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The covariant operators of the position, spin, and color in Dirac quantum mechanics with an
external color field are constructed. Their expectation values have good transformation properties
with respect to the Poincaré group in the classical limit. This set of operators solves the problem of
a relativistic generalization of the classical equations of motion for a colored, spinning particle ob-
tained as the classical limit of Dirac quantum mechanics.

I. INTRODUCTION

Wong’s equations for color, classical particles in an
external color field! are the non-Abelian counterpart of
the Lorentz equations for charged particles. These equa-
tions turned out to be very useful in investigations of
several theoretical problems.? Quite recently the interest
in Wong’s equations has grown, especially in the context
of the description of a quark-gluon plasma.® At present
there are many approaches both to the classical mechan-
ics of color particles in an external color field and to the
derivation of dynamical equations for such mechanics.

In this paper we shall concentrate on an approach to
the derivation of classical equations for color particles
based on the classical limit in the Ehrenfest sense for the
Dirac equation. In the first-quantized theory a quark —
natural prototype of the color particle is described by the
Dirac equation for the particle belonging to the funda-
mental representation of the SU(N) gauge group. There-
fore, the derivation of the classical equations through the
classical limit seems to be the most natural. The equa-
tions we obtain are the dynamical equations for expecta-
tion values of certain operators in a state of the form of a
wave packet. In order to avoid troubles with the physical
interpretation of the phenomena such as Zitterbewegung
and Klein paradoxes, the wave packets are built out of
positive-energy states.® In this case only so-called even
operators contribute to expectation values. This is why
the Foldy-Wouthuysen (FW) representation'® is essential
in this approach. There is a clear distinction between the
positive- and negative-energy states and even and odd
operators in the FW representation. The price we must
pay for using the FW representation is a nonrelativistic
form of the classical equation we obtain. Indeed, the FW
Hamiltonian in the Dirac equation is known only in the
form of a nonrelativistic expansion in powers of (1/mc)
for an arbitrary external color field. Therefore, the prob-
lem of a relativistic generalization of the nonrelativistic
classical equations for color particles obtained within the
described approach is of great importance.

In this paper we would like to present a solution to this
problem. The solution is nontrivial because it requires a
subtle analysis of operators whose expectation values
define classical variables such as the position, spin, and
color. In general, we can say that there are two particu-
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larly interesting types of operators in Dirac quantum
mechanics—canonical and covariant ones. The canoni-
cal operators are not suitable from the point of view of
the relativistic generalization problem but appropriate
for studying the canonical structure of the Dirac theory.
The covariant operators which we shall construct give
the solution to the problem of the relativistic generaliza-
tion of the classical equations for a particle with color
and spin. The expectation values of the covariant opera-
tors have good transformation properties with respect to
the Poincaré group. This is why we believe that the prob-
lem of the relativistic generalization is in fact interesting.
It simply concerns the formalism of Dirac quantum
mechanics with an external color field.

In our opinion particularly interesting is the fact that
there exist two types of color operators—canonical and
covariant ones. Only the expectation values of the co-
variant color operators are scalars with respect to the
Poincaré group. The expectation values of apparently
naturally defined canonical color operators do not have
good geometrical properties. It is an open question
whether this fact has some physical implications.

The paper is organized as follows. In Sec. II we recall
the nonrelativistic classical equations of motion for a
color spinning particle obtained in Ref. 4 and we present
the problem of their relativistic generalization. In Sec.
III we analyze the covariant operators in the free-particle
case in order to facilitate the construction of the covari-
ant operators for a particle in an external color field.
This construction is performed in Sec. IV; the new scalar
color operator is constructed in this section. We also em-
phasize the role of the gauge transformation in the
method we use. In Sec. V we find the relativistic general-
ization of the equations from Sec. II by means of the co-
variant operators defined in Sec. I'V.

