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The Cutkosky rules are generalized to include tachyons. A consequence is that Lorentz-invariant

interacting theories which possess tachyons cannot obey even the weakest possible form of unitarity

beyond the tree level. The problem (although not the cutting rules) is shown to extend to bosonic

string theory. Thus unitarity cannot be used to determine the range of modular integration in bo-

sonic string loop amplitudes.

I. INTRODUCTION

In the evolution of bosonic string theory unitarity has
been repeatedly invoked to determine features of the per-
turbative S matrix. The most recent case of this is the
group-theoretic approach of Neveu and West, ' but the
particle is as old as string theory itself. To cite a few ex-
amples, (a) factorization on the poles of n-tachyon tree
amplitudes determines the vertex functions for particles
of higher mass; (b) the critical dimension is required in
order that states of negative norm should decouple; (c)
Chan-Paton factors are restricted; (d) twisted open-
string loops are required; ' and (e) closed-string poles in
open-string loop amplitudes require the inclusion of
closed strings in the Hilbert space. Perhaps the most
bizarre instance of this practice arises in determining the
range of parameter integration for loop amplitudes in the
operator formalism. The procedure is first to compute an
Ansa'tz for the amplitude using Feynman's tree theorem.
This method guarantees unitarity in theories which are
both local and limited to a finite number of fields but it
can fail when either property is absent as is the case for
string theory. Upon checking the tree theorem Ansatze
for unitarity it is found that while the open-string loops
are correct, closed-string loops require modification.
This modification, which takes the form of restricting the
range of modular integration to the so-called "fundamen-
tal region, " is also determined by unitarity. ' The result
agrees with the functional formalism of Polyakov" and
with string field theory, ' but the derivation leaves some-
thing to be desired.

That the one-loop amplitude can be partially deter-
mined by unitarity is especially curious in view of the fact
that bosonic string theory is not actually unitary at one
loop. This is because it has tachyons. As we will show,
the presence of tachyons in an interacting theory spoils
perturbative unitarity beyond tree order. Of course no
one takes bosonic string theory seriously. And insofar as
the theory exists at all, the range of integration inferred

from unitarity is correct in the sense that it agrees with
string field theory. Our motive here is not to question the
answer but rather to highlight the role of string field
theory in justifying it. Even for superstrings —which are
free of tachyons —perturbative unitarity still breaks
down above the threshold for massive particle creation.
Thus we feel string field theory to be a generally superior
method of defining (but not, of course, computing) the
perturbative S matrix.

In Sec. II we discuss what is meant by the tachyonic 5
matrix and we identify the weakest sort of unitarity it
might usefully possess. In Sec. III the Cutkosky rules are
generalized to include tachyons. It is immediately obvi-
ous from the result that tachyonic loop diagrams cannot
possess even the weak sort of unitarity discussed in Sec.
II. This point is illustrated in Sec. IV with an example
from tachyonic P theory. Section V extends the result to
closed bosonic string theory. Our conclusions comprise
Sec. VI. In examples from point-particle theory we shall
always specialize to scalars. Our metric is spacelike and
the mass shell of the tachyon is p =m .

II. TACHYONIC UNITARITY

The appearance of tachyons in an interacting quantum
field theory wreaks far-reaching and often unpleasant
changes in familiar theoretical structures. Since all parti-
cles, including the tachyon itself, are unstable against de-
cay into tachyons, one might reasonably wonder whether
scattering theory makes sense. The correct answer is that
it does not. Thus there is really no S matrix at all, much
less a unitary one. However, while this fact is technically
beyond challenge, abandoning the subject on these
grounds leaves one with the feeling that a more tolerant
attitude might permit us to at least partially define a ta-
chyonic S matrix. Requiring this to obey some form of
"unitarity" —possibly a very weak one —might then
serve to justify the range of parameter integration in bo-
sonic string theory. Since the result of this paper is that
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one cannot do this, we shall have to be very generous
about overlooking the various ill-defined expressions
which are bound to arise in formally constructing a ta-
chyonic S matrix. Our program in this section is first to
give the standard prescription for generating the dia-
grams which comprise perturbative tachyonic scattering
theory. Next we exclude the ill-defined ones and proceed
to formulate a weak notion of unitarity on those which
remain. This entails precisely specifying the allowed en-

ergies and momenta of single-particle states. We close
with an important caveat concerning the difference be-
tween perturbative unitarity, which is what we are ex-
ploring, and the sort of nonperturbative unitarity which
would pertain if a nontachyonic vacuum could be found.

What is usually meant by the tachyonic S matrix is the
perturbative expansion of the Lehmann-Symanzik-
Zimmerman (LSZ) reduction formula. In point-particle
theories this corresponds to analytically continuing the
conventional Feynman rules to negative mass squared. It
also reproduces the Feynman rules which are actually
used in bosonic string theory. ' Note that one cannot
deriue the LSZ formula when tachyons are present, it
must be assumed. This is because the interpolating field
does not become weakly free at asymptotic times. In
fact, the inner product between two states whose wave
functionals are free eigenstates at fixed early and late
times does not possess a smooth infinite-time limit. This
is just another manifestation of the basic inconsistency of
tachyonic scattering theory to which we have already al-
luded.

