sphaleron in the Weinberg-Salam model
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In the Weinberg-Salam model with vanishing mixing angle 0~ ——0, the static minimum-energy

path is obtained within the general spherically symmetric ansatz, which connects a vacuum to the
sphaleron of Klinkhamer and Manton. The physical significance of the path is discussed in connec-
tion with a possible baryon-number-violating effect at high temperature.

I. INTRODUCTION

As first observed by 't Hooft, ' baryon number is not
conserved at the quantum level in the standard
Weinberg-Salam model. The divergence of the baryon-
number current is in fact nonvanishing because of the
presence of an SU(2) anomaly. This baryon nonconserva-
tion is basically associated with the instanton physics
that describes tunneling transitions between topologically
distinct vacua. The probability for these phenomena is
exponentially suppressed as exp( —4tr/a ~ ) with

an't ——a/sin Otr and the proton is in practice stable.
However, it has been claimed ' that such a suppression is
absent at high temperature T-100 GeV, because the
thermal fluctuations induce classical transitions passing
over the potential barrier between the different vacua. If
this is indeed the case, there arise new possibilities for
generating the cosmological baryon-number excess
without resorting to grand unified theories (GUT's!.

The crucial observation is due to Klinkhamer and
Manton. They found a static, but unstable solution
(called sphaleron) to classical field equations of the
Weinberg-Salam model, that corresponds to a saddle
point of the potential barrier between two topologically
distinct vacua. They also presented a finite-energy path
from a vacuum to the sphaleron. However, the detailed
structure of the potential between the distinct vacua
which seems very useful for calculating the baryon-
number-violation rate at high temperature, is not known
yet.

The purpose of this paper is to show a static
minimum-energy path (SMEP) connecting a vacuum to
the sphaleron by making the general spherically sym-
metric ansatz. The SMEP seems to be useful for under-
standing adiabatic production and decay of the sphale-
ron, though further analysis is necessary to estimate its
effects on baryon-number nonconservation at high tern-
perature.

In Sec. II we study the static field equations with the
general spherically symmetric ansatz. We confirm that
the only stationary solution is the sphaleron. In Sec. III
we numerically determine the SMEP with use of a
Lagrange multiplier that is introduced to fix the topologi-
ca1 charge. We also show the potential energy along the
SMEP. Finally, in Sec. IV a brief discussion is given.

II. THE SU(2) SPHALERON IN THE GENERAL
SPHERICALLY SYMMETRIC ANSATZ

Klinkhamer and Manton obtained a static saddle-
point solution (sphaleron) of the classical field equations
of the Weinberg-Salam model in the limit that the weak-
mixing angle 8~ vanishes. The Weinberg-Salam model
reduces to an SU(2) theory with a doublet Higgs scalar,
since the U(1) gauge field decouples in the field equations.
They also argued that the energy functional changes
smoothly with 8~ and hence the introduction of the U(1)
sector does not, presumably, affect the sphaleron solution
as 9tt, is small. In this paper we focus on the SU(2) field

equations taking the limit 0~ ——0. To solve the classical
field equations we shall make a general spherically sym-
metric ansatz for field configurations. We shall show in
this section that our saddle-point solution is exactly the
same as the sphaleron of Klinkhamer and Manton who
used a more restricted form of field configuration.

The field equations for static, classical fields are

(D,F,, )'= —g [ttt r'(D P) (D ttt) r'P]—, (la)

D;D; ttt=2A(gtttt ,'v )ttt, ——
with

Fa g Wa g Wa+g~abcWbWc

D;ttt=B;ttt ,'igr'W, 'P —. —

(lb)

(2a)

(2b)

Here W,
" and P are the SU(2) gauge potential and Higgs

scalar, respective1y. The static energy functional Est„ is
given by

E„„=fd'x[ ,'F,', F, +(D, ttt) (D—,P)+A(ttt ttt —,'v')'] . —

(3)

1WJ'(x)= —[ A (r)e,, x +8(r)(r 5,, —x,x, )

+C(r)x x, ], (4a)

The general spherically symmetric ansatz which yields
spherically symmetric distributions both of the energy
and topological charge is written as
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P(x) = H (r)+K (r}
r

0
(4b)

x W'(x)=0,

We can furthermore impose the radial gauge condition
I

setting C(r)=0. For the ansatz (4) with C(r)=0, the
field equations (1) reduce to a set of differential equations:

f~ =2(fA+f3 1)f—~ =mw[(H'+K'}fg+(K' H'—)], (6a)

fa' (—f—g+fa 1)f—s =mw[(H'+K') fs 2HK—],2 (6b)

f~fs f&f—& (m w
—r)'(H'K HK'—) =0, (6c)

