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New approach to one-loop calculations in gauge theories
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We propose using the technology of four-dimensional string theories to calculate amplitudes in

gauge theories. Strings make such calculations much more eScient by summing a large number of
Feynman diagrams all at once. We check the idea by constructing a string model reducing to a pure
non-Abelian gauge theory in the infinite-tension limit and computing its /3 function with these tech-
niques.

Feynman diagrams provide a powerful and universally
used tool for calculating amplitudes in the perturbative
expansion of quantum field theories. But the power of
this technique is tempered by the rapid increase in the
number of diagrams that must be computed at each or-
der.

In QCD, the number of diagrams is quite large even for
relatively simple tree-level processes (e.g. , gg~ggg ), and
becomes painful with a higher number of external parti-
cles, or for loop corrections. In spite of the proliferation
of diagrams, the final answers one obtains for gauge-
invariant amplitudes are often quite simple. This comes
about because of the enormous cancellations that often
occur between different Feynman diagrams; such cancel-
lations are particularly remarkable in the case of gauge
theories such as QCD. These cancellations suggest that a
more efficient technique might actually exist.

In oriented closed-string theories, on the other hand,
there is only one Feynman diagram at each order in per-
turbation theory; and string theories reduce to gauge
theories when the string tension is taken to infinity. Each
string diagram thus contains the sum of al! gauge-theory
Feynman diagrams contributing to a process at any given
order in perturbation theory, and it suggests an alterna-
tive approach to computing amplitudes in a gauge
theory: compute the string amplitude in the limit that the
string tension goes to inanity Lee, Nair, a.nd one of the
authors have presented a similar strategy for tree-level
computations, using the open bosonic string' and have
explicitly demonstrated the efficiency of string tech-
niques.

In this paper we illustrate this approach by computing
the P function for a non-Abelian gauge theory. This
computation can be done very easily using the conven-
tional Feynman-diagram approach, and so does not
directly serve to illustrate the advantage of the string-
based approach. But it does demonstrate its feasibility.

The power of our approach lies in the fact that the
difficulty and complexity of a calculation grows relatively
slowly with an increasing number of external legs. A
computation of the one-loop correction to gg ~gg
scattering will be presented elsewhere.

Minahan has presented a similar calculation of the P
function for a N = 1 supersymmetric gauge theory, using
an orbifold compactification of the ten-dimensional
heterotic string theory. Although the computation
presented here is similar, we explicitly demonstrate that
supersymmetry (SUSY) is not a relevant requirement to
obtain a sensible low-energy limit; we obtain the pure
Yang-Mills P function from an appropriate nonsupersym-
metric string model. The dilaton singularity is not im-
portant for our purposes and may explicitly be shown to
decouple (for a'~0) (Ref. 2) when using the modular-
invariant dimensional regularization of Green, Schwarz,
and Brink. This is, of course, expected since dilatons
couple with the strength of gravity.

Although at tree level it is not crucial to construct a
string theory whose low-energy limit is the particular
four-dimensional gauge theory of interest, the situation is
different for radiative corrections: unwanted particles will
circulate in the loop unless they are eliminated from the
spectrum. As we shall show, the technology of four-
dimensional string theories suffices to construct a
string model whose infinite-tension limit is a pure gauge
theory in four space-time dimensions. We will construct
such a model, and then find the gauge-theory P function
by taking the infinite-tension limit, a ~0, of the three-
point amplitude.

To construct an appropriate string theory, we follow
the fermionic formulation of Kawai, Lewellen, and Tye
(KLT). We discuss in particular the construction of a
heterotic string theory containing an SU(9) pure gauge
theory in its infinite-tension limit. (There is no particular
significance to nine colors; it just happens to be an easy
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model to construct and analyze. )

In the KLT formalism, the boundary conditions for the
complex world-sheet fermions are represented by vectors
W; =(1, .