Since the limit upon which LSZ reduction is based ac-
tually fails to exist when tachyons are present, it has to be
expected that certain of the resulting diagrams wi11 be
ill-defined. These are the ones which include tachyonic
loop corrections to external legs; Fig. 1 is an example.
The problem is that the loop induces an imaginary mass
shift which cannot be renormalized away. When the
external mornenta go on mass shell the propagator con-
necting the loop to the rest of the diagram diverges. This
is inevitable for an unstable particle and one must
remember that all particles which interact with tachyons
are unstable. The right thing to do upon noting this sort
of thing in a nontachyonic theory is to let the unstable
particle's mass shift into the complex plane and to stop
including it as an asymptotic scattering state. Since all
particles are unstable in an interacting theory which con-
tains tachyons, we ought properly to reject the whole ta-

chyonic S matrix as divergent nonsense. However, in the
spirit of searching for a weak sense of unitarity we shall
pursue a different course: to simply ignore any ill-defined
graphs.

Although the decomposition of an amplitude into dia-
grams is unphysical in that it depends upon the choice of
field variable and gauge, our procedure of ignoring ill-
defined diagrams is not totally cavalier. This is because
one can derive cutting rules which, for nontachyonic
theories, permit us to express the absorptive part of each
diagram separately as a sum over allowed intermediate
states of lower-order processes corresponding to cuttings
of the original diagram. Thus a sort of unitarity applies
diagram by diagram. (In gauge theories this is only true
for the sum of the ghost and gauge boson loops. ) It is
this relation, for well-defined diagrams, which might still
be true in a tachyonic theory. Of course, it would have to
break down for any diagram which could be cut into an
ill-defined graph (see Fig. 2), but at least it has a chance
of holding for those which cannot (see Fig. 3). Further, if
the tachyonic S matrix could be shown to possess even
this weak form of unitarity it would be sufficient to justify
the range of parameter integration in bosonic string
loops.

The key point we have yet to define is the range over
which one sums "allowed intermediate states" in at-
tempting to check the unitarity of a diagram. There is no
very good answer for tachyons. The states are labeled by
momenta satisfying k =m, which are spacelike. To
preserve Lorentz invariance we must therefore include
negative-energy as well as positive-energy states. Aside
from its aesthetic appeal, this is probably necessary for
unitarity. To see why, note that the amplitude T is
Lorentz invariant. ' Hence, so too is its absorptive part.
Thus if anything such as the usual unitarity relation,

(2.1)

FIG. 1. Divergent tachyonic loop correction to an external
leg. FIG. 2. Diagrams which can be cut to give ill-defined graphs.
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might be quite unitary when formulated around a
different vacuum. Consider, for example, the symmetry-
breaking Lagrangian

,'d—„—Pd"P+—,'m P ——,A,P (2.3)

FIG. 3. Diagram which does not cut into ill-defined graphs.

is true, it must be that the sum over states is also Lorentz
invariant.

Note that in order for the energy of a tachyon to be
real, its (D —1)-momentum must obey

The corresponding Hamiltonian is bounded below and at
least naively Hermitian. Hence the (renormalized) evolu-
tion operator exp( iH—t) should be unitary. Each of
these statements is true, of course, but they do not imply
perturbative unitarity of the tachyonic S matrix. This is
because they ignore the role of the space of states. Uni-
tarity of the S matrix means that the asymptotic "in" and
"out" Fock spaces are unitarily equivalent. While this is
true for the scattering theories based upon vacua

$0——+(6m /A, )', it is certainly not the case when the
tachyonic vacuum $0=0 is used. Although evolution is
still "unitary" in a different Hilbert space when interac-
tions are included, incoming tachyonic Fock space states
are not generally carried to the outgoing tachyonic Fock
space.

k k)m (2.2)
III.TACHYONIC CUTTING RULES

We do not include complex energies (or momenta) for the
same reasons as with ordinary particles, i.e., because (1)
fields with complex wave vectors grow exponentially at
infinity, and (2) complex energies must be excluded if
even the free theory is to be unitary.

Although we have adduced strong arguments to sup-
port our choice for the single tachyon sector of the space
of states, a compelling objection might be raised. Our
prescription requires the usual creation operator to do
double duty as both the creator of positive-energy parti-
cles and the annihilator of negative-energy ones. A simi-
lar arrangement must hold for the usual annihilation
operator. Thinking canonically, it is very difficult to con-
ceive of a vacuum state which could be consistent with
this sort of thing. This must be regarded as yet another
indication that no really satisfactory description of
tachyons is possible.

Before proceeding to the tachyonic cutting rules we
should emphasize that it is perturbative unitarity about a
tachyonic vacuum which we are discussing. The theory

In this section we establish the fundamental result of
the paper, namely, that even the weak sense of unitarity
that we defined in Sec. II cannot be realized beyond tree
order for interacting theories which possess tachyons.
This is done by deriving a set of cutting rules for comput-
ing the absorptive parts of tachyonic diagrams following
the method of Veltman. ' It turns out that "cutting" is
actually a misnomer since for tachyons the "cut" propa-
gators (1) have support for momenta which are not on
mass shell and (2) do not have support on the negative-
energy half of the mass shell. An immediate consequence
is that tachyonic loops cannot be unitary. This section
closes with a discussion of this point.