II. NONRELATIVISTIC CLASSICAL EQUATIONS
FOR A COLOR SPINNING PARTICLE

Let us recapitulate the main facts from papers* con-
cerning the derivation of the nonrelativistic equations for
a color particle based on the classical limit of the Dirac
equation. We use the FW representation of the Dirac
equation. Thus, the Dirac Hamiltonian calculated up to
order (1/mc)? takes the form
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We put c=1 for simplicity and neglect terms of the order
#%. Here # is the kinetic momentum
A d

T=p—g A d p=—ifi— .

T=p—§ and p 3R
2#: AZT“ are color potentials, T 9 are the Hermitian
generators of SU(N). & =diag(o,0) where o are Pauli
matrices and f=diag(l,—1I). E and B are color-electric
and -magnetic fields, respectively, defined as

/I:Zi=Ei”T"=ﬁ0,, ﬁi=Bia?a=—-;—€ik1ﬁk1 ,
and
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where g is a color coupling constant (it has the dimension
of an electric charge). The terms of order (1/mc)?® and
(1/mc)* in the Dirac Hamiltonian may be found in Ref.
7.

In the papers in Ref. 4, the classical limit of the Dirac
equation with the Hamiltonian, (1) was studied with the
help of the equation

0).

Assuming that the state ¢ has the form of a wave packet
(for more details, see Ref. 4) the following closed set of
classical equations has been obtained:

A

1A =(| A He )+ S

R _ g |Ee+ 4R «pe s (2a)
dr® dt
dftzifabc pr ddR Ab|1e
_%fﬂbcs. ‘Bb_%%xfib I, (2c)

where the classical quantities—position R, spin s, and
color I“—are defined as the expectation values

R=(y|R|¥),
s=(y |16 |¢), 3)
=y | T y) .

External fields AZ,FﬁV are taken at the position R. The
operators in formulas (3) are the canonical operators of
the position, spin, and color which obey the following
canonical commutation relations:

[RPI)=i#isY ,
[;6“6"]—16”"“’, 4)
[j\ﬂa,Tb]:ifabcTc.

P is the canonical momentum and f%° are the SU(N)
group structure constants. The rest of possible commuta-
tors vanish. In Eq. (2) terms of the order # with covari-
ant gradients of color fields E? and B? were neglected as
smaller then the terms of the order #°. Equations (2) are
the nonrelativistic classical equations for a color spinning
particle following from the classical limit of the Dirac
equation with an external color field. Note that the clas-
sical spin is necessary in order to find the closed set of
classical equations.

The problem that arises here quite naturally is to find a
relativistic generalization of Eq. (2). This may seem an
easy task. If we assume that R is the spatial part of the
four-vector of position defined in the lab frame as
R#=(#,R) and that I“ are scalars with respect to the
Lorentz group, we shall find that Eq. (2a) is a nonrela-
tivistic limit of the non-Abelian Lorentz equation

2
d R# :gF‘lqu&
dr? dr
Namely, Eq. (2a) can be regarded as an approximation to
Eq. (5) (which is Lorentz covariant) linear in the velocity.
In (5) 7 is the proper time of a particle.

Similarly, if we additionally assume that s is the rest-
frame spin of a particle (see, e.g., Ref. 8 for a detailed
description of a classical relativistic spin) we shall recog-
nize Eq. (2b) as the Thomas equation®® for the spin in a
non-Abelian field. It has the following manifestly covari-
ant form:

dwH
dt

where W* is the Pauli-Lubanski four-vector which de-
scribes the classical relativistic spin. The relation be-
tween s and W* may be found in Ref. 8.

