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Mechanisms for spontaneous gauge symmetry breaking are presented in the context of the four-
dimensional superstring models. Some phenomenologically interesting models are constructed to
highlight the simplicity of the procedure.

I. INTRODUCTION

Recent interest in superstring theories was generated
by the discovery' that these theories which unify gravity
with other interactions may be finite and are free of gauge
and gravitational anomalies. This interest was further
boosted by the construction of ten-dimensional heterotic
superstring theories which initiated the search for all the
superstring solutions that may reproduce a realistic low-
energy phenomenology. Since then, many different ways
of constructing superstring solutions directly in four di-
mensions have been developed. Among them, the one
we would like to develop further is the free fermionic con-
struction. In this approach, the extra two-
dimensional (world-sheet) degrees of freedom that are
needed for the cancellations of conformal anomalies are
free fermions instead of the usual bosonic coordinates in-
terpreted as the position of the string in higher dimen-
sions. For an interacting string theory at higher loop lev-
el, the world sheet can be represented by a Riemann sur-
face of genus g ) 1. While the bosonic field on the world
sheet has to be periodic when it is translated around one
of the nontrivial (noncontractible) loops, the complex fer-
mionic field can change by a phase. The set of these
phases associated with all possible loops is the boundary
condition for the fermions. Besides the local conformal
invariance, at the loop levels, the conformal reparametri-
zation invariance has an extra discrete (or global) sub-

group that has to be checked separately; it is called the
modular transformation (MT). A particular boundary
condition is typically not invariant under the modular
transformation. Thus, modular invariance immediately
implies that one has to use a set of boundary conditions
for each fermion simultaneously. This set is called the
spin structure. Therefore, to define a superstring solu-
tion, one does not only have to write down a two-
dimensional conformal field theory for the fermions and
bosons, it is also necessary to specify the spin structure.
Each spin structure which respects conformal or super-
conformal invariance and modular invariance defines a
superstring solution. General solutions for the con-
straints that these self-consistency conditions impose on
the spin structure were worked out not long ago. '

Many models with interesting gauge groups and chiral
fermions were also demonstrated

The massless modes of these string models describe a

gauge theory coupled to gravity or supergravity at the
Planck scale. The hope is that the usual field-theory tech-
niques, such as the renormalization-group equation and
the Higgs mechanism can be used for the symmetry
breaking and the mass generation in order to obtain real-
istic low-energy theories. While it is certainly not an easy
task to obtain the realistic low-energy phenomenology
out of a supergravity theory in four dimensions, the pro-
cedure itself assumes the decoupling of the infinite num-
ber of massive particles in the string theory which may
not be justified in certain cases. In any case, it is interest-
ing to explore other means of constructing a consistent
superstring solution which is more akin to the low-energy
observations.

In this paper we explore new ways of constructing
superstring solutions using the Thirring interactions be-
tween the fermions and the generalized Scherk-Schwarz
(SS) mechanism. It was well known that the two-
dimensional fermions with the Thirring interactions can
define a conformal field theory. It was demonstrated
that a fermionic theory with properly defined Thirring in-
teractions can reproduce the partition function (PF) of a
generalized torus defined by a simply laced, self-dual,
Lorentzian lattice. It also has been used as a mechanism
of breaking the gauge symmetry at a scale different from
the Planck mass. '

Scherk and Schwarz (SS) proposed a particular
compactification scheme using a higher-dimensional su-

pergravity which breaks the supersymmetry spontaneous-
ly in the dimensional-reduction process. " An explicitly
stringy generalization of this scheme was proposed by
Ferrara, Kounnas, and Porrati' (FKP). In the SS mech-
anism, the compactification scheme depends on the con-
served charges of the higher-dimensional theory. As a re-
sult the symmetry is broken after the compactification.
A stringy generalization of such a mechanism can be ob-
tained by coupling the modes of the PF for the
compactified bosonic coordinate to the charges relating
to the other fermionic coordinates. ' ' FKP start with a
five-dimensional fermionic construction and then com-
pactify one of the dimensions to a circle of arbitrary ra-
dius R. They realized that in a proper mode expansion
(see Sec. III) of this PF in terms of the winding number
and the momentum, the individual modes can have a sim-
ple modular transformation property. Therefore, it is
possible to provide charge-dependent mixing of the PF's
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of the other fermionic coordinates with this compactified
bosonic one. The modular invariance holds irrespective
of the amount of mixing. These SS mixing parameters,
called e', are arbitrary parameters and therefore provide
a new scale and also introduce gauge symmetry breaking
into the theory.

In a previous paper, ' we generalized the idea of FKP
even further and abandoned the geometric picture of a
higher-dimensional theory altogether. The SS mecha-
nism can be introduced into a four-dimensional free fer-
mionic theory directly as a modular-invariant mixing be-
tween the partition functions associated with different
fermions. This mechanism combined with the Thirring
interactions between some of the fermions provides a
powerful tool for model building. ' In this paper we
present the method in detail and illustrate the symmetry-
breaking mechanism through explicit examples.
Mathematical formulas referred to in Ref. 10 are worked
out explicitly and proofs of many statements made previ-
ously are also included. The generalization was motivat-
ed by the observation that if two left- and two right-
moving fermions have the same boundary condition, then
one can expand the PF in a particular way such that the
individual modes transform in a very simple way under
the modular transformation. In this case the individual
modes correspond to the charge sectors of the fermionic
theory. These fermions will be called "decomposed" fer-
mions. Once these mode expansions are identified for
each boundary condition, one can easily follow FKP's
construction to introduce the SS mixing into each PF
characterized by the different boundary condition for
these decomposed fermions. The mixing parameters e'
now denote the SS mixing between the PF of these
decomposed fermions with other fermionic coordinates.
FKP's result (for R =1) is obtained as a special case in
this approach when the decomposed fermion is chosen
such that the total PF factorizes into the PF of the
decomposed fermion and other fermionic and bosonic
coordinates. The PF of the decomposed fermion will be
that of the torus with radius one in this special case. The
parameters corresponding to the radius R are introduced
in the fermionic picture through the Thirring interaction
with the coupling 2g =R —1/R among the decomposed
fermions.