The method of Veltman involves an underlining opera-
tion that acts on a position-space diagram
F(x„.. . ;y „.. . ;z„.. . ). One obtains the scattering
amplitude from F by Fourier-transforming the incoming
(x;) and outgoing (z, ) points and integrating the interac-
tion points (y, ):

iT(p&p& . ~q~p~ ' )= fd x&e
' ' "' . f d y&

D
—lg

1 zl
d z&e

' ' F(x~, . . . ,'y&, . . . ,z, , . . . ) . (3.1)

If the diagram described by F involves a line joining the
points u; and u, then F contains a factor of the propaga-
tor b, (u; —u, ) which for tachyons is given by

Dg )~ik x):f D 2
(3.2)

(2m ) k —m ie—
The action of underlining replaces this propagator by one
of four terms, depending upon which, if any, of the points

b;—:h(u; —uj ),
8;, —:8(u; —u, ),

(3.3a)

(3.3b)

The four cases are

u; or u is underlined. In enumerating the possibilities it
is convenient to suppress the coordinates somewhat:
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6; ~b;

leak+
0 J Lsk J +0J lish J 7

ldll J 0 J LHL J +0J dl J

(3.4a)

(3.4b)

(3.4c)

(3.4d)
FIG. 5. Graphical expansion for the absorptive part of the s-

channel tree amplitude in tachyonic P theory.

Cases (3.4b) and (3.4c) look different from the usual

prescriptions 6+ and 6 but are in fact equivalent to the
latter for nontachyonic particles.

The largest time equation follows immediately from
these underlining conventions. That is, if the coordinate
u happens to have the largest 0 component of all the ar-
guments of F, then

F(u) —F(u )=0 .

l~A(J 1+72)+~8(71+12)]
while the second gives

(3.9a)

linings cancel, while the noncovariant 0(+k ) terms in

h„s add to give unity. A simple example is depicted in

Fig. 5. The first term on the right-hand side contributes a
factor of

Since there is always a largest time, the sum over all un-

derlinings of Fmust vanish:
~ (~A( Pl P2)+~ 2(1—S'1 —

S 2)] (3.9b)

underlinings

( —1)SF=0, (3.6)
The sum obviously reproduces the result of direct calcu-
lation:

2 Im(T) =
underlinings

( —1) fdx1e ' ' .F, (3.7)

where the sum runs over underlinings of one or more, but
not all, of the arguments of F (and we have used the fact
that there is a factor of i for each vertex in H. This is the
usual result, however, now a "cut" line, represented by
Fig. 4 with the momentum positive into the underlined
vertex (denoted by a circle), carries with it a modified
propagator which is the Fourier transform of (3.4b):

b, ,„,(k) =b, „(k)+521(k),

b, z(k) =2m.8(ko)5(k —m ),
8(m —k )

k —m V'm —k

(3.8a)

(3.8b)

(3.8c)

b, „ is familiar from the positive-mass-squared situation.
It obviously decomposes diagrams into sums over cut-
tings; just as obviously, it can have trouble describing in-
termediate states which contain both positive-energy and
negative-energy particles. The second term, 6&, has no
conventional analog. Since it does not even put the cut
line on shell, any nonzero contribution from this term en-
dangers unitarity. '

It is easy to see that nothing goes very wrong at tree
order. The reason is that the Az's from conjugate under-

where g is the number of coordinates underlined. [If the
largest time is not unique then (3.5) is not true, however,
(3.7) still holds because (3.6) holds except on a set of mea-
sure zero. ] Integrating this equation in the manner of
(3.1) and specializing to scalars we obtain

—A.
2

s+m +is
=A, 2~5(s+m ) . (3.10)

2n5(k' —m') . (3.12)

At tree order the actual cutting rules (3.8) do produce
this factor, but only in the sum of two conjugate lines.
Hence tree diagrams have exactly half the absorptive part
they should according to the sum over states. This can-
not be compensated by modifying the single state normal-
ization (3.11)because the conjugate diagrams typically in-
volve different numbers of intermediate particles (one and
five for Fig. 6). Nor can one simply discard disconnected
contributions. This is because certain diagrams obtain
their entire absorptive part from disconnected processes.

It also agrees, up to a factor of 2, with the sum over
states. The graphs which contribute are depicted in Fig.
6. If we normalize tachyonic states in the conventional
way,

(k, E
~

k', E') =2
i
E

i
8(EE')(2n ) '5 '(k —k'),

(3.11)

then each of these terms separately contributes a factor of
(3.10) to the absorptive part and we seem to have a minor
violation of unitarity.

All tachyonic theories violate unitarity at tree order by
this same factor of 2. The reason is that the cutting rules
which would be consistent with the sum over the inter-
mediate tachyonic-state space require cut lines such as
Fig. 4 to acquire a factor of

FIG. 4. Cut line connecting a vertex which is not underlined
with one that is.

FIG. 6. Processes contributing to the sum over states for the
tachyonic tree of Fig. 5.
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FIG. 7. The t-channel tree graph of tachyonic P' theory.

k- q, - q&

For an example, consider the t-channel graph of Fig. 7
and the corresponding sum over states in Fig. 8. (Note
that the t-channel-exchange propagator can go on mass
shell, even in the s channel, for tachyons. ) The factor of 2
is probably related to the fact that the same free oscilla-
tors must both create and destroy tachyons, as explained
in Sec. II. One might plausibly argue that the whole sum
over states, therefore, ought to be diluted by a factor of
one-half. Even if this prescription is rejected, the
discrepancy in unitarity is still very slight at tree order.
Really impressive violations occur at one loop.

Two general phenomena frustrate unitarity beyond tree
order.

(1}The b,s terms always contribute.
(2) The positive-energy 8 functions in b, „prevent the

absorptive part from capturing certain processes in the
sum over states involving positive-energy and negative-
energy intermediate states.