Thus, we have identified the classical variables R, s,
and I from a geometrical point of view. If it was done
properly we should find the relativistic generalization of
the last equation (2¢) without difficulty. The only relativ-
istic equation which is possible in this case has the form

m I¢. ()

=& puay o 6)
m

dIa_i abc bdR# c
dr —nl Angr t
dR
_ ifabcemaﬁFzVWa. dTB Ic. 7)

Unfortunately Eq. (7) written in the lab frame up to the
terms linear in the velocity is different from Eq. (2c) The
only difference is in the spin term. There is no 1 factor in
Eq. (7) when written in the lab frame. Therefore, the
naive method of constructing the relativistic generaliza-
tion, based on ad hoc assumptions about the geometrical
properties of the classical variables with respect to the
Lorentz group fails. The question arises whether Egs. (2)
have a relativistic generalization at all.

In the following part of this paper we show that the
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answer to this question is in the affirmative. Analysis of
operators which we want to take as the position, spin,
and color operators will show that expectation values of
the canonical operators defined by relations (4) are not
good geometrical objects. We shall construct new
operators—the covariant ones, the expectation values of
which have good transformation properties with respect
to the Poincaré group. The method of construction of
the covariant operators comes from the works of de
Groot and Suttorp.'® We refine and generalize this
method in order to apply it to the non-Abelian case.

III. COVARIANT OPERATORS FOR A FREE PARTICLE

Before constructing the covariant operators for a Dirac
particle in an external color field it is worthwhile to ana-
lyze this problem for a free particle described by the
Dirac equation

iﬁ%—‘f:yb¢, Hy—=BEp—B(m>+P?)'"2 | (8)
We use the FW representation of the Dirac equation.
The analysis is based on paper in Ref. 10. We would like
to describe it briefly. A

We want to find operators &#=&(R,P,y) which are
built out of the canonical operators of the position and
momentum and Dirac ¥ matrices in such a manner that
their expectation values defined in the lab frame as

w(t)=(l/l(t) | o | d}(t)>lab
= [d°RY(R,00(R,P,7 (R, 1)

are components of tensors; i.e., they have good transfor-
mation properties with respect to the Poincaré group.
Using the results described in Appendix A we can com-
pute the difference between the expectation values w'(¢’)
of the operators & computed in the new coordinate frame
S’ and w(t) from the lab frame,
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o'(xy=t)—w(xy=t)
= [&RYTR, DR, Py W(R, D)
— [dRY R, 00(R P, 7)Y(R,1)
= (Y1) | 7elG,01|¥(1) ©)

when the two coordinate frames are connected by an
infinitesimal translation or rotation or pure Lorentz
boost. G are generators of these transformations in the
spinorial representation. Their manifest form may be
found in Appendix A. Note that the expectation values
in formula (9) are computed at numerically the same in-
stant of time but for different spacelike hypersurfaces.

We have computed the difference (9) based on the co-
variance properties of the Dirac quantum mechanics. On
the other hand, this difference is known from the classical
considerations. Namely, if we postulate that w(t) are
components of some tensor we shall know the expressions
®'(t)—w(t) from the transformation laws of the tensor
under the Poincaré group. These expressions may be
written in the classical limit as expectation values of cer-
tain operators. Comparing these operators with the com-
mutators from formula (9) we obtain operatorial relations
which enable us to find the covariant operators &.

Let us illustrate the method described above taking as
an example the covariant position operator &®=X. We
would like to find such a position operator that its expec-
tation value x(#)={u(t)| x| ¥(t)) is the spatial part of
the four-vector of position defined in the lab frame as
x*=(t,x(¢)). Assuming the four-position defined in such
a manner is a four-vector for every time ¢ one can find the
following expressions for the difference:

Ox(1)=x'(1)—x(1) .