A short review of the free fermionic constructions is
given in Sec. II, since it is also the starting point in our
construction. Then the symmetry breaking can be intro-
duced through a mixture of Thirring interaction and SS
mixing. First, we concentrate on the models using only a
SS mixing mechanism and the possibilities of spontaneous
symmetry breaking in the free fermionic constructions
are investigated. For this purpose the construction of the
Hilbert space in the free fermionic models are studied in
Sec. III. Two equivalent ways of constructing the states
are reviewed. The states obtained by the operation of the
current creation operators on the vacuum states in vari-
ous charge sectors are more convenient for writing the
PF of the decomposed fermions. In Sec. IV, the SS mix-
ing is introduced in the context of the free fermionic

II. FREE FERMIONIC CONSTRUCTIONS

In this section the free fermionic construction of four-
dimensional superstring solutions without spontaneous
symmetry breaking is brieAy reviewed. We restrict our
description to the light-cone gauge and to the heterotic
string models. ' In this gauge the four-dimensional
superstring models are constructed by taking left-moving
bosonic coordinates XI (i =1,2) and fermionic coordi-
nates 1('I (i =1,2), a, P, and y (I =1, . . . , 6) and
right-moving bosonic coordinates Xz (i =1,2) and fer-
mionic coordinates P' (a =1, . . . , 44). The left-moving
part has an underlying world-sheet supersymmetry pro-
vided the fermions a, p, and y are in the adjoint repre-
sentation of a Lie group. In the present case all the fer-
mions are being taken as real and it is assumed that the
fermions a, p, and y (for each I) are in the adjoint rep-
resentation of a SO(3) (Refs. 5 and 6). The superconfor-
mal algebra in the left-moving sector is generated by the
Virasoro generator

2 e

y„aX,'aX,'+ y 1(',aq', + y a'aa'
i=1 i=1 I=1

+ y plgpf+ y ylg I (2.1a)

and the super-Virasoro generator

2 6

TF = gax~A'+ g a—'p'y'
2 i =1 1=1

(2.1b)

The conformal algebra in the right-moving sector is gen-
erated by

1T„—= — y ax„'ax,'+ y y ay
2

i =1 a=1
(2.2)

models. This mechanism can easily be used to break the
gauge symmetries without the tachyon-generation prob-
lem. In Sec. V it is found that the modular-
transformation property for the individual modes of
Thirring fermions remain the same as those for free fer-
mions. However, the world-sheet supersymmetry togeth-
er with modular invariance puts some restrictions on
when the Thirring interaction can be introduced. In par-
ticular, Thirring interaction cannot be introduced in a
model when the starting point is a free fermionic N =1
superstring model. The use of Thirring interaction as a
gauge-symmetry-breaking tool is also sketched. In Sec.
VI the ideas of the SS mixing and Thirring interactions
are combined. Conclusions and some critical discussions
are presented in Sec. VII. Some technical details are
presented in Appendixes A —D.

We would like to point out that the Scherk-Schwarz
mechanism presented here can be reformulated as a Thir-
ring interaction among world-sheet fermions. However,
separate treatment of the two in this paper makes the
connection with Refs. 12 and 13 more transparent.
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where 8 and 0 denote the partial derivatives in the light-
cone coordinates. Modular invariance of the one-loop
path integral puts restrictions on the way the boundary
conditions on the fermions are chosen and on the relative
coeScient between different terms. A boundary condi-
tion on the fermions in either the a& or O.

z direction of
the torus can be specified by the sets a of fermions that
are periodic in this boundary condition. The modular in-
variance requires that one uses a collection of boundary
conditions, that is, a collection == Ia } of sets which we
shall call spin structure. The sets in = must form a group
under the following product of sets:

in addition to the existence of S, that C(s a)= —1 for
every a in = that is disjoint to S. We will always take
5 =

I g'(i =1,2},a (I =1, . . . , 6)}.
The relation that the two fermions share the same

boundary conditions for every set in " is an equivalence
relation. This relation divides the set F into subsets
called the minimal intersections. For example, in the
N =4 model specified above there are two minimal inter-
sections: 0]= I](/', a }, I12 ——Ip, y, p'(a =1, . . . , 44)}.
The minimal intersections are helpful in understanding
the gauge groups and the spectrum of the models.

a p=aUp —a Ap . (2.3) III. CONSTRUCTION OF HILBERT SPACE
IN A FKRMIONIC THEORY

As a result, one can generate = using a set of basis
(bo, b, , . . . , b„} when = contains 2 +' elements. Since
a a=8 for every set, the empty set 8 is in =. Modular
invariance also requires the set F of all fermions to be
contained in = and one can always adopt it as one of the
basis. We shall label bo

—=F. The choice of basis are con-
strained first by the world-sheet supercurrent which re-
quires the two terms in Eq. (2.1b) to have the same
boundary condition for any b;; and then by the modular
invariance which requires that the numbers n (b)
[=nL(b) n„(b—)] in each basis have to satisfy

n (b; ) =0 (modg),

n (b; ll bj ) =0 (mod4),

n (b; ll b, fl bk A bi }=0 (mod2) .

(2.4)

The contribution of the world-sheet fermions to the PF
can be written as

C(a
~
p)Z(a

~
p), (2.5)

where a and p are the sets specifying the boundary condi-
tions of the world-sheet fermions in the 0.

, and cr2 direc-
tions, respectively. Modular invariance restricts the
coefficients C(a

~
p) to be +1. Once the coefficients

C(b'
~

b ) for i &j and C(F
~

F) are specified, all the oth-
er C(a

~

P)'s for a,PE" are determined by the modular
invariance of the theory. Therefore, to build a solution
one first picks a basis for = which is consistent with the
world-sheet supercurrent and Eqs. (2.4). Then, each
choice of coefficients C (F

~

F) and C(b,
~

b ), i pj, to be
+1 generates a solution. If:- is generated by N +1 basis
elements, there will be 2 ' +" + ' solutions associated
with the basis. However, not all the solutions generated
this way are independent. For example, it is interesting
to note that in ten dimensions, the condition stated above
plus the existence of a space-time gravitino actually re-
strict both the bosonic and the fermionic PF of the model
to be unique and independent of how they are construct-
ed. ' The simplest four-dimensional model is generated
by a single basis element F This model has SO.(44) gauge
invariance and is tachyonic. A superstring model with
N =4 supersymmetry and SO(44) gauge symmetry is ob-
tained by taking two basis elements F and S, where S is a
set of eight left-moving fermions only, including QL. In
fact, the existence of space-time supersymmetry requires,

A. Partition function of a fermion

i 7TUL

t()2(o]+27r, o2)=e tj'/2(cr], 02),
I VML

$2(o],02+27r) =e $2(o],o2) .