The first problem is really a consequence of the genesis
of the Az terms: they come from imaginary energy poles
of the propagator. These are prevented from contribut-
ing at tree order by the simple fact that all tree momenta
are fixed and real. In loops certain momenta are integrat-
ed. Regarding the integrand as meromorphic function, it
is clear that complex poles can contribute to the absorp-
tive part. Of course, the same might be said about unsta-
ble particle poles in a theory without tachyons. The
difference is that unstable particle poles lie oQthe physi-
cal sheet' whereas the Az poles must lie on it, This is
because they are connected to the real poles of h„by
continuous variation of k. In fact the contribution of ei-
ther A~ or A~ alone would not give a Lorentz-invariant
absorptive part. A somewhat similar effect has been dis-
cussed by Coleman in relation to unstable ghost parti-
cles. '

Another was of seeing the first problem, which also il-
lustrates the second, is that conjugate diagrams no longer

FIG. 9. A four-point, IPI loop in tachyonic P' theory.

xA*(k —q, —qz)A, „,( —k+pi) . (3.13b)

The Az terms no longer cancel, they add. Further, al-

though the graphs of Fig. 10 can represent part of the
sum over states depicted in Fig. 11, they are incapable of
representing the cases

k &0, p, —k &0,
k &0, p&

—k g0.
(3.14a)

(3.14b)

Although this is a special case it is always possible to
shift to a frame in which the intermediate states emerging
from a given vertex must have opposite signs of the ener-

gy. Thus unitarity, even in the weak sense described in
Sec. II, is well and truly gone at one loop.

add to give (3.12) on cut lines. This is because loops con-
nect vertices in more than one way. Thus conjugation
generally affects products of propagators. To see this,
consider the absorptive part of the diagram in Fig. 9.
The only terms for which just the propagators carrying
momenta k and k —

p& are cut appear in Fig. 10. Up to
some factors they contribute

d k—I 6,„,( —k)E(k —q, )
(2~}

Xh(k —q, —q2)b, „,(k —p~ ) (3 13a)

and

b,,„, kA* k —q)
dDk-

(2ir )

FIG. 8. Processes contributing to the sum over states for the
tachyonic tree of Fig. 7.

FIG. 10. Part of the graphical expansion for the absorptive
part of Fig. 9. Shown are terms in which the k and k —p, lines
are cut.
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FIG. 11. Processes contributing to the sum over states corre-
sponding to Fig. 10.

t'(+& -k
2

FIG. 12. A four-point loop in tachyonic P' theory.

IV. A SIMPLE EXAMPLE

The two problems identified at the end of the preceding
section invalidate unitarity in any tachyonic loop on quite
general grounds. However, we feel there is merit in actu-
ally witnessing them arise in a specific diagram. The P
box diagrain (Fig. 9) is proverbially unwieldy, ' so we

have chosen instead the P loop of Fig. 12 in D =4. We
first compute its absorptive part directly from the full
answer. This is compared with the sum over states and
shown to violate unitarity. The discrepancy is then ana-
lyzed by applying out cutting rules.

The diagram in Fig. 12 contributes the following ex-
pression to the amplitude:

~ 1 loop D D
dDk —liT "'(p,p, q, qz)=(2~) 5 (p, ~pz —q, —q, )-,'( iA)— ,

(2m ) k —m —i e (p, +pz —k ) —m ie—
(4.1)

This is straightforward to evaluate using dimensional regularization. Defining the amplitude A by
iT=i (2n ) 5 (p, +pz —qi —qz) A, the answer is

2
1A' '"i'=, I (2 —D j2)f da[ —m —a(1 —a)s ie]— (4.2)

where, as usual, s = —(p, +pz) . Although the emissive part diverges for D =4, the absorptive part is finite and equal
to

—i2
2 Im( A ' 'Ooi') =Im f da ln[ —m —a(1 —a)s —is]

16~2

i2
[8(s+4m )+8( —s —4m )(1—+1+4m /s )] .

16~

(4.3a)

(4.3b)

Note that because of the tachyonic mass-shell condition, there is no region of s for which the absorptive part vanishes.
It is simple to show that (4.3) does not agree with the sum over states. The two processes which contribute are

represented in Fig. 13. Since they each give the same factor and the whole result must be divided by two for tree unitar-
ity (cf. Sec. III), the net contribution is

dDk dDk2
&qiqz l

T'"'(T'"')'lpipz~ ~ f 5(k'i —m') f 5(kz —m')(2~) 5 (ki+kz —qi —qz)
(2~)D —'

X(2rr) 5 (ki+kz —pz —pz)

=[(2m) 5 (p, +pz —
q&

—qz) —,'A, (2m') ]f d k5(k —m )5[(k —p&+pz) —m ] .

(4.4a)

(4.4b)

Making the change of variables

k =p/2+I,
1=11+12 ~

the integral in (4.4b) becomes

(4.5)

(4.6)
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l 2pl I —s 4 —m (4.7)

The product of the 5 functions in (4.7) has support on the intersection of a hyperboloid with the hyperplane orthogonal
to p. For s & 0 (p timelike) the intersection is a (D —2)-sphere. We can choose the frame in which p =(v's, O) to obtain

(4.7)= ——(s/4+m )' ' fd i .
2v's 2

(4.8)

For s &0 (p spacelike) the intersection is a (D —2)-hyperboloid. Note that in this case the support is on a noncompact
region, so the sum over states diverges. Choosing a frame in which p =(0,&—s, O, . .. ,0) we find

1 f D 38(u —s/4 —m )

2& —s o (u2 —s/4 —m )'
(4.9)

Combining the two cases and specializing to D =4 we obtain
r

T'""(T'"") =(2m. ) 5 (p, +p2 —q, —q2)2 I 2

2 f ~ 8(u —s/4 —m )u du
v' —s 0 (u —s/4 —m )'

(4.10)

Note that for no value of s does this agree with (4.3), even up to a constant factor. For s & 0 the discrepancy is not even
finite.