We obtain

e=(y(n) | el | ¥(t)) for translation , (10a)
ox(1)—= exx(t)=(y(t)| exx(z)|¥(t)) for rotation , (10b)
—€t +e-x(t)id’t£(t)=(¢| —et-l+3’g(e-i,[HD,’i]) | ) for boost . (10c)

Equation (10c) is valid in the classical limit. Comparing
the right-hand sides of formulas (9) and (10) we obtain the
following commutation relations for the operator X:

[Pz K=—its*,
[Ti% K1=itie*iz 1, (11)
[ﬁ ir/x\ k]:%(_’f i:[HDr;C\ k]) ’

where generators ?, :i, and N are listed in Appendix A,

I

and ( , ) means an anticommutator. Assuming that the
operator X is even, the following unique form of the co-
variant position operator in the FW representation may
be found with the help of relations (11):1°

< a. HEXp
X=R 2m(m +Ep) (12)

The expectation values of this operator together with the
lab time ¢ form in the classical limit a four-vector. Note
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that the components of the operator (12) do not com-
mute.

In the same spirit the covariant operators of the spin
and color may be found. The covariant operator of spin
S is constructed in such a manner that the expectation
values

S=(¢|S|¢)

are spatial components of the classical spin tensor S,
i.e.,

i1 ijk
S'=3€7"Sy

The antisymmetric tensor S,, gives an alternative
description of the classical relativistic spin. It may be
defined by means of the Pauli-Lubanski four-vector W*
Sy =€uvapt® wh |

where u* is a covariant velocity. Note that u#S,, =0,
therefore the tensor S*¥ has only three independent com-
ponents as has the four-vector W*.

As a result we have obtained the following form of the
even covariant spin operator in the FW representation:!°

. E P
§——Lfs__ PO

2m 2m(m +Ep) 13

For a free particle the generators of the SU(N) group
T4 are scalar operators. Their expectation values are
scalars with respect to the Poincaré group. This state-
ment will be no longer valid with a color field.

The covariant operators of the position and spin do not
obey the canonical commutation relations. Below we
present the nonvanishing relations:

ciskl_ iR wlan 21(2'§)

XL,x]l=—€*|S

[ 1 £ +5= 3

(28 *=i# P___ LE_ _§ik +E_2__ ,
m?2 | m? E

A

[S i’S\ k]:i‘ﬁeikl

g1, 2pS) J
2 b
m
(% pKl=ifs' .

IV. COVARIANT OPERATORS FOR THE
DIRAC PARTICLE IN AN EXTERNAL COLOR FIELD

We will generalize the method described in the previ-
ous section to the case of the Dirac particle interacting
with an external color field. The particle is described by
the Dirac equation in the FW representation with the
J

0 for translation ,
_ 0 for rotation ,
8T %t)= 7 -
al 1 ]e% L
ex(n)? 7 (Pp|1lex, 7

(H,ew, T T+
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Hamiltonian (1) [up to the terms of order (1/m)*]. In
this case the covariant operators & which we want to
construct depend moreover on an external color field A

We indicate it as
d=aR,P,y,A)=6(4) .

The rest of the notation is the same as in Sec. III. We
have to calculate the difference

w(t)=w'(t)—ow(t)
=Y ()| (A" | ¢P'(1)), — (U

for the three infinitesimal transformations defined in Sec.
III. Note that the expectation value in the S’ frame is
computed for an external field 4, as seen in this frame.
The relations between A, from the frame S and 4, may
be found in Appendix B. Using the results from Appen-
dixes A and B one can obtain the following formula up to

the terms linear in €:

={(P(1)| 6d | Y(1)

N d(A) | Yt

(14)

where

86 = ée [G,8]+d(A'(x))—a( 4 (x))

€[G,0]+

b, .,
Aa’CA/‘+
u

SRS

Here the operators G are operators of the infinitesimal
transformations (see Appendix A) and .L 4 p° are Lie
derivatives of fields 4, listed in Appendix B.

Similarly to a free-particle case the form of the classi-
cal quantity 8w(¢) results from the assumptions about the
geometrical properties of the quantity w(¢). The expres-
sions for 8w(?) may be written in the classical limit as ex-
pectation values of certain operators. Comparing these
operators with the operators 8% from the formula (14) we
obtain the relations which the covariant operators ® must
obey. Let us illustrate the method taking as an example
the covariant color operators.