The partition function of this fermion is
r

2rri rH„—niu& N—:Tr e "e
QL

(3.1)

(3.2)

where H„and N„are, respectively, the Hamiltonian and
the fermion number operators. The trace can be calculat-
ed by summing over a Hilbert space created by the modes
of the fermions to give

r

UL
(u& —1/3)/4 + 2n —1+uc +i nuc

Ou

Qg
1+p 'e

n=I
2,n —1 —

UL —i~uLX(1+p e ), (3.3)

where p =—e' '. Using the Jacobi triple-product identity

(k+u/2) tl ( )
u —1/3)/4

keZ

(1+r 1 2n 1 )+(1u+ 2nr—1 —u)

n =1

Eq. (3.3) can be rewritten as

(3.4)

{nL + v& /2) —i ~n& uL
2

e ) (3.5)

where the Dedekin eta function 2)(r) is given by

This section is devoted to a general discussion about
the construction of Hilbert space in a two-dimensional
free fermionic theory. For the purpose of discussions, we
shall consider fermions which can have complex bound-
ary conditions in this section and restrict ourselves to the
real fermions in the later sections.

Let us consider the propagation of a free left-moving
Weyl (complex) fermion on a toroidal world sheet. It
picks up a phase while going around a loop in a.

&
or oz

directions of the torus:
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2)( )=p'"' g(1—p'") .
n =1

(3.6) VL
2n&oHL —7nu~gL +(ni /2)uLuL=Tr(e e

There is a simple physical interpretation for Eq. (3.5)

given by an alternate formulation of this free fermionic
theory. Consider the Sugawara-type energy-momentum
tensor

2' r(NL —1/24)
=(Tre

m~nL+ vL /2) —miuL nL
2

L L (3.16)

T—:—,'J JL=2'

and current

(3.7)

(3.8)

n L
———oo

However, in this language, the states are labeled by the
quantum numbers nL and XL and the vacuum charge.
Similarly the PF of a right-moving fermion can be writ-
ten as

J'(z) =y J.'z (3.9)

where the normal ordering in Eq. (3.7) is defined with

respect to the modes of the current,
1 (n)(+u&/2) n n "R+ oo 2

ri(7) „
(3.17)

(72+ l O'
Iwhere z:—e ' '. These modes satisfy the algebra

[J,J„]=m5 +„. The transformation of the fermion
field under the U(1)-symmetry group can be written as a
commutation relation:

[J (z)), QL(z2)] =1)/L(z2)5(z) —z2) . (3.10)

The vacuum state is defined with respect to the modes of
the current:

J Io)=0, m &0,
Q' o) =q'I o),

(3.11)

where Q =Jo will be called the charge operator and q
is the vacuum charge. Higher excitations are created by
the modes of the current. A generic state can be written
as

(3.12)

The state in Eq. (3.12) constitutes only one of the "charge
sectors" of the theory. Equation (3.10) implies that by
operating l()L or pl nL times on the vacuum defined in

Eq. (3.11), we create a different charge sector with charge
eigenvalues q +nL or q —nL, respectively. The Hamil-
tonian for the system is the zero mode of the stress-
energy tensor in Eq. (3.7), and can be written as

B. Mode expansion of the partition function

V V V
ZT=

0 Q
(3.18)

Using Eqs. (3.16) and (3.17) this PF can be written as
2

0
1 n n

, g p'P" (3.19a)

2
0 n n

(3.19b)

2

(n& + 1/2) (n& + 1/2)
(3.19c)

1 (nL + 1/2) (n& + 1/2) nL + n&
p

If the boundary conditions of the left- and the right-
moving fermions are identical, i.e., VL

——VR ——u and

uL ——uR ——u, then these Weyl fermions can be combined
to form a Dirac fermion. In this section some properties
of the PF of such a fermion are studied. The PF of a
Dirac fermion is a product of left- and right-moving
Weyl fermions:

2

HL=(Q +NL, (3.13)

VL

q (3.14)

Therefore, the Hamiltonian (3.13) has eigenvalues
2

1 0EL ——— +nL
2 2 24 (3.1 5)

where NL
——g„,o J „J„is a number operator. It can be

shown that the vacuum charge q of a fermion with
boundary condition (UL, uL ) in (cr), o 2) directions is given
as

=0. (3.19d)

1 1 g ( —) "exp
I n I

' V'2r;
n'+

I
~

I

'm '
2v

The left-hand sides (LHS's) of Eqs. (3.19) have the usual
transformation property under modular transformations.
But the individual terms in the summation do not trans-
form in any simple way under ~~ —1/v. . However, as
shown in Appendix A, writing ~=~„+i~; and using Pois-
son resummation formula, Eqs. (3.19) can be rewritten as

2
0
0

where XL is the eigenvalue of the number operator XL
and —

—,', is the vacuum energy. The PF in Eq. (3.5) can
now be rewritten as m, n

Z(0 0)
n, m

2mn r„)—
(3.20a)
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n, m n, m

1

y( )nZ(00) , y Z(1,0)

n, mn, m

2
0 ~ ( )mZ(0, 0) ~ Z(0, 1)

nm =~ nm (3.20b)

(3.20c)

(b) Under r~ —1/r, (" )~(0) 0, )(" ),

(0,0) (0,0)
n, m n, m

(0, 1) (1,0)
n, n, m

(1,0) (0, 1)
)7, m n, m

(3.26)

n, m n, m

1 ~ ( )n+mZ(0, 0) ~ Z(1, 1) 0 (3.20d)
These simple transformation properties will allow us to
introduce n, m dependence into the partition function of
the other fermions. We call this SS mixing.

With this particular type of mode expansion, each indivi-
dual term in the sum in Eqs. (3.20) has very simple
modular-transformation properties:

(a) r~r+1,
(0,0) (0, 1)

Zn m Zn —m, m

IU. SS MIXING, AND SPONTANEOUS
SYMMETRY BREAKING

A. Spectrum of a superstring model with decomposed fermion

(0, 1) (0,0)
Zn, m Zn —m, m (3.21)

(1,0) (1,0)
Znm ~Zn

(b) r~ —1/r,
(0,0) (0,0)
n, m m, —n

(0, 1) (1,0)
nm m, —n

(1,0) (0, 1)
nm m, —n

(3.22)

Equations (3.20) —(3.22) are the tools for constructing new
modular-invariant string theories. In most of the previ-
ously constructed string solutions, the PF's ('„) are taken
as the basic building blocks. FKP are the ones to use the
modes as the building blocks of the new solutions. How-
ever, they use the modes of the torus and therefore are re-
stricted by the torus construction. The simple transfor-
mation properties of the individual modes in Eqs. (3.21)
and (3.22) allows us to be liberated from this severe con-
straint and apply the generalized SS mixing mechanism
to almost any fermionic formulations.