(rH)" — [(f&
—1) +f&](rH)+ f&(»K—) = —,'m&~(H~+K2 —1)(rH),

2r B (6d)

where

, [(fg
—1)'+fs ](«)——,f„(rK)+ , f~(»H—)= ,'mJ (H—2+K2 1)(»K—), (6e)

f„=1+» A, fs rB,—— (7)

and mw and mz denote the gauge-boson mass mw=gv/2 and the Higgs-boson mass mz ——&2kv, and f':df Idr. —The
static energy functional (3) now becomes

E„„= I dr f„'+f1'i + (f„+f8—1) +2mw[r (H' +K' )+ ,'(H +K )(—f„+fr+1)
g o 2r

(H K—)f„—2HKfb+ —,'mdr (H —+K 1) ]— (8)

Notice that all the equations in (6) are not independent.
In fact, the left-hand side of Eq. (6c) is an integration
constant of the other equations and it turns out to vanish
by the following boundary condition at r = ~:

On the other hand, the regularity condition on the func-
tions A, B, H, and K at the origin (r =0) requires, near
r=0,

r'W'(x)- ——'a UU-',
J g J

0
P(x)~ —U

where

fg =1+c~ (m wr)'

3fs = ', c~cx (m—w -r)

H =c„+,
', cia(cia——1)(m~r)',

K=c&(mwr) .

(12)

l 7"r
U =exp —

q2 r
(10}

—cos
z z

exp( —m ~r) .
m~r

Here, q is a free parameter varying from 0 to 2m. This
boundary condition (9) yields the asymptotic behavior

fz =cosq+(d„cosq —dssinq)exp( mwr), —

fbi =sinq -+(d„sinq+dscosq)exp( mwr), —

de
H = cos+ 1+ exp( —m&r)

mwr

dB
+ sin — exp( —m wr),

m~r

dH
K = sin 1+ exp( —m~r)

2 mwr

c„,c~, cx, d„, ds, and der are constants of order unity
that can be numerically determined by solving Eqs. (6}.

We searched for solutions of Eq. (6) numerically with
each fixed value of q. We found indeed no solution in the
full region of q =0 to 2n. except for the sphaleron and va-
cua. Our sphaleron solution was seen at q =m. As
shown in Fig. 1 our solution is exactly the same as that of
Klinkhamer and Manton. Their solution f (g) and h (g)
in Ref. 3 corresponds to

f„(r}=1—2f (g),

fii(r) =H (r) =0,
K(r}=h (g),

(13)

where (=2m wr. It should be stressed that we recovered
the sphaleron solution in the SU(2) theory by making a
more general ansatz (4).

The topological baryon number Qii in the unitary
gauge is defined as
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I oo-

n= 05
E= 36 —"

~w

configurations which minimize the energy functional E,t
under the constraint Qz ——n, and show the n dependence
of the minimum energy E(n) from the vacuum {n =0) to
the sphaleron (n = —,').

We are able to derive E(n) by finding a stationary
configuration of the following functional:

II'[0l =E...[41+nQ~[fl (18)

0.00

-1.00-

5 6 7 8 9 lO

m+r

fA

where g denotes a set of functions f„(r), fbi(r), H(r),
and K(r), and r) is a Lagrange multiplier. We restrict
field configurations to the same ones as given in Eq. (4).

The variational procedure for W[1(] in Eq. (18) leads
to a set of equations for f„(r), fz(r), H(r), and K(r).
Equations (6a) and (6b) are modified as

fg' — (fw+fa —1)fw ™w[{H +K )fa2

FIG. 1. The functions f„(r) and K(r) for the sphaleron. The
other functions fii(r) and H(r) vanish identically. +(K H)) —(m wf—ii

(19a)

2

Qii= 2 Jd XK

2

d3& &ijk g ~apra+ g &abc~a~b~c
16~ i j k 3 i j k

fs — (f„—+fB—1)fbi= mw[(H +K )fbi 2HK)—
2

+0mwf~ (19b)

where (=awi)/2am w. The boundary conditions at
r =0 are given by Eq. (12) with a modification

(14) fbi =-,'( cHcx+g—cg )(mwr) 3 (20)

The topological current

2

K"= — e""i' (F' W' ——'ge' 'W'W W' )
32 2 vp 0 3 v p cT (15)

On the other hand, the asymptotic conditions at r = ~
are as follows:

f„=cosq + Re[(d „cosq —diisinq)exp( —ar)],
is the quantity whose divergence is B„K"

(g /3—2~ )F„'g '"". In the radial gauge the topologi-
cal baryon number is not simply given by Qii because of
the presence of a nonvanishing surface term Id$ K, but
rather by the quantity

fbi = sinq +Re[(d „sinq +dz cosq)exp( —ar) ],
H = cos 1+ exp( mHr)—

2 m~f

q —sinq
Qa =Qa+

2K
(16)

+sin Re
2 exp( —ar)

(y2p 2

(21)
Here we have defined the topological baryon number Qz
as a difference from that of a reference vacuum, say, with

q =0. This Qii is a gauge-invariant quantity and the ac-
tual baryon-number violation is related to nIQ&, where

n& denotes the family number.
For the sphaleron configuration (q =sr) we easily find

Qii =0 and hence its topological baryon number is

Qz(sphaleron) =—,',
while Qii (vacua) =integers.