122
~
r, . r, o }, where the 1, component

signifies that the ith left-mover fermion picks up an
exp( 2n—.l, ) phase when going around the appropriate
(world-sheet space or time) closed loop. A model
specified by a set of basis vectors W; is a consistent string
theory if it satisfies certain constraint equations, Eqs.
(3.33)—(3.35) of Ref. 6. The space-boundary-condition
vectors specify the sectors, while the time-boundary-
condition vectors determine the generalized Gliozzi-
Scherk-Olive (GSO) projections that constrain the spec-
trum. The mass squared of a given state (in units of 1/a')
is determined by adding the quanta of the fermionic
world-sheet oscillators to the vacuum energy with the
usual left-right level matching. Modular invariance re-
quires that in calculating the partition function (or
scattering amplitudes) we sum over time- and space-
boundary conditions, with coefficients given in Eq. (3.32)
of Ref. 6.

The model at hand is specified by the five "basis" vec-
tors:
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where 1" signifies n contiguous components with value 1.
The gauge group we will be interested in corresponds to
the first nine left-mover oscillators, while the space-time
index for vectors is carried by the first right-mover com-
plex fermion. This model is a modular-invariant string
theory, as can be shown by solving the KLT constraint
equations.

We are interested in the spectrum of massless particles,
since only these will survive in the infinite-tension limit.
Sectors containing massless particles must have both left-
and right-vacuum energies that are zero or negative.
There are seventeen such sectors; sixteen of these are
easily eliminated, as exciting a gauge oscillator in those
sectors would necessarily yield a massive state. These
sectors also contain no tachyons. The remaining sector
for us to analyze is the Wo sector, which is the one con-
taining the graviton and the gauge bosons.

Before proceeding with this analysis, it will be con-
venient to develop some notation to refer to dift'erent
groups of oscillators. The first nine nonzero components
of Wl we will refer to as G, corresponding to the gauge
group of interest, and the next nine as O'. The nonzero
elements of WI2 3 4I amongst the components represent-
ing left movers we will refer to as LI2 34I the nonzero

components amongst the right movers we will refer to as

RI2 34I ~

In the Wo sector, the left-mover vacuum energy is —1

and the right-mover vacuum energy is ——,'. The projec-
tion equations are (all mod 1)

W: —,
' g (n n—)—:—,',

all

W, : —,
' g (n n)—=0,

Ge G'

W, : —,
' g (n —n )+ —,

' g (n n—)—:—,
' (a =2, 3,4),

L R

where n counts the number of particle raising operators
b, and n the number of antiparticle raising operators d .

The 8'o equation is in fact weaker than the level-
matching condition. The W, equation forbids raising
with a single bG or dG, and thereby eliminates any
would-be tachyons transforming nontrivially under G or
G'; it also forces massless states generated via a b

I
G G I

or
d ~G G

~

to have exactly the form b~G G ~d ~G G
~

~

0). The
level-matching condition requires raising with a b or d
amongst the right movers, so at this stage there are po-
tentially both massless vectors and massless scalars trans-
forming nontrivially under the gauge group of interest.

For particles transforming nontrivially under G or G'
exclusively, the W, equations require that

g~ (n n)/2—=——,, so that we must raise with a b" or d
a

contained in all the R, . However, this intersection con-
tains only the space-time index, so would-be scalars are
projected out of the spectrum. For particles transform-
ing nontrivially under both G and G', the W, equations
require that gz (n n)/2:—0, so we—must raise with a

a

b or d contained in none of the R, . There are no such
oscillators, and so we are left with the gauge bosons of
SU(9}XSU(9). [There are other massless particles, such
as additional U(l)'s and the graviton, but these decouple
in the infinite-tension limit, and are irrelevant to our con-
siderations. ] As far as tachyons are concerned, the only
possible tachyons are those with m = —2/e', these come
from raising with a single oscillator on the left, and none
on the right. However, the W equations require that
such a single oscillator be in all of the L„but not in G',
and no such oscillator exists, so all the tachyons in this
sector are projected out. Thus, this string model yields a
tachyon-free pure gauge model in the infinite-tension lim-
it.

We turn now to the computation of the P function as
determined by the coefficient of lna' in the three-point
one-loop string amplitude (a' ' acts as a momentum
cutoff). This amplitude is given by the expectation value
on a torus of three gluon vertex operators, appropriately
integrated over moduli space.