As far as the "decomposed" fermion is concerned, the
individual modes of the PF are the basic building blocks.
The summation over m and n in the total PF allows us to
introduce modular transformations on these indices so as
to simplify the transformation properties of the individu-
al modes even further. Under the modular transforma-
tion

ad —bc =1, a, b, c, dEZ, c)0,a7.+b
C7'+ d

if we let

(3.23)

a b n

C d (3.24)

then under the combined transformation of ~, I and n in-
dividual modes of the PF transform exactly as the PF it-
self:

(a) Under r~r+1, (" )~(0) ', )("' ),

Z(0 0) Z(0 1)
n, m n, m

(3.25)

e

+ y:I3'aP':+ y:y'ay' +:J'J.': (4.1)
1=2 1 =2

e

TF y:a,'—1(',—+ y:a'P'y'. +:a'J'
2 1=1 I=2

(4.2)

and

2 44

T, = — y Sx,' ax,':+ y:y'ay'. +:z'J":
2 i=1 0 =3

(4.3)

where J =:P'y'. and J =:P'())):. The partition function
of this model can be written as

4
0

Z 0
' 22

0 0
0 0

0

4

0
-e

4 4
1 1

+6,
22

0

' 22
1 1

+ 0 P

22

(4.4)

where 6 and 61 can take values +1 independently. Every
term on the right-hand side of Eq. (4.4) has argument
(0,0,7) (see Appendix B). Also, (I)(0,0, r)=0, but it is

kept for later reference. When the contribution of the
ferrnions in T are decomposed into modes, the same PF
can be written as

As an example we shall work out the spectrum of the
N =4 superstring model defined earlier, in the language
of Eq. (3.15). For the fermions that are decomposed, the
states are labeled by the quantum numbers m, n, and NL.
Of course, the spectrum is independent of how the states
are labeled. This model is constructed by taking two
basis sets F and S. The minimal intersections are
01=

I 1(', a I and Qz ——[/3, y, ()I)' ( a = 1, . . . , 44) ] . This
structure of minimal intersections allows one to use the
set T = IP', y', P', (t) I for decomposition. The generators
of the superconformal algebra are [see Eqs. (2.1) and
(2.2)]

2 2 6

T, = — y:ax,'ax,'+ y q,'aqL:+ y:a'aa':
2 i =] i =1 I=1
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z= yz""
0

X 0

21
0 0

+ ( —)'"

5

4 ' '4 ' '4
0 0 1

0 1 0 + 1

21
0

4

21 5

1 1 1

+{—)"
0 0 +551(—)

'"
1

21

(4.&)

1 1 g( —) "exp
I n I' V'2r, . (n'+ Irl m —2mn r„)

27;

X '

I

'4
0

r i 4
0

0 1

4
1 1

0 ' 1

4 5
0
0

21
0
() +( —)

'5
0 0

'21
1 1

+' —'"
o o

. 21

+55, ( —)
+"

15
' '21

1 1
(4.6)

0

Using a Poisson resummation over m, Eq. (4.6) can be rewritten as
4 ' '4 ' '4 ' 4

0 0 1 1
Z=

1 0 1 1

0
X g 'exp[iris(m +n) iriÃn ]—

n, m

21
0
0

r i 5
0

+( —)

. 21

0
' 21

21-

+exp[iris(m +n + ,
'

) n—ir(n—+'—,'
) ] 0 0

1 1

+55, ( —) (4.7)

Therefore the Virasoro operators can be written as
'2

1 ULo=Lo+ ~ +n +
2 (4.8)

@—i/2 I
0)L+ —i I 0)R& J + I 1

(ii) Six gauge bosons:

a, /2 I
0)LX',

I
0)R, IG I1, . . . , 6I .

(4.10)

(4.1 1)

1 UL =L+—n+—0 0

and U —1 is the O.-boundary condition for the decom-

posed fermions T. Lo and Lo are the zero modes of the
conformal generators TR and TR in Eqs. (4.1) and (4.3)
excluding the terms depending on Jo and Jo. In this
model there are only two sectors containing the massless
particles, i.e., ({) and S.

To write down the Gliozzi-Scherk-Olive (GSO) projec-
tions, the number operators for the sets 0, and 02 —T
are denoted as X& and X& T.

1 2

ti —i/2 I
0)L0 —1/24 —i/2 I 0)R ~&b & I 3 ".44 I

(4.12a)

q' »2lo), ey'„, Im=l, n= —», «t3 44I

and (4.12b)

(iii) Gauge bosons in the adjoint representation of
SO(44):

1. Sector P

The GSO projections are

0—i /2 I

0 ) L ~ —i /2 I
m = —1 ~ = »

0 i/2l0)LJ i lo)R . (4.12c)

X& +X& T+m
i 2

(4.9)

(iv) Six scalar fields in the adjoint representation of
SO(44):

The spectrum in this sector consists of the following
states.

(i) Graviton (including antisymmetric tensor field and
dilaton): and

+—i/2 I
0)L~ —I/2~ —i/2 I 0)R

~' „,I
o),g y' „,I

m = l, n = —1),
(4.13a)

(4.13b)
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+—I/2lo&L4' (/2lm = —l, n =1)
+—1/2 I

o &L 'I"
& I

o &, (4.13c)

The other four states are the CPT conjugates of these:

2. Sector S

The GSO projections in this sector, with the choice
5& ———1, are

N~ +N~ T+m
( —)

' ' = —5, =l

(4.16b)

(ii) Gauginos in the adjoint representation of SO(44):

and (4.14)
I

S') 0'-1/24 —1/2 I
0&R (4.17a)

N
S2)

In this sector, ( —) also contains a chirality projection
operator. The states in this sector are as follows.