A. Covariant color operators

We would like to find the operators T %( 4) such that
the classical color

=(Y(t) | T A)|¥(1)

is a scalar with respect to the Poincaré group. It means
that the classical quantity 87 (¢)=1"%(¢)—1I “(¢) must be
equal to

(15)

| ¢) for boost .
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Comparing the right-hand sides of the formulas (14) (for &= T 9) and (15) one can obtain the following relations for

the operators T

i sk ma 1|0T% 34™ | (16a)
Z[PKT - e | =0,
i 173 d4™’ 3Rk
—['_ Ak Aa l kim aT“ Ib _l kim _aﬂ Rl(a Arb) =0 (16b)
ﬁ[J yT ]+26 aAmb’ 2 aArb’ m >
~ a . T a
ik a1 [8T%  op| 18T puy gmey|_L|gk L a4 9T (16¢)
%—[ﬁ ,T ]—2 aAkb’A ‘+2 aA""”R (3,4™) 5 |% ,ﬁ[HFW,T 1+ a |
[
where the operators P ¥, 7%, and N * are listed in Appen- B(A49)=0(x)a(4)Q'(x), (18)

dix A (the case with a color field).

Now, we describe briefly the construction of the even
color operators T ? which obey the relations (16). Closer
inspection shows that in order to satisfy the relations
(16a) and (16b) the operator T ¢ must not contain the
canonical position operator R and all spacelike indices
i,k,l,. .. should be contracted. In order to satisfy rela-
tion (16c) the covariant position operator in an external
color field % ¥ should be known. It is defined by the for-
mula (24) (cf. part B of this section). Now, we are fully
prepared for construction of the scalar color operators.
We shall construct the even color operators. The only in-
dependent and dimensionless quantities out of which the
operator T ? can be built are

1, ok B, ekim fabe Pa Lk, _g_Aka’ £ 400
m m m

The general expression for T ¢ which is built according to
the rules described above contains unknown coefficients.
Inserting that expression into relation (16¢) we can deter-
mine these coefficients. Therefore, after very long calcu-
lations we can obtain the following form of the scalar
color operators up to order (1/m)*

i
8m

The expectation values T °=(¢ | T ?| ) are scalars with
respect to the Poincaré group in the classical limit.

Te=T4+

sekmg Kl [am 1)) . (17)

B. Covariant operators of position and spin

The covariant operators of the position and spin &( 4)
should also be covariant under the transformations from
the gauge group, i.e.,

J
so=ek | L7k 0]+ Tekm —a—a’—,B’GH,
{ﬁ 2 dA™
dD=¢* é e"""R’ﬁ'"—{—g&k,ib +%ek1”’ ?Z‘%},B"’
So—e* | L[(Wk—gd,R*)—17%d —% 5%, k

where 4 denotes the gauge-transformed color potential

4 “(x)

90 =00x) 4,00 0+ 3,010 (x)
g
and Q(x) is a local matrix from the SU(N) group. Then
the classical position and spin defined as the expectation
values w(t)={y(t) | &( A4)|¢(t)) are gauge invariant as
should be expected. [Remember that the gauge transfor-
mation changes also the bispinor ¢: “(x)=Q(x)(x).]
In the case of the gauge-covariant operators (18) we
can perform the gauge transformation in addition to the
coordinate one without changing the difference:

Bot)= (Y (1) | (A" | Y1) —(P(2) |B(A) | Y(1)) .
Hence, we can write
Sawl(t)= (Y1) | D(A") | P't)),
— ()| d(A) | (), .