%e now apply the cutting rules of Sec. III with the object of seeing how each of the two problems discussed there
manifests itself for this diagram. The graphical expansion of the absorptive part is given in Fig. 14. The corresponding
formula is

—12f [A,„,(k)h, „,(p —k)+b, ,„,( —k)&,„,( —p+k)] .
(2')

(4.1 1)

Since neither 5,„,nor either of its two components is Lorentz invariant, it is advantageous to do the calculation in spe-
cial frames. For s ~0 the best choice to make is p =(v's, O). This causes the b, „-As cross terms to vanish. Only the
first 6„-6„term contributes. The answer for it is

dDk A.
2—A, f 2m8(k )5(k —m )2m8(3/s —k )5( —s+2v'sk )=

(2m. ) 8
(4~ )(D —3 ) /21

2

X —(s/4+m')"-""1

v's
(4.12)

Since this is just the result obtained from the sum over states, the diagram would be unitary if the b I3-b,a terms were to
cancel. Unfortunately they add. After performing the k and k integrations we obtain

1 kD —2
1

(4 )(D —3)/21 D 1
2& (m —k )' (s/4+m —k )

2

(4.13a)

(4. 13a)= — ( +1+4m /s —1) .
16m

(4.13b)

Addition of (4.12) and (4.13b) reproduces the result (4.3b)

The final integral is simple to evaluate for D =4 and gives for s &0. This is an example of how the hz terms can
spoil unitarity. '

For s & 0 we can choose a frame in which
p=(Op' —s, O, . . . , 0). Since the incoming energy is then
zero the energy 0 functions in the 6„-6„ terms convict

FIG. 13. Processes which contribute to the sum over states
for the tachyonic loop of Fig. 12.

FIG. 14. Graphical expansion for the absorptive part of the
tachyonic loop of Fig. 12.
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and they make no contribution. Note that it was inter-
mediate states of opposite energy which led to the diver-
gence we found for TT in (4.10). This sort of thing can
never happen using our cutting rules. On the other hand,
one gets contributions from A~-hz and Az-hz terms
which cannot even be interpreted as a sum over on-she11

states.

theory because the infinite number of states can lead to
singularities which contribute to the absorptive part.
Therefore, we shall instead exploit the close relation
which exists between string amplitudes (even superstring
ones as it turns out) and those of P theory, where we
know how to compute the absorptive part.

Consider the Lagrangian

V. BOSONIC STRING THEORY (5.1)

The simplest way to argue that bo".onic string loops are
not unitary would be to invoke the cutting rules of Sec.
III. Unfortunately, these do not quite apply to string

It is straightforward to show that the one-loop, one-
particle-irreducible (1PI) contribution to the N-particle
invariant amplitude is

r

i/I(1 N)= —'m A, f dt . . f dt 8(E)f dry ' e
0 0 0

+g( E) i(N —D/2)n f d +—1 —D/2 7E

0

N —1 N

X J, J [I t, —t, I

—(t, —t, }'1
I =1 j=i+1

(5.2a}

(5.2b)

Vp; p BE)0 .

A (1, . . . , N)= ,'(na)f d—v.
,
. d viv[ —,'Im(v, v)] llf(e )II

It is apparent that A derives its absorptive part entirely from regions of parameter space where E is negative. Although
one can always compute Im( /I ) from (5.2a), a shortcut is often useful. The method is to consider A to be a meromorph-
ic function of the N(N —3)/2 independent Mandestam parameters and to define the amplitude on that portion of
C ' ' for which E is always positive:

)—= -' '"X f'd f'd f d P-'-'".-" (5.3)
0 0 0

One then extends the result over all C ' by analytic continuation. Note that for tachyons (p = —m ) or massless
particles (iu =0) there is no region of C ' '/ for which E is everywhere positive. The correct result in this case is
obtained by decomposing the dual amplitude into individual channels and then defining the various pieces by analytic
continuation from the (diFerent) regions of C ' ' over which E is positive. Each piece has the general form (5.3)
but with a different range of t, integration.

Since the exponent E is real for physical momenta, the way (5.3) acquires a nonzero absorptive part is by the in-
tegrand becoming singular. This can only happen when E is negative as ~ approaches infinity. We therefore learn two
things. First, the reason (5.3) fails to exist for iu & 0 is that massless particles or tachyons can always be exchanged in
one channel or another so the full 1PI amplitude will always have a nonzero imaginary part —even if not the right one
for tachyons. Second, it is only the large-~ limit which affects the absorptive part. Moving the lower limit above zero
can drastically alter the emissive part —for example, ultraviolet divergences are centered at ~=0—but the absorptive
part is unchanged.

We now turn to the closed bosonic string. The X-tachyon loop is'

4~ Irn( v~ j
N —1 N

2mt~ Y v, ) 2niv& p, p /2'

Xe
i =1 i =i+1

(S.4a)

f(w)—= P (1—w"),
n=1

(5.4b)

q( ) „"IIII
II

/
2 lnll w

II

(1—w "z)(1—w "z ')
II (5.4c)

The range of integration is

——,
' & Re( v; ) & + —,',

0& Im(v, ) &Im(viv)) [1—[Re(viv)] ]'
(s.sa)

(s.sb}

This expression is ill-defined for two reasons. First, it is a
dual amplitude and therefore the sum of all one-loop
Feynman diagrams in string field theory. Some of these,
for example, Fig. 1, are ill-defined and must be excluded.
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Others, such as the first graph of Fig. 2, cut to give ill-
defined graphs and must also be excluded from the dis-
cussion of unitarity. In this respect tachyonic string
theories are no different from tachyonic point-particle
theories. The second problem is that (5.4a) is a real in-

tegral, yet the presence of massless particles and tachyons
in the theory forces the correct amplitude to have an
imaginary part. A consequence is that the integral
diverges just as (5.3) does for itt &0. We emphasize that
this occurs even for superstring amplitudes owing to the
presence of massless particles.