(i) Gravitino 83 dilatino:

s),ex', Io)„, (4.15)

+
IS), = (4.16a)

+

where
I
S ), is an eight-dimensional spinor in the space of

the zero modes of the fermions f' and a . These states
can be classified more precisely by specifying the chirality
projections for the pairs (1(,l(2), (a,a2), (a3a4), and

asa6). Thus the four states with positive helicity are

I
S),gg', /2 I

m =l, n = —1), a E I3, . . . , 44},(4.17b)

and

I
g) Iep' /2 I

m = —l, n =1),
I
~) ~'i 10&R

(4.17c)

The treatment of this section can be applied to any super-

string model where some fermions can be decomposed.
The boundary conditions for the left-moving fermions in

o, (oz) directions are represented as vectors AL (BL )

and for the right-moving fermions as Aa (Bz ). The

boundary condition for the fermions in the set F —T is

represented by at (bi ), aa (ba). Then the PF for the

four-dimensional superstring solution is given by

AL
Z(r, r)=r, '

I
g(r)

I

SP1 ll

structure

r

AR U aL aR
(O, o, r)Z, b (0,0, r-) . (4.18)

So far, we have merely used Eqs. (4.8) to relabel the spec-
trum of a superstring model in the language of decom-
posed fermions. The language turns out to be very useful
for the introduction of Thirring interaction or SS mixing.

B. Introducing the Scherk-Schwarz mixing

(o, o, r) or (o, o, r) .
QL QR

The parameters

ZI =eL(n rm ), Z~ =e—~(n rm )—
and

(4.19)

I
UL

( YL, ZL, r)
QL

or, ( YR, Z„,7.),
QR

has the same transformation rule as the original PF

In Appendix B the generalized PF for a fermion pair
has been introduced. It is observed that for any complex
fermion a parameter eL or eR can be introduced in such a
way that the generalized PF for this pair,

YL ——eL(n —mr), YR =eR(n —mr) (4.20)

have explicit m, n dependence where m, n are the mode-
quanturn numbers of the decomposed fermions. There-
fore nonzero eL or eR mix the PF of the ith fermion with
the decomposed fermion. The modular-transformation
properties of the generalized PF (Ref. 15) make it
straightforward to preserve the modular invariance while
the symmetry-breaking parameters are introduced. With
these mixing the PF (4.18) becomes
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AL
Z(er, e„ i'm)=r, '~ri~ 'g g C

m, n spin
structure

More explicitly,

AR aL aR
r)Zg b (Ig Zg (4.21)

AL AR
Z( e ~«)=2 '" '"~ ( )~ 'g g C ( —)

"+"
m, n spinstructure

Xexp — (n + ~
r

~

m —2 mnr„)
2v

i ~e—L m ( n —rm }+i 7re& m ( n Fm—)

+2iri eL QL ( aL }(n rm )—

21ri—ea Qit {aa )( n Fm—)

T

SL aR
XZt b (0,0,r)Zg b (O, O, F} .

(4.22}

In Eq. (4.22) QL, ~QR are the charge operators. Since they depend only on aL and az, then in a given sector their eigen-
values are fixed. Equation (4.22) can be given a simple physical interpretation by rewriting it in a slightly different from.
Using Poisson resummation,

A AL RZ(e, , eR ~r, r-)=r ~&(r)
~

-'y y. C ~
m, n spin '. L R

structure

Xexp 2nr; —„'m—+ —,'(et +e„)m —m[er QL(aL )+eRQa(a„)]

+ n —
—,(eL —e&)m+(ezQL —e~ Q~)+

2 2 m+v

+2m~ m n+ Nl +v
r

2

t'

SL
'ZL b (00 T)Za b (00 B

(4.23)

Therefore when ez, e„&0the Virasoro operators take the
form [see Eq. (4.8)]

Lp +La =
4

m + ~ (eL +en )m2 1 2 2 2

—m[eLQI(aL }+e„Q„(a„)]
+—,'{2n +m + v —(eL —ea )m

+2[erQL(aL } eR.QR(aR )]]'—+Lo+Lo

(4.24)

GSO projections are not affected by the introduction of
the SS parameters eI and eR. Equation (4.25) implies
that the level matching conditions are also unchanged.
Therefore all the states already in the spectrum before the
SS mixing remain even afterwards. The mass shift of the
states is computed by using Eq. (4.24). It is proved in
Appendix C that in any theory with space-time super-
symmetry before the SS mixing, the conditions m +n =0
and v =0 are always satisfied for the massless states.
After the mixing, using these conditions the mass shift is
given by

and

m (m +v)
o
—I.o =~n+

2
+I o+Lo (4.25)

~(~')= —2m eL.Qz+(eL, .QL —e~.Qa }'+er.m '

m(eL —e—ii )(eL .QL —e„.Qa )+—,m (er —e„) .2 2 2 2 2 2

where Lo+Lo are defined as in Eq. (4.8).
Since in a given sector of the fermionic construction, u,

aL and az are fixed, therefore Eq. (4.23) implies that the

(4.26}

Equation (4.26) can be generalized to the case when there
are more than one set of fermions that can be decom-
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posed. For supersymmetric theories, again m, +n, =0 in

the massless sector for each decomposed fermions and

h(M )= —2+m, eL.QL+(e~ QL —e~.Q~)'

+eL pm,

Thirring interaction in which the two left movers and the
two right movers have different boundary conditions is
possible and will be the subject of a future publication. '

We restrict ourselves to the simplest case here because we
know how to introduce SS mixing in this situation. We
start with a review of its general properties.

m cL ea eL L ez R

+ —pm; (eL —ea)
I

(4.27)

A. Thirring model

(5. 1)

The simplest Thirring model is described by the action

~o= J d'~(6 "d„0+2gfr"06„P) .

There is, however, one potential problem. The mass
shifts in Eqs. (4.26) and (4.27) are not positive
semidefinite. The states for which pm;eL QL po be-
come tachyonic as a result of the SS mixing. The
tachyon-free condition in general puts a very strong con-
dition on the kind of theories that can be obtained in
models using free world-sheet fermions and a SS mixing
mechanism. However this mechanism can be easily used
for gauge symmetry breaking.

In the example of the N =4 model considered in Sec.
IV A, the group SO(44) can be broken down to the group
SO(44 —2N)[SO(2)] by choosing e'a, i =1, . . . , N, to
be all different. If all the e'z, i =1, . . . , X, are equal,
then the surviving symmetry is SO(44 —2N)U(N).