One can show that the terms proportional to 1na' do in
fact have the same structure as the tree-level three-point
coupling. In order to compute the overall coefficient, it is
sufficient to study the e, .e2 term. The coefficient of this
kinematic factor is (leaving oF the group-theory factor
Tr([T', T ]T') and integrating by parts to eliminate dou-
ble derivatives of the bosonic Green's function)
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where Gz and GF are, respectively, the bosonic and fer-
mionic Green's functions on the torus. The modular pa-
rameter is v while the v's represent the locations of the
vertex operator insertions on the world sheet; v3 is fixed
to be i Imv. The fermionic partition function is given by
the sum over sectors as discussed earlier with coefficients
C&. The overall normalization has been determined by
Polchinski and we follow the Green's-function normali-
zation conventions of Minahan, but with a' explicit.
The first right-mover component of a space-boundary-
condition vector keeps track of the space-time statistics;
we will refer to it as the "spin" component, P]. The com-
ponent in a position corresponding to the gauge group of
interest we label with a subscript G.

String computations are ordinarily on shell, but on
shell the three-point amplitude vanishes. In order to ex-
tract the renormalization, we will make use of Minahan's
modular-invariant off-shell continuation, which relaxes
momentum conservation to ( g k;)2=0, so that

k, .k2+ k, k3+ k2 k3 0.
Because of the explicit power of a' in front, any contri-

bution to A 3 that survives as a' —+0 must come from a re-
gion of the integral which diverges in that limit. Aside
from poles whenever two or more v s coincide, the in-

l

tegrand is everywhere finite, so such contributions can
arise only from the aforementioned poles or from the
divergence of the Im~ integral, at its large-Im~ end. All
contributions in fact arise from that region only.

It is convenient to split up the integral into two contri-
butions: SV3 coming from the regions where v;=v.
("wave-function renormalization") and V3, coming from
the region where all v's are far apart ("vertex renormal-
ization"). Integration by parts alters this split up; the
wave-function renormalization and vertex renormaliza-
tion do not have independent physical significance.
Indeed, it turns out that the integration by parts per-
formed above shifts all of the P-function contributions to
the wave-function renormalization term. One can show
that the only contribution to the wave-function renormal-
ization for this particular kinematic term comes from the
region where v, =v2, but neither is close to v3.

Let us then consider this contribution. Both GF and

GB have simple poles in the limit V~O, the former with
residue 2, and the latter with residue ——,'. Several of the
terms are subdominant in a', dropping these, keeping
only the leading pole terms, and performing the v2 in-

tegration, we obtain

g d 7 2

256]r s'] (Imr)
(k, —k2).e3 d v](imr)ZB(r) g CpZF (r) —'GF (v]3) —G (v]3)2

a, p

aG aG
XGF p ( v»)+GF p

(v—») exp[~'k] k, GB(v»)] .
G G

The terms in which we are interested —those that go as in(a k; k~ )—arise only from the large-Imr region. This also
means we need retain only contributions which do not include decaying exponentials in Imv.

In this limit we may expand the integrand, retaining only terms which are not exponentially suppressed. The first
simplification this brings is the disappearance of all sectors other than the 8'0 sector. This comes about because the
other sectors have no massless particles transforming nontrivially under the gauge group, and so will give only exponen-
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tially suppressed contributions to the integral.
Defining g=e 2~™,we want to expand the Green's functions and partition function as $~0. In this limit

(at ——aG = —,
' ),

i n.
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with similar expansions for the left movers, and where
the full partition function in any sector is

ZI (r)ZII (r)/Imr.
Let us now consider separately the contributions of the

left and right movers (including contributions from the
partition function). What is the effect of summing over
time-boundary conditions? (The space-boundary condi-
tions, as fixed above, are given by WII. ) In this sector, the
coefficients are sitnply given by —(cos2m p& )/JV, where JV
normalizes the generalized GSO projection proper-
ly. In our model, JV=48. For the left movers, we may
group the time-boundary conditions into triplets
(W+OW„W+1W„W+2WI). Each of these triplets

gives the same coefficient C&
' since 8'& has a zero in the

—2?T.i pGspin component. The complex exponentials e and—4niP~
e are simply the cube roots of either 1 or —1, and
so will vanish when summed over all time-boundary con-
ditions; only terms which give an "interference" —terms
independent of 13G—can survive. Furthermore, we need
not consider contributions which contain no powers of

coming from the propagators, since these are
suppressed by exponentials of the Imv, . Thus the terms