Let us compute the difference (19) for an infinites-
imal translation, rotation, boost, and for additionally
performed infinitesimal gauge transformation Q(x)
=1—(i/#)e-W(x), where

(19)

—g /A(x) for translation ,
W(x)={—gRX A(x) for rotation ,
—gﬁo(x)R+gt A(x) for boost ,

(20)

and € are just the same as in the coordinate transforma-
tions. In this case we obtain up to terms linear in e:

Sw(t)=(y|dd|¢) , (21)
where
1 bim | 0B pia| 1 kim| 0D _mpgpipaa
+ 26 aE"'"’E 26 aAP"’e s
ma lt s 19) ’eklmBla l .
2 aAma
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Here 7=p—g A and the operator N may be found in Appendix A (the case with a color field). The gauge transforma-
tions (20) were defined in such a manner that the operators in the commutators in the relations (21) the gauge covariant.
This form of relation (21) is more convenient for the construction of the covariant position and spin operators.

Exactly as in the free-particle case the expectation values of the position operator x(z)= (¢ |X(A)|¢¥) together with
the lab time ¢ form a four-vector. It means that [compare (10)]

Sx(1)=x'(t)—x(t)=(¢ | 8% | ¢¥) ,

where
€-1 for translation ,
€ X x for rotation ,
85X = 3
1 ~ 1 ~ X
—te-l+§ G'X’Z[HFW,X]'FE for boost .

(22)

Comparing the operator 8% defined above with the right-hand side of formulas (21) for @( 4)=%X(4) we obtain the re-
lations which the covariant operator of the position must obey:

icnkann, L omn| 0% o kI

> ﬁ ’ o ,B =8 N

ﬁ[ X ]+ 26 9A4M

. l

s kP‘lRPﬁq .ﬁ.a kol __!_ kmn ax nrtp mpta
€ + ) , X 26 aA"”E

i P NUNREES 1 B - S - 1|4

- —gA,R — ,RFE™ | = —

ﬁ[(ﬁ gA,R"%),x ] 2 |34ma > X

We have assumed that the operator X does not depend on
fields E™® and B™“. Using dimensional analysis we can
prove that this is really the case when we neglect terms of
the order #? in the operator of the position.

It is not an easy task to construct the general form of
the even operator X which obeys relations (23). After
long calculations which are similar to those leading to the
scalar color operators and described in Sec. A, the follow-
ing form of the even operator X emerges from relations
(23):

#
4m?

X=R+ OXT, (24)
up to order (1/m)? and neglecting terms proportional to
#%. Note that this covariant operator is closely related to
the operator in the free-particle case (12). Namely, if we
expand formula (12) in powers of (1/m) up to the second
order and substitute 7 for p we obtain the covariant
operator of the position (24).

Considerations similar to those above allow us to con-

_eklm*\ m (23)

struct the covariant operator of the spin S(A4). This
operator is defined in the same way as for a free particle.
Its expectation value S=(¢|S(A4)|¢¥) is the spatial
component of the classical spin tensor S,,. We do not
present this construction here because of its length. We
shall write only the result. R

The even covariant operator of the spin S( 4) has the
following form [up to order (1/m)? and neglecting terms
of order #°]:

S 1’7\'2 1 A 1 A A A
S(A4)= |1+ 5| 50— s(7o,7) . (25)
2m?* |2 8m

This form of the spin operator may also be obtained from
the spin operator in the free particle case (13) according
to the formal rules described for the operator of position
(24).

To sum up the considerations of this section we com-
pare in Table I the even covariant operators of the posi-
tion, spin, and color for a free particle with those for the

TABLE I. Comparison of even covariant operators of the position, spin, and color for a free particle

with those for the particle in an external color field.

Covariant operators for
a free particle

Covariant operators for a particle
in an external color field

$=R #ig X p

=Rt om(m +Ep)
’\=_E_”a.___P_(m__
2m 2m(m +Ep)

?a

1. 1

(#-8,7)

i

Ta(A)=?a+8 eklmak(ﬁl’[ﬁm’fa])

m2
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particle in an external color field. The canonical opera-
tors for the particle in external color fields do not obey
the canonical commutation relations (4). Therefore, the
scalar color operators T ¢ are not canonical ones.