This symmetry-breaking mechanism can be easily ap-
plied to any free fermionic solutions in which, by con-
struction, one of the minimal intersections contains even
numbers of both left-handed and right-handed real fer-
mions. As far as the gauge boson is concerned, this
breaking effect is very similar to the Wilson loop break-
ing' in the Calabi-Yau compactification scheme. (As a
result, it can never reduce the rank of the gauge group. )

However, the resulting mass shifts for scalar bosons and
fermions are quite different in the two cases. Note also
that e'L, e'R are free parameters in this first-quantized
string solution. As far as we know, there is nothing un-
natural to assume that they can be very small. In that
case the gauge-symmetry-breaking scale is e'Mpl which
can be much lower than the Planck scale Mpl and may
give rise to some stringy prediction at an intermediate
scale directly. It should be interesting to find out phe-
nomenologically how low this scale can get.

A more general Thirring model can be described by tak-
ing more than one Dirac fermion. The Thirring action is
invariant under local reparametrization as well as Weyl
transformations. In terms of the two left-moving com-
ponents X, (i =1,2) and two right-moving components P,
(i =1,2) of the Dirac field g, the action (5.1) can be writ-
ten as

2 2

g p, p&, + g p,.$p, +2gp&&2&~$2 . (5.2)
i=1 &=1

If a free left-moving Majorana-Weyl fermion f3 is added
to this Thirring model, then the enlarged action

s=s, + J d'xx, ax, (5.3)

is also invariant under a supersymmetry transformation:

5+'=e,jqX'X ' . (5.4)

7 g =
2

.'J J:+:X3BX3'., (5.5a)

TF =:7 (5.5b)

where j =—:J,X2:. Conformal algebra in the right-moving

part is realized by

The generators of the superconformal algebra in the left-
moving part are

V. THIRRING INTERACTION AND
SYMMETRY BREAKING IN SUPERSTRING MODELS

&a=&:j j:i. ~ R R. (5.6)

The generation of tachyons due to SS mixing can be
avoided by introducing the Thirring interaction among
the decomposed fermions. This is due to a fundamental
difference in spectrum between the models of free and in-
teracting fermions. In general, the symmetry group en-
larges when the interaction is turned off and there are
more massless particles in the spectrum. It is some of
these massless particles which become tachyonic due to
the SS mixing. In this paper, we shall use only the sim-
plest type of Thirring interaction to which all four fer-
mions, i.e., two real left movers and two right movers,
share the same boundary condition. A more general

and j =:P,P2. These conformal field theories can be
used to construct new superstring solutions. Here we
shall concentrate on one particular application. To con-
struct modular-invariant theories the properties of the PF
under modular transformation has to be studied. The PF
of a Dirac fermion was obtained earlier by computing the
trace of e ' " over the states created by the modes of the
currents and summing over all the charge sectors. This
approach is very useful in obtaining the PF of a Thirring
fermion. Following the results of a recent paper by
Bagger, Nemeschansky, Seiberg, and Yankielowicz, the
PF of a Thirring fermion (with interaction being
parametrized as 2g =R —1/R) can be written as
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u R

1 v a b

2R 2 2
exp vari r +nI —+nz— u a b

exp —mi 7 +n —+nR2 exp[ —rriu(nr +nz )], (5.7)

where a =R +1/R and b =R —1/R.
As in the case of free fermions, the PF can be rewritten in a form in which each individual mode of the PF transforms

in a simple way under modular transformations. The equation corresponding to (3.20a) of the free case can be written
as

2
0 1 R mn

~R'
2 2 2g( —) "exp — (n +

~

r
~

"m 2m—n r„)
~q~' +2r,

(5.&)

Other equations in (3.20) remain unchanged except that
2

is now nonzero [cf. Eq. (3.20d)]. The modular transfor-
mation properties are exactly the same as the free case
[Eqs. (3.21) and (3.22)].

1 1 1 m+u
L =L + ——mR ——n+

2 2 R 2

2 (5.9)

or

B. Model building ~ith the Thirring fermions

There is a restriction on when the Thirring interaction
can be introduced for the superstring-model building.
This restriction comes from the superconformal syrnme-

try together with the modular invariance. For the choice
of supercurrent and S as in Sec. III, the left-moving parts
of the Thirring fermions can only be any of the pairs

IP, y I (I = 1, . . . , 6) because a C S can never belong to
the same rninirnal intersection with any of the right
movers. It is proved in Appendix C that in an N =1
(space-time) supersymmetric theory, no [P,a I can be-

long to the same minimal intersection with the right
movers. As a result the Thirring interaction consistent
with the superconformal symmetry cannot be introduced
in N =1 superstring theories. The Virasoro operators
analogous to Eq. (4.8) are not

2

L =L +——mR+ —n+1 1 1 m+u
2 2 R 2

with nonzero (m, n) dependence. This mass shift can be
both positive and negative. However, for the N =2 and 4
superstring theories that we are interested in it is proved
in Appendix C that the mass-shift is positive-semidefinite.

The Thirring interaction introduced in this section can
also be used for gauge symmetry breaking. However for
the particularly simple type of Thirring interactions that
we used here the only surviving symmetry is [U(1)]"for d
Thirring fermions. Models with heterotic as well as non-
Abelian Thirring interactions have been investigated by
the authors and will be reported elsewhere. '

VI. SUPERSTRING MODELS
WITH THIRRING FERMIONS

AND SCHERK-SCHWARZ MIXING

In this section the Scherk-Schwarz mixing and the
Thirring interactions are applied together for
superstring-model building. The interaction will be intro-
duced among the decomposed fermions of Secs. III and
IV. Of course, the world-sheet supersymmetry puts re-
strictions on when this interaction can be introduced
among the decomposed fermions. As in the previous sec-
tions, the modular invariance is trivial to preserve. The
GSO projections and the level matching conditions are
unchanged. The mass shift can be computed by

Lo+LO =La+La+ ,'m R + —,'(e—t+e„)m
—m(., Q, +eR Q, )

+ [2n +m +u —(ez —ez )m
4R

Lo+LO=LO+Lo+ —'m R + (2n +m +u)2,
4R

m(m +u)
o
—Lo=Lo —Lo+mn+

2

(5.10a)

(5.10b)

Since Lo and Lo only on u and not on u, the Thirring in-

teraction does not change the GSO projections. The level
matching condition (5.10b) is also independent of the pa-
rameter R. The only effect of the Thirring interaction is
a change in the mass formula as given in (5.10a). This
formula implies that there is a mass shift for all the states

+2(ei QI. eR 'QR )] (6.1)

b, (M )= (el Qi —e~ Q~) (6.2)

Now the mass formula depends upon two new parame-
ters: e and R. It is shown in Appendix C that even when
all e's are zero, by choosing R&1 (for N =2,4 super-
string theories), all the states with nonzero (m, n) quan-
tum numbers become massive. This mass shift can be
made to be of the order Mp[. Therefore the massless
spectrum contains only those states with m =O, n =0.
For these states the mass shift is given by
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and is positive-semidefinite.
Combination of Thirring interaction and SS mixing is

used to break the gauge symmetry in two steps. In the
example of Sec. IV Thirring interaction can be used to
break the gauge group SO(44) into U(1)XSO(42). Then
by appropriate choice of e~, the residual gauge symmetry
can be broken further.

