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When gravitational plane waves propagating and colliding in an otherwise flat background in-

teract, they produce spacetime singularities. If the colliding waves have parallel (linear) polariza-
tions, the mathematical analysis of the field equations in the interaction region is especially simple.
Using the formulation of these field equations previously given by Szekeres, we analyze the asymp-
totic structure of a general colliding parallel-polarized plane-wave solution near the singularity. We
show that the metric is asymptotic to an inhomogeneous Kasner solution as the singularity is ap-
proached. We give explicit expressions which relate the asymptotic Kasner exponents along the
singularity to the initial data posed along the wave fronts of the incoming, colliding plane waves. It
becomes clear from these expressions that for specific choices of initial data the curvature singulari-

ty created by the colliding waves degenerates to a coordinate singularity, and that a nonsingular
Killing-Cauchy horizon is thereby obtained. Our equations prove that these horizons are unstable

in the full nonlinear theory against small but generic perturbations of the initial data, and that in a
very precise sense, "generic" initial data always produce all-embracing, spacelike curvature singu-

larities without Killing-Cauchy horizons. We give several examples of exact solutions which illus-

trate some of the asymptotic singularity structures that are discussed in the paper. In particular, we

construct a new family of exact colliding parallel-polarized plane-wave solutions, which create
Killing-Cauchy horizons instead of a spacelike curvature singularity. The maximal analytic exten-

sion of one of these solutions across its Killing-Cauchy horizon results in a colliding plane-wave

spacetime, in which a Schwarzschild black hole is created out of the collision between two plane-

symmetric sandwich waves propagating in a cylindrical universe.

I. INTRODUCTION

Gravitational plane waves are among the simplest non-
trivial exact solutions to the vacuum Einstein field equa-
tions that describe time-varying gravitational fields. Al-
though the existence and the quantitative structure of
these solutions have been known since the early days of
general relativity, ' the surprisingly rich qualitative
features that they possess were not fully understood until
the rnid-1960s when Penrose carried out his investiga-
tions on their global structure. (In fact, Penrose pro-
posed the plane wave spacetimes as counterexamples to a
conjecture in global general relativity, which stated that
any spacetime satisfying a sufficiently strong causality
condition can be globally embedded in a high-
dimensional Minkowski space. ) The source of this rich
global structure in plane-wave solutions is the focusing
effect of gravitational plane waves, which is reviewed, for
example, in Refs. 2 and 3, and in the introductory section
of Ref. 4.

The presence of both spacelike and timelike nontrivial
directions in exact (single) plane-wave solutions makes it
possible to study interesting dynamical effects associated
with the interaction of plane waves, without destroying
the plane symmetry present in the original solutions.
Thus, for example, it is not exceedingly difficult to write
down solutions to the vacuum field equations that de-
scribe collisions of gravitational plane waves. The first
such solution was discovered by Khan and Penrose in
their attempt to verify Penrose's earlier conjecture that

the focusing effect of single plane waves should cause the
colliding waves to interact strongly and to eventually pro-
duce spacetime singularities. Several other solutions in-
volving similar curvature singularities were obtained by
Szekeres, who formulated a general solution for the
problem of colliding parallel-(linear)-polarized gravita-
tional plane waves. Later Nutku and Halil obtained a
colliding plane-wave solution where the incoming waves
had nonparallel linear polarizations; this solution too had
a spacelike curvature singularity, similarly to the earlier
solutions. The global structure of these early solutions is
reviewed in Refs. 8 and 3.

The technique of generating colliding plane-wave solu-
tions by the extension of suitable (but weakly restricted)
plane-symmetric solutions to the field equations in the in-
teraction region, pioneered by Khan and Penrose in Ref.
5, proved to be remarkably fertile in subsequent studies
on colliding waves. Thus, using this technique, Chan-
drasekhar and Xanthopoulos obtained many new solu-
tions for both colliding purely gravitational plane waves
and for colliding plane waves coupled with matter fields.
Other solutions were obtained by the author in Ref. 10,
where the Penrose-Khan prescription for generating col-
liding plane-wave solutions is reviewed, and compared
with the direct method of solving the relevant initial-
value problem, which, in the case of parallel-polarized
waves, was worked out by Szekeres.

A surprising result of the recent work on exact solu-
tions for colliding plane waves was the discovery by
Chandrasekhar and Xanthopoulos" of a solution, where
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the collision of the incoming waves (which are non-
parallel-polarized) produces a nonsingular Killing-
Cauchy horizon instead of a spacelike curvature singular-
ity. The resulting metric can be analytically extended
across this horizon to produce a maximal spacetime,
whose singularities [which are timelike for the particular
(i.e., maximal analytic) extension used by Chandrasekhar
and Xanthopoulos' '] could be avoided by observers trav-
eling on timelike world lines, in striking contrast to the
earlier solutions with their all-embracing, spacelike singu-
larities which almost all observers are bound to en-
counter. The structure, significance, and nongeneric na-
ture of such Killing-Cauchy horizons in colliding plane-
wave solutions (and in more general plane-symmetric
spacetimes) are discussed extensively in Refs. 11, 4, and
3. The Chandrasekhar-Xanthopoulos" solutions are
relevant to the subject matter of the present paper, in
that they point to a hitherto unsuspected richness in the
structure of singularities produced by colliding plane
waves. In fact, it was more or less widely believed" be-
fore the discovery of these solutions, that the singularity
structure exhibited by the earlier exact solutions ' ' ' was
universal for colliding plane-wave spacetimes. And even
after this remarkable discovery, one might be tempted to
believe that the unusual structure of Chandrasekhar-
Xanthopoulos" spacetimes is a result of the nonparallel
configuration of the incoming polarizations, and that col-
liding plane waves with parallel polarizations will always
produce singularities with the same global structure as
the earlier exact solutions. One of the specific results of
this paper is that this is not the case; in particular, in Sec.
IV we present examples of exact solutions for colliding
parallel-polarized plane waves, which possess nonsingular
Killing-Cauchy horizons that are very similar in local
structure to the horizons of the Chandrasekhar-
Xanthopoulos" spacetimes.

The overall purpose of this paper is to explore in detail
the structure of the spacetimes that result from the col-
lisions of parallel-polarized plane waves, especially their
singularity and Cauchy-horizon structures. The plan of
the paper is as follows.

In Sec. IIA, we give a very brief review of Szekeres's
formulation of the field equations and the characteristic
initial-value problem for colliding parallel-linear-
polarized plane waves, in the (u, , uyx) coordinate system
which we call "Rosen type" and which is tuned to the
plane-symmetry of the spacetime. Our presentation is
necessarily brief, and the reader is referred to Ref. 6 for
the full mathematical details, or to Ref. 10 for a short
outline.

In Sec