~2 2 ImV13—Z~ Ga(v»)' — 1+
2 Imz

COS277/3 I

The Re~ and Rev, integrations are now trivial; defining
x = Imv1/Im~ we are left with

we are left with contain one power of q
' from the parti-

tion function, and one from the Green's functions. Note
that the sum over time-boundary conditions also elimi-
nates contributions coming from oscillators in the parti-
tion function that do not transform under the gauge
group, since such terms do not give rise to an interfer-
ence. This leaves us with just 32m N„where N, is the
number of colors (N, =9 for the model discussed earlier).

For the right movers, note that there are an equal
number of sectors with coefficient +1 and —1, so only
terms with an even number of powers of cos2mP& (includ-
ing those from the coefficient) will survive. The other
terms correspond to scalars which have been projected
out. The two right-mover terms then simplify as follows:

a&

ZII ( r)GF
f3

( v» ) ~ 2' cos2~P

'2

11N,

3
2g ln(a'k, k 2 )( k I

—k 2 ) e3+
32m2

When we perform the same expansions in the vertex
renormalization piece, we find (after rescaling Imv by
Im~) by counting powers of Im~ that there is no integral
of the form leading to a in+' term, which is necessary to
generate a contribution to the P function.

The only contribution thus comes from the wave-
function renorrnalization; comparing with the coefficient
of the same kinematic term in the tree-level coupling,
2g Tr([T', T ]T'), and noting that 1/a' is the square of
the momentum cutoff, we find the well-known result

P(g)= —(11N, /3)(g /16Ir )

One loop-corrections to scattering amplitudes in a
non-Abelian gauge theory are given by simple generaliza-
tions of the three-point amplitude, and their computation
proceeds along the lines of the P-function computation
presented here. Massless ferrnions transforming in the
fundamental representation of the gauge group can also
be incorporated, through appropriate modification of the
string model. The characteristic infrared divergences of
amplitudes in gauge theories can be handled using the
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string-compatible dimensional regularization scheme of
Ref. 4. The computation we have performed demon-
strates the feasibility of computing such one-loop correc-
tions to scattering amplitudes using string technology.
We believe this approach will make such computations
far more tractable than does the standard technology of
Feynman diagrams.

We wish to thank P. Di Vecchia, D. Dunbar, J.
Minahan, A. Mueller, and V. P. Nair for helpful discus-
sions. This work was supported in part by the Depart-
ment of Energy and in part by the Danish Research
Council. The research of D.A.K. was supported in part
by the Department of Energy.

'D. A. Kosower, B.-H. Lee, and V. P. Nair, Phys. Lett. B 201,
85 (1988).

Z. Bern and D. A. Kosower (unpublished).
J. A. Minahan, Nucl. Phys. B298, 36 (1988).

4M. B. Green, J. H. Schwarz, and L. Brink, Nucl. Phys. B198,
474 (1982).

5K. S. Narain, Phys. Lett. 169B, 41 (1986); M. Mueller and E.
Witten, Phys. Lett. B 182, 28 (1986); W. Lerche, D. Lust, and

A. N. Schellekens, Nucl. Phys. B287, 477 (1987); K. S.
Narain, M. H. Sarmadi, and C. Vafa, ibid. B288, 551 (1987).

H. Kawai, D. C. Lewellen, and S.-H. H. Tye, Phys. Rev. Lett.
57, 1832 (1986);Nucl. Phys. B288, 1 (1987).

7I. Antoniadis, C. Bachas, and C. Kounnas, Nucl. Phys. B289,
87 (1987);B298, 586 (1988).

J. Polchinski, Commun. Math. Phys. 104, 37 (1986).