0 = g exp( —2mr, m )
mEZ

X g exp( 2—mr, n . 4—rrir„mn) .
nEZ

By using the Poisson resummation formula,

(A5)

VII. DISCUSSIONS

In the symmetry-breaking mechanism presented in this
paper the rank of the gauge group is not reduced. A gen-
eralization of Riemann theta functions may be required
to obtain the symmetry breaking which reduces rank. As
far as the gauge-boson masses are concerned formula
(6.2) is similar to the one in the Wilson loop mecha-
nism. ' Recently, Antoniadis, Bachas, and Kounnas'
have proposed a method of gauge symmetry breaking
which can be alternatively formulated as a general Thir-
ring interaction. '

It has been proved in Appendix D that the fermionic
constructions presented in the paper reduce to the five-
dimensional formulation of FKP as a special case. Also
the gauge symmetry breaking considered here can be ap-
plied to nonchiral models only. A twisted world-sheet
Thirring interaction can also be used for the gauge sym-
metry breaking in chiral four-dimensional models. '

Mass formula (6.1) can also be obtained by the
Lorentz-boosting mechanism' or by a Thirring interac-
tion. Naively one may be tempted to apply SS mixing to
break space-time supersymmetry. However, the SS mix-
ing needed for supersymmetry breaking, when translated
into Thirring language, implies superconformal nonin-
variant interactions. Therefore it is most likely incon-
sistent in the SS mixing picture as well.

APPENDIX A

T

0
—— g exp 2rr—r; m

0 1 2

V'2r, mn c z

(n —2r„m)
2v

exp — (4m'
i
r

i

'
2r; mn Ez i

m =a+ —,', n =p+ —,', and a,p&Z .
Then

(A7)

0
A 0

——+exp
aFZ

(x 1—4@i~ —+—
4

7TVl—2m' 0+—1

2

exp[ 2n r; (P +P—)

PeZ

4ni r„p—(a+ 2)] .(A8-)

Using the Poisson resummation formula on index p, Eq.
(A8) becomes

+ n 4m—n r„)

(A6)

For A, m, n are half integers. They can be parame-
trized as

In this appendix (3.20a) is obtained from (3.19a). Con-
sider the expression

T

0
A 0

—— g exp
+2r. ..pez

[(2a+1)'
i
r

i
'+P

21

A 0
= g P P

nL, ng

(Al) —2P(2a+ 1)r„]

exp(n irnL ni

rnid

) . — (A2)

Now define m =(nI +n~ )/2, n =(nL n~ )/2. —Then,

X exp( —m.iP) . (A9)

(n'+
/

r
/

'm'
27-

Adding Eqs. (A6) and (A10) one gets

0
( —) "exp

V'2r, .Ez0

0 +
(m, n) 6Z (m, n) E Z/2

2mn r„)—
(A10)

Xexp[mir(m +n) mix(m n—) ]—(A3) Equation (A10) is the expression used in Eq. (3.20a).
Other expressions in Eqs. (3.20) can be obtained in a simi-
lar way.

Now

0
0 +A

0
(A4) APPENDIX B

In this appendix, Riemann theta functions are re-
viewed. ' It is shown that a generalization of theta func-
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tions can be done through the SS mixing such that all the
modular-transformation properties remain unchanged.

In our notations Riemann theta functions can be writ-
ten as'

2
U

U U8 (z, r)= g exp 7rir n +— +2vri n+—
nEZ 2

I 'lT

+ QV

VL

( YL, zL, 7) =e —/~ Y~
VL

(ZL 7)
QL

(Bl 1)
VR

(YR, zR v)=e "
(zR, r) .

QR

The PF

Then a generalized PF of a fermion with SS mixing can
be written as

Equation (Bl) is closely related to the PF of a complex
left-moving fermion. The PF of a free (complex) left-
moving fermion as given by Eqs. (3.16) is

UL
Kl

(O, w) =—Tr exp 2mi rH„rriu—l QL(uL )+—uI VI
QL

l
ir C+LI' &L2) — , IIII I—,

p e
g(r) „E,

1

This definition of the PF can be generalized to

VL

(zr, r) =Tr exp 2nirH, L+2rri, zLQL(ul )
QL

(B2)

(B3)

7Tl—7TIIIL QL( V)+ IIL VL (B4}

8 (zI, r)
QL

r)(r )
(B5}

Similarly the PF of a complex right-moving fermion is
given by

VL

U
8 (zR r)

R QL
(zR, r) =

IIR ~(r )
(B6)

To make connection with the Scherk-Schwarz mixing,
note that the quantities eL(n —rm) and eR(n —rm) have
exactly the same transformation properties as zL and zR
(Ref. 15), i.e., under

ar+b ZL7~ ZL ~
C7+ d C7+ d

Therefore we take

(B7)

zi =e„(n rm), z„=e„(n——rm ) . (B8)

YL =el m(n —rm), YR=eRm n —'m)= 2 = 2 (B9)

which transform as

C CYL~ YL+ zl. ~ YR ~ YR+ z
C7+d C7+d

(B10}

The transformation properties of m, n are the same as in
Eq. (3.24) and ei, eR are arbitrary parameters. One also
needs to introduce quantities [see Eq. (4.19)]

UL

( YI, zI. ~r)

transforms exactly as the free fermionic PF

UL

(0,0, 7}
QL

under the modular transformation. ' The same is true
for the right-moving fermions. As a consequence of this
generalization, it is found that given a modular-invariant
theory with eL = eR ——0 for each fermion, one can always
obtain another theory by taking nonzero eL and eR.

APPENDIX C

In this appendix, we prove various statements we made
about the Thirring ferrnion in the text ~ The statements
apply to the case of real ferrnionic construction. In the
case of complex fermionic construction, some of these
statements may not be valid.