Both problems can be solved by appealing to string
field theory. Since any string field theory provides a tri-
angulation of moduli space, each contributing Feynman
diagram corresponds to a known portion of the modular
integration for the dual amplitude. The correct prescrip-
tion for excluding reducible graphs from (5.4) is to excise
small regions (whose precise shape we need not deter-
mine) around the surfaces defined by v, =v . We could
also define the amplitude by using a field-theory triangu-
lation to divide the modular integration up into portions
over which the integrand would remain fimte when the

2
vk ——ak+i —rtk (5.6a)

(5.6b)

The amplitude then becomes

Mandelstam variables were confined to different regions
of C ' ' . However, a much simpler alternative is
available if only the absorptive part is desired. As with
(5.3), the imaginary part of (5.4) derives from regions
where the integrand becomes singular. This can happen
when two or more source points coincide (v, =v, ) or
when the imaginary part of vz approaches infinity. The
first case gives the isolated poles of reducible diagrams.
These terms have been excluded in order to obtain a
well-defined amplitude. The second case gives the cut
structure with which we can test unitarity. It turns out
that in this limit the integrand becomes a sum of field
theory expressions of the same type as (5.3).

To take the appropriate limit it is useful to change
variables:

(1, . . . , N)= ,'~ (2l~) -dtl dttt, dt2, dt2„8(t, , . . . , t„,;a, , . . . , tz„)

lpga

1 g) /2 ~ 1 1 1/2 1/2

0 0 —1/2 —1/2

+—1 —D/2~y (
'

e
—

) ~(

2(o —2)& r
( /2)(1 2 )1/2

& =g j=I+1
(5.7)

where the function 8 is zero near t; =t, a; =a and unity everywhere else. For t; &t and r large the 7's have a partic-
ularly simple form:

X(e ' ' e ' ', e e ')=exp[ —2r(t t, ) +2m
~

—t, t,
~
][1+0(e ')]—.

Similarly the partition function is just 1 to leading order. Hence the leading term is
1 1 1/2 1/2A' ' "' '"s(1, . . . , N)= '7r (2K) d—t, dt, da, dtz

0 0 —1/2 —1/2

X8(t, , . . . , ttt, ;a, , . . . , a„)J der" ' D~2--
(m/2)(1 —a~ )

X —1 N

Xe"exp r g g p p[~t, t
~

(t, t )2]. — ——
i =1 j=i+1

(5.8)

(5.9)

The integrand of this expression is just that of (5.3) with p = —8 and A, =2tt. Although the ranges of integration differ
somewhat this is not significant for the absorptive part. (The lower limit of the r integration is irrelevant and the effect
of 8 can be made arbitrarily small. ) Hence the absorptive parts are equal.

It turns out that each of the subdominant terms in the large-r expansion of the integrand has a similar interpretation
but with difFerent particles propagating along the N internal lines. Hence the expansion decomposes the absorptive
part of (5.7) into a sum of the form

2 Im( ~ 1PI) g . . g 2 Im( g Particle looP) (5.10)
particle

on line 1

particle
on line X

Since our cutting rules apply to point particle theories, we can employ them to evaluate each term on the right-hand
side of (5.10). Now although Sec. III dealt with pure tachyon theories, it is clear that a mixed-loop diagram containing
even a single tachyon line succumbs to the same problems with unitarity. Barring the possibility that these individual
violations of unitarity cancel in the sum we can therefore conclude that the right-hand side of (5.10) does not equal the
corresponding sum over states:
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particle
on line 1

2 Im( g Particie iooP )~
particle

on line N
particle

on line 1

particle states
on line N

( g particie tree)( g particle tree)t (5.11)

That this is fatal to unitarity becomes apparent upon interchanging the sum over states with the sums over particle
types. The latter can be done to recover full string trees: '

y ( g particie tree)( g particle tree)t ~ r g string treetr g string tree it~ ~ ~
/

particle particle states states
on line 1 on line N

(5.12)

Hence we conclude:

( g 1PI)+ y ( g string tree)( g string tree)t

states

(5.13)

states to diverge and so welcome a similar divergence in
the absorptive part. It is now known from string field
theory that this is not the case our point is merely that
the result does not follow from unitarity.

where we remind the reader that this is contingent upon
the assumption that the unitarity violations which are
certainly present in individual particle theory loops con-
taining tachyons do not somehow cancel one another.

Even were such cancellations to occur, unitarity would
fail to hold in the form in which it has previously been in-
voked, or indeed in any useful form, because neither the
absorptive part nor the sum over states is very well
defined. The problem with Im(A' ') is that there is no
threshold below which only a finite number of terms con-
tribute. This derives from the fact that the Az terms do
not force cut lines onto a real mass shell. Hence no dia-
gram with one cut line propagating a tachyon and the
other an arbitrary particle can be made to vanish by ad-
justing the incoming momenta. There are, of course, an
infinite number of particle types in string theory and
hence an infinite number of Az-anything terms which
contribute to Im( A ' '). It is not known whether the sum
even converges, much less what it converges to. This is
not as vexing as it would otherwise be because we are
similarly unable to evaluate the sum over states. The
problem here is that many terms in the series are ill-
defined. This is because one must allow intermediate
states in which a negative-energy tachyon and a positive-
mass-squared particle are exchanged. We saw in Sec. IV
that the volume of phase space for this process is not
compact, hence the momentum integral tends to diverge.
The better ultraviolet behavior of string amplitudes
ameliorates this but not, it turns out, enough to prevent
divergences from happening for certain incoming mo-
menta.