V. RELATIVISTIC GENERALIZATION
OF NONRELATIVISTIC EQUATIONS
FOR COLORED PARTICLE

Having the covariant operators of the position, spin,
and color we can easily find the relativistic generalization
of Egs. (2). We remember that the naive method of Sec.
II failed because of the trouble with the J factor in Eq.
(2¢). It is very easy to understand that problem in the
light of the results from the previous section. Simply, the
classical color I defined as the expectation value of the
canonical color operator T ¢ (3) is not a scalar in the pres-
ence of an external color field. Similarly, the canonical
position R does not form a four-vector together with the
time . To sum up, the canonical variables defined by re-
lations (3) are not good geometrical objects.

The classical quantities defined as the expectation
values of the covariant color operators transform proper-
ly under the Poincaré group. Therefore, we should write
the classical equations of motion of the Ehrehfest type in

J

1877
terms of these quantities. Let us define them first:
x()=(¢|R(4)|¢)=R+_—5sXm, (26a)
2m
S()=(¢|S(4)| )
2
T
= |1+ o s— T2 (s-m)m , (26b)
T9)=(y|T*A4)|¢)
19—, pab(s ) AL, (26¢)
2m

and m=(¢ | # | ¢) =mR. The wave packet ¢ is the same
one which was used in Sec. II to derive the classical equa-
tions (2) (for a detailed description of this packet, see Ref.
4). The relations (26) follow from the definition of the co-
variant operators (17), (24), and (25) and the form of the
wave packet 9.

Now we write the dynamical equations for the covari-
ant variables with the help of relations (26) and Egs. (2).
We must neglect for consistency terms proportional to #!
in the equations we obtained because those terms were
also neglected in Egs. (2). We obtain the following set of
equations:

d*x dx - dS g dx =
= =g |E%x, ai 9(x, a L2 _& U x,t)— a(x, a.
m— =8 (x,0)+ at X B%(x,t) |1 i m SXB(x,t)— |SX at X E“(x,t) |1
~ (27)
al® _ 8 cabe| 40 dx b Fe_ & cab b dx _ gb d
_ = c A —_— c__ aocg, — — (4 .
i ﬁf o(x,t) at A’(x,t) |1 mf S- |B%(x,t) dt XE%(x,t) |1

Note that there is no § coefficient in the spin term in the
last equation.

The external fields in Egs. (27) are taken at the new po-
sition x whereas in Egs. (2) the fields were taken at the
canonical position R. This change of the position is al-
lowed. Deriving the classical equations of the Ehrenfest
type (2) or (27) we have assumed that the wave packet ¢
is built out of the positive-energy states. Therefere, the
width of the wave packet 8r must be much greater than
the Compton wavelength of the Dirac particle (see Ref.
5):

o5r >> A .
mc
It is easy to check [by inspection of formula (26a)] that
the difference between trajectories is of the order of the
Compton length:

| K(D—R(1) | = |
mc

Both trajectories are inside the wave packet. So, both
may be used to describe the motion of the wave packet.

I

The covariant trajectory x(¢) is the only one which gives
covariant equations.

The relativistic generalization of Eqs. (27) is straight-
forward. We obtain the following manifestly covariant
equations:

20 dx, _
m d’x =gF*i(x)——1°,
dr
pv _
B = L ppuex)sy— PSR 28)
gﬁ_i abc 4 b dx#"’c__g_ abc uvb, T
i = mf A#(x)—dT I sz SHVF (x)I

In this case we describe the classical spin by means of the
tensor S,,. The equation for S, is equivalent to the
equation for W¥,

dw# :_g_FuvaW Ta R
dr m v

provided the field F}, is homogeneous. Equations (28)
written in the lab frame up to the terms linear in the ve-
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locity, are identical to Egs. (27).
equations we were looking for.