(a) First of all, we shall show that in a string solution
with space-time supersymmetry, if one labels the states
created by the fermions in T, as defined in Sec. IV, by
their modes m, n as defined in Eq. (4.8) and the o-
boundary condition U, then m +n =0 and U =0 for all
the massless states. A consequence of this statement is
that the mass-shift after the Thirring interaction among
fermions in T are introduced can be written as

2

b (M') =—'m R ——-
R

where A(M-) is nothing but the difference between the
Lp+Lp in Eqs. (5.10) and (4.8). Therefore, the mass shift
due to the interaction is positive-semidefinite and no ta-
chyon will be generated.

To prove that m +n =0 for the massless states when
R =1, we first observe that states with m+n&0, say
m +n =1, correspond in the ferrnionic language of Eq.
(3.2) to the states created by the modes of free fermions
/3 or y . Therefore, to prove m +n =0 one only has to

1 1

show that in the creation of all the massless states, no
modes of /3 or y are used. To show this, consider first a1 1

sector B in which the fermions in T are antiperiodic, i.e. ,
v =0 and TAB =B. Since C(S

~

8)= —1 by supersym-
metry, it implies the GSO projection ( —) = —1. There-
fore one has to use at least one creation mode from the
fermions in S and that saturates the energy allowed for
the massless state. Therefore no modes of f)', y' are used.
Next consider u =1 and TCB Here, /3', y' a. re periodic
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and a' and i/' must share the same boundary condition.
If a' is periodic then the world-sheet supercurrent re-
quires that for each I, one or three of the elements in the
set [a,/3, y ] must be in B. Since nL(S AB) =0 (mod4),
we have either B AS =8 or nL(B) & 10 and no massless

state results. The superpartner of the states in sector B
are contained in the sector SB. When B A S =(Z),

nL (BS)=nz(B)+ nL (S) & 10. The sector SB therefore
contains no massless state and neither does sector 8 by
supersymmetry. Q.E.D.

We have proved that in a theory with a massless gravi-
tino, massless states are labeled by U =0, m +n =0 for
the mode numbers of the fermions in T. Therefore, no ta-
chyon will be generated by the Thirring interaction.
When Ss mixing is introduced, e' can be chosen to be
sufficiently small so that the massive states with
m + n &0 remain massive when e'&0 are introduced.

(b) Here we prove a statement in Sec. VB that in an
N =1 superstring theory, one cannot find a set of four
fermions such as T to be contained in the same minimal
intersection. As shown in Ref. 6, an N =1 superstring
solution contains at least four basis elements, F,S,S, ,S2,
where Si,S2 can be chosen so that they both contain [ i/'[
and each share four elements with S. In addition,
SAS, AS& ——[P']. This immediately implies that
cannot be in the same minimal intersection with an a .
In fact [i/i'] forms a minimal intersection all by itself.
However, by world-sheet supercurrent, [/3, y I for some
I can belong to a minimal intersection only if a is in the
same minimal intersection with i/'. This is not possible in
an N = 1 theory as shown. Q.E.D.

following: If a set a contained in the spin structure = is
also a minimal intersection of:-, then the partition func-
tion will factorize into a part containing the contributions
of the fermions in e and a part for the rest of the fer-
mions, Fa, if and only if for every /3 in = that is disjoint
from cr the coefficient 5iiC(a I

/3) is independent of/3. Re-
call that 5& ———1 if /3 contains (g') and 5fi ——+1 if other-
wise

To prove the factorization theorem for the free fer-
mionic construction, consider a spin structure = generat-
ed by a basis [a,/3„/3z, . . . , P~]. Note that a set in "
which is also a minimal intersection of:- can always be
used as a basis element ~ Therefore = can be written as
:-=[/3, a/3

I

/3C='], where ='=(ii, , /3,
'

I m, =0, 1);:-'
can further be split into two parts ='==i+=2, where
:-,= [/3

I

/3E:-', a A/3= 8] and:-, = [/3 I
/3E =', a C/3]

= [a/3I P&=, ]. This splitting is possible because a is a
minimal intersection. It implies that == [/3, u/3 /3C =, ],
that is, those P in =2 only reproduce the same set in =.
The partition function in Eq. (2.5) can now be written as

Z = g ([/3, I/3, ]+[a/3, /3, ]
p, ,p, c=,

+ [/3i I
~/3&]+ [~/3i

I
~/32]) ~

where we have used the shorthand notation
[a

I
P]=C(cr I/3)Z(a

I
/3). By using the modular-

invariant properties for the C coefficients,

C(a/3
I y ) =5, C(a

I y, )C(/3
I y ),

C(y
I
~/3)=5i, C(y

I
a)C(y I/3),

APPENDIX D

In this appendix the condition for the free fermionic
construction to have a torus factor has been obtained by
using a factorization theorem. This theorem states the

and

C(o. I/3)=C(/3I a) if aA/3=8,

we can rewrite Z as

[Z (0 0)+5fi C(a I/3 )Z (1
I
0)+5f3 C(a I/3, )Z (0

I
1)

P),P, E=l

+5p 5& C(a IP, )C(a I/3 )Z (1I 1)]C(Pi I/3z)Z (/3', IP'),

where Z (u
I

v) is the partition function for the fermion
in a with boundary condition u, v, and /3', , /3', are the
boundary conditions in /3, , /32 for the fermions in

Fa=F —a. If the coefficients 5fiC(/3 I
a) =C is in-

dependent of/3E =, then Z is factorized into a product of

Z (0
I
0)+Z (1

I
1)+C [Z (1

I
0)+Z.(0

I
1)]

and

X C(/3i
I
/32»F. (/3'i

I
/3l)

Q.E.D.
Note that in this proof we have not used the explicit

form of Z (a
I
/3). The only property we used is the alge-

braic relation between the C coefficients required by the
modular invariance. These coefficients are by construc-
tion independent of the Thirring interaction and the SS
mixing. Therefore, as long as a is not the set containing
the decomposed (or Thirring) fermions the theorem also
applies even when the Thirring interaction and SS mixing
are present. However, in this case, the factorization
should be viewed as happening to each mode (rn, n) under
the summation sign in Eq. (4.21). That is, the factoriza-
tion applies to the sum over the spin structure and not to
the sum over m, n. This provides a connection between
the present four-dimensional formulation and the five-
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dimensional formulation of FKP. The condition for the
existence of a torus factor (with R = lj is that there must
be a set, in ", such as T which contains two left movers
and two right movers and is also a minimal interaction of

Since the torus compactification of d =5 supersym-
metric models always results in N =2 or N =4 models,
this provides another manifestation of the statement and
proof we made in Appendix C.
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