It is amusing to note that unitarity could actually be
invoked to obtain the wrong region of modular integra-
tion. The usual argument is that the contribution from
one modular region gives a finite, nonzero absorptive
part. Therefore the result obtained from integrating over
all regions must diverge. It is then asserted that this can
never agree with the sum over states. Of course, the
tree-tree sum over states is always finite for positive
mass-squared particles because their phase space is com-
pact. However we have seen that the phase space for
tachyonic exchanges is noncompact. There is also the
problem that negative-energy tachyons can be exchanged
with any of an infinite number of positive mass-squared
particles. Thus one might actually expect the sum over

VI. CONCLUSIONS

We have shown that interacting, Lorentz-invariant
theories with tachyons obey no perturbative form of uni-
tarity beyond tree level. This statement applies in spite of
our having done everything possible to find a weak sense
of unitarity which might pertain. Ill-defined diagrams,
and those which cut to give ill-defined diagrams, were
simply discarded. Furthermore, we overlooked the factor
of 2 that spoils tree-level unitarity due to the presence of
negative-energy states. Even so, nothing can be done to
save unitarity from complete collapse at one loop and
beyond.

There are two reasons for this: (1) the tachyonic mass
shell is a single-sheet hyperboloid, so Lorentz invariance
requires negative-energy as well as positive-energy states,
and (2) the tachyonic propagator has imaginary poles in
the complex-energy plane. Both problems are apparent
from the tachyonic Cutkosky rules we obtained. The
"cut" propagator is given by Eq. (3.8):

bc„t(k) =b, „(k)+hq(k),
where the real poles contribute

b, „(k)=2tr8(k )5(k —m )

and the imaginary ones give

bz(k)=9(m —k )k /(k —m )+m —k

(6.1)

(6.2)

(6.3)

Owing to the energy 0 function in h~, the absorptive
part of tachyonic diagrams will miss certain contribu-
tions which would arise from exchanges involving
negative-energy states. Because of the fact that
derives from imaginary poles, no contribution from it is
interpretable as a sum over physical states.

At tree level the 6& terms cancel while the 8 function
in 5„gives rise to a discrepancy of a factor of 2 between
the absorptive part and the sum over states which we
have agreed to overlook. At loop order both problems
occur in ways that cannot be ignored. We saw a vivid ex-

On the other hand, agreement with the sum over states
would require instead simply

b,,„t(k)=2m5(k —m )=b, „(k)+5„(—k) .
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ample at one loop in tachyonic P theory, where ImT is
finite but TT can diuerge.

The general nature of this problem indicates that bo-
sonic string loop amplitudes must also fail to be unitary,
due to the tachyon in the spectrum. Since we could not
derive cutting rules for string diagrams (due to the
infinite number of mass levels), we instead demonstrated
the problem by establishing a correspondence between
the absorptive part of a string diagram and those of a col-
lection of cubic point-particle theories. This was
sufficient to show that unitarity fails in the contribution
from each mass level.

Our conclusion is that unitarity per se cannot be used
to constrain the form of bosonic string amplitudes

beyond tree level, despite a long tradition of belief to the
contrary. In particular, the restriction to the fundamen-
tal region for the range of modular integration in closed-
bosonic-string loops finds its proper justification not in
unitarity but in string field theory.

ACKNOW%'LEDGMENTS

We have benefited from conversations with S. Deser, P.
Goddard, M. B. Green, S. Mandelstam, J. C. Taylor, C.
B. Thorn, and E. T. Tomboulis. This work was partially
supported by NSF Grants Nos. PHY82-01094 and
PHY85-06686 and by DOE Contract No. DE-AC02-
76ER03130.A021-Task A.

'Present address: Department of Physics, University of Mary-
land, College Park, MD 20742.

A. Neveu and P. West, Phys. Lett. B 193, 187 (1987); 194, 200
(1987); Commun. Math. Phys. 114, 613 (1988).

2K. Bardakci and S. Mandelstarn, Phys. Rev. 184, 1640 (1969);
S. Sciuto, Lett. Nuovo Cimento 2, 441 (1969); S. Weinberg,
Phys. Lett. 156B, 309 (1985).

R. C. Brower, Phys. Rev. D 6, 1655 (1972); P. Goddard and C.
B.Thorn, Phys. Lett. 40B, 235 (1972).

4J. H. Schwarz, in Lattice Gauge Theories, Supersymmetry, and
Grand Unification, proceedings of the Johns Hopkins
Workshop on Current Problems in Particle Theory 6,
Florence, Italy (Johns Hopkins University, Baltimore, 1982),
p. 233; N. Marcus and A. Sagnotti, Phys. Lett. 119B, 97
(1982).

5K. Kikkawa, B. Sakita, and M. A. Virasoro, Phys. Rev. 184,
1701 (1969); K. Kikkawa, S. A. Klein, B. Sakita, and M. A.
Virasoro, Phys. Rev. D 1, 3258 (1970).