Hence they are the

VI. REMARKS

The main goal of this paper was to solve the problem
of the relativistic generalization of the equations for a
color particle (2). This problem revealed the fact that in
Dirac quantum mechanics the canonical color operator is
different from the covariant one. At this point we would
like to emphasize that the covariance of operators is
strongly connected with the assumption about the ex-
istence of the classical limit of the Dirac quantum
mechanics. The classical limit may exist only when we
impose very severe limitations on physical conditions.
The case with an external color field is especially difficult
owing to the problem of deriving the classical trajectory
from quantum mechanics. 11 Therefore, the problem we
presented here requires further study.

An earlier version of the solution to the relativistic
generalization problem was published in a paper by
Arodz and Golec.!? The idea was similar to the one
presented here. The change of operators was performed
in ad hoc manner in order to obtain the equations which
were easy to generalize to the covariant form. In this pa-
per the change of operators is independent of equations
we expect to obtain. It simply follows from considera-
tions about the covariance properties of the expectation
values. We feel that this method is the most natural one.
Up to now we have not found any connection between
the operators from Ref. 12 and those constructed here.

Nonrelativistic equations of motion for the color parti-
cle (2) are simpler versions of equations from papers in
Ref. 4. Namely, deriving Eq. (2) it was assumed that

(Y| Tl | v)=Cy| T )y |ia ), 9

ie., the expectation values of the operator
Jok= f”‘&k T ‘6" factorize. This is a so-called
case w1thout mlxing of spin and color. The mixing of
spin and color case [assumption about factorization (29)
is no longer valid] leads to a more complicated set of non-
relativistic equatlons 4 There appear new dynamical
variables J% = (1 | J | ¢) and new equations of motion
for these. However, the problem of relativistic generali-
zation of those equations remains. The solution of the

LR BE,) + S 7RXD

for a free particle ,
2(m +Ep) P

2>
Il
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problem seems to be similar to the one presented in this
paper. We should additionally construct new covariant
operators J ° in the same spirit as in this paper. The de-
tails of the construction will be presented in a forthcom-
ing paper.
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APPENDIX A

Let us consider the three infinitesimal Poincaré trans-
formations:

(a) translation t'=t, x'=x+e¢,
(b) rotation t'=t, X'=x+€XX,
(c)boost t'=t —€'x, X'=x—€t.

The bispinor ¥ which obeys the Dirac equation in the
FW representation

79

=HY,
a ¢
where the Hamiltonian H is defined by (8) for a free parti-
cle or (2) for a particle in external color fields, undergoes

the following transformation under the transformations
(a), (b), and (c):

1—~eG

Y(x,t)= P

P(x,t) .

The operators G are equal to

A

P for translation ,

A

G= ?:Rxﬁq—%&‘ for rotation ,

K=N—P for boost .
R and P are canonical operators of the position and

momentum and & are Pauli matrices. The operator N is
defined

%{ﬁ,HFw}—kf—m(ﬁX&)—{—O(ﬁz/mz) for a particle interacting with a field .

APPENDIX B

The four-potential A u=(Ag, A) transforms in the fol-
lowing way under the infinitesimal Poincaré transforma-
tions from Appendix A:

(a) translation
Aj(x)= Ag(x)—€*d) Ag(x) ,
A'(x)= A(x)—€d; A(x),



(b) rotation
Af(x)=Ay(x)—(exx)*d, Ay(x) ,
A'(x)= A(x)+€X Alx)—(exXx)*3; Alx),
(c) boost
Af(x)=Ay(x)—€ Alx)+1[€*d; A4o(x)]
+(€-x)9pAo(x) ,
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A'(x)= A(x)—€- 4y(x)+1t[€d, A(x)]
+(€-x)3) A(x) .

The Lie derivative of the potential 4 u(x) is defined by
the equation

A (x)=A,(x)+e“L, 4,(x) .

It is easy to find the Lie derivatives for our infinitesimal
transformations.
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