III. A STATIC MINIMUM-ENERGY PATH
FRQM A VACUUM TQ THE SPHALERON

In the previous section, we presented the static unsta-
ble solution, i.e., the sphaleron. However, the energy
functional E„„between a vacuum and the sphaleron is
not yet clear to us. We shall find, in this section, the field

d
K = sin+ 1+

2

H
exp( mH r)—

mwr

—cos +Re
2

B
exp( ar)—

CX T

where dH is real, while d~, dB, and o; are complex num-
bers with the condition dz ——m wagd „/( m w

—a ). The
parameter a is determined as a solution having a positive
real part from the equation

{a rnw) +mwg a —=0 . (22)

We can see that if
l r)

~

is larger than a critical value g„
where i), =4am w/aw, the parameter a from Eq. (22) is
pure imaginary. In this case there is no stationary solu-
tion f which makes W[P] convergent. Thus we restrict
q to the region

For a given g (or equivalently a given topological
baryon number Qz ——n) these equations can be solved nu-
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FIG. 2. The functions f„(r),fs(r), H(r), and K(r) of stationary solutions for several values of n

merically by adjusting the boundary parameter q. In Fig.
2 we show the solutions for several values of n, where the
Higgs-boson mass mH is tentatively chosen as mH ——m ~.
The energy distributions for n =0.5, 0.27, and 0.06 are
shown in Fig. 3.

In Fig. 4 we show E(n) vs n It shoul. d be noted that
E(n) can be regarded as an effective potential and any
stationary solution of E„„[P]corresponds to a zero
point of BE(n)/Bn. In order to show this, let us substi-
tute the stationary solutions of W[g] into Eq. (18). ~e
have then

(23)

From Eqs. (24) and (25}we obtain

dE
7l

dn

which is the desired result.

300-

2 00-
l

Ol

I 00-

n =0.5
n =027
n =006

which yields
2 3 4 5 6 7 8 9 10

(24)

E(n)= W(ri} gn . — (25)

Using n as a variable instead of g, we can define E(n) by
the Legendre transform

m r

FIG. 3. The energy density 4~r e(r) which is related to the
total energy as E = jdr[4nr'E(r)] is shown for different values

of n. Solid, dashed, and dashed-dotted lines correspond to
n =0.5, 0.27, and 0.06, respectively.
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smoothly connected to a vacuum and indeed there is no
singularity like dE/dn = ~ on the path. We remark that
numerically dE/dn tends to g, as n approaches 0 from a
positive value.

3.0 IV. DISCUSSION

2.0
LLJ

1.0

0.2 0.3 04
l

0.5

FIG. 4. The minimum static energy E(n) for fixed n is plot-
'ted as a solid line. The dashed line represents the critical slope
dE(n)/dn =4m.m~la~. Note that E(n) seems to approach to
zero with this slope.

Figure 4 clearly shows that no stationary solution of
E„„[P]exists besides vacua and the sphaleron within the
general spherically symmetric ansatz. The sphaleron is

A description of the baryon-nonconservation process
at high temperature may be given with classical statistical
mechanics. "' Transitions with Qs changing proceed
along various paths in field configuration space, which
start from a neighborhood of a vacuum, say, of Q~ =0,
concentrate at a sphaleron, and finally arrive at a neigh-
borhood of another vacuum, say, of Qs =+1. It is ar-

gued that near the sphaleron most of transitions take
place along a particular direction characterized by a neg-
ative eigenvalue of the second derivative 5 E„„/5$5$.
Unfortunately, the eigenmodes, especially, the unstable
mode has not been obtained yet.

On the other hand, in our description in terms of the
SMEP the unstable mode near the sphaleron is approxi-
mately determined. The characteristic decay frequency
co of the sphaleron in the overdamped case is almost

given by (d E/Bn )„,zz with some proportionality con-
stant which depends on detailed dynamics. The frequen-

cy co is an important factor to estimate the rate of the

baryon nonconservation process. From Fig. 3 we obtain
(8 E/Bn )„~&2———34m~/a~. This should be com-

pared to the corresponding value estimated along the
Manton path for the case of mH ——0:

(r) E/Bn')„, ~ =(m/2) (8 E/r) p)„
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