M. B. Halpern, S. A. Klein, and J. A. Shapiro, Phys. Rev. 188,
2378 (1969); M. Kaku and C. B. Thorn, Phys. Rev. D 1, 2860
(1970); C. B. Thorn, ibid. 2, 1071 (1970); D. J. Gross, A.
Neveu, J. Scherk, and J. H. Schwarz, ibid. 2, 697 (1970).

7D. Olive and J. Scherk, Phys. Lett. 44B, 296 (1973).
R. P. Feynman, Acta Phys. Pol. 24, 697 (1963); in Magic

Without Magic, edited by J. Klauder (Freeman, New York,
1972), p. 355.

J. A. Shapiro, Phys. Rev. D 5, 1945 (1972).
' It was originally believed that the open, nonplanar, orientable

loop also requires modification (Ref. 6). This resulted from
the use of an old formalism —but the only one available in
1970—in which the intercept ao was left unspecified. For
cxo+ 1, only L, —Lo creates spurious states so only a tiny
fraction of the ghosts decouple. Permitting the remaining
states to circulate around a nonplanar, orientable loop (but
not a planar or nonorientable one) results in infinite over-
counting by a simple duality argument. It was therefore
necessary to restrict the range of loop integration to restore
what was termed "unitarity. " This was taken to mean agree-
ment between 2 ImT and TT when the sum over states in-
cluded the unprojected ghosts. The analogous condition
would certaintly pertain in all known gauge theories without
the inclusion of Faddeev-Popov ghosts. The reason it does
not have to hold for strings is that the theory has an infinite
number of particle types. However, if one specializes to
uo ——1, and projects out all the ghosts, then the tree theorem

Ansatz is unitary in the strict sense. This was not seen by ear-
ly workers because they failed to project out the extra states
which became unphysical for ao ——1 and D =26. Ironically,
the procedure of modifying the range of integration was
developed for open-string loops, where it is not really neces-
sary, before being applied to closed ones, where it is. We
speculate that the failure of the tree theorem for closed-string
loops is telling us something profound about the structure of
closed-string field theory in a covariant gauge.

"J.Polchinski, Commun. Math. Phys. 104, 37 (1986).
'2S. Mandelstam, in United String Theories, edited by M. Green

and D. Gross (World Scientific, Singapore, 1986), p. 46; S. B.
Giddings and S. A. Wolpert, Commun. Math. Phys. 109, 177
(1987); E. D'Hoker and S. B. Giddings, Nucl. Phys. B291, 90
(1987).

~3Actually, "the amplitude" fails to exist in that it includes ill-
defined graphs. However, if we develop perturbation theory
using Lorentz-covariant fields and an invariant gauge then
each of the resulting diagrams will be separately Lorentz in-
variant and the argument goes through as stated.

' M. Veltman, Physica 29, 186 (1963).
' We remark in passing that both these problems could be

avoided at the cost of Lorentz invariance, by simply omitting
the negative-energy states from the Hilbert space and modify-
ing the propagator to be A(k) = —i8(k —m )/(k —m —ig).

' S. Coleman, in Subnuclear Phenomena, proceedings of the
1969 International Summer School, edited by A. Zichichi
(Academic, New York, 1970).

' A. C. T. Wu, K. Dan Vidensk. Selsk. Mat. Fys. Medd. 33, 1

(1961).
' It is very tempting to try to regard (4.13) as arising from inter-

mediate states of complex energies. If this could be done then
the diagram would be "unitary" on the larger space of states.
However, aside from its intrinsic ugliness, this proposal turns
out to be inconsistent with the on-shell state condition. Even
if we permit intermediate states of complex D mornenta kl
and k2, momentum conservation (in this frame) implies:

k, =(co+ip, k+il ), k2 =(2E—co —ip, —k —il ) .

Requiring k, =m ' then implies p =0. Thus the Az-6& terms
cannot be written as sums over on-shell states of complex en-
ergy. This is why any nonzero contribution they make spoils
unitarity.

'9J. H. Schwarz, Phys. Rep. 89, 223 (1982).



1834 T. JACOBSON, N. C. TSAMIS, AND R. P. WOODARD 38

We shall not actually show this in detail but the basic mecha-

nism is easy enough to describe. The higher-order terms from
expansions of 7 and the partition function give rise to in-

tegrals of the same form as (5.9) but containing an extra fac-
tor whose general form is

The function f is a simple kinematic factor while g is a prod-
uct of sines and cosines. The function h can be written as

i=1 J=t+1

where I, J„, and K„are positive integers. It is relatively
straightforward to see that the a, integrations give zero for
the absorptive part unless the integers I through K J are even.
Hence the exponent in the first equation is really a multiple of
—8~. Since 8 is the fundamental mass of closed-string theory,
it is perhaps not surprising that each of the higher-order
terms in the large-~ expansion of the string integrand can be

I ( —s/2 —1)I ( —t /2 —1)
I ( —s/2 —t/2 —2) n=0

(t/2+2) (t!2+n +1)
n!(n —1 —s/2)

Although unitarity per se cannot be used, one might still plau-
sibly argue that one must restrict the range of integration to
the fundamental region in order to avoid an infinite overall
factor in the loop amplitude.

associated with the integrand of an analogous local-field-
theory loop diagram in which more massive particles propa-
gate over some or all of the internal lines. The precise
correspondence depends upon the values of the integers I
through K„-. I/2 mass units are added to a/l internal lines;

J„/2 additional units are added to those lines containing ver-
tices i and j along the route which does not include vertex N;
and K„/2 more mass units are added on the lines connecting i
and j through N.

'Again we forbear to present the details, but the basic mecha-
nism is familiar to anyone who has seen the local expansion of
the Veneziano amp1itude in open-string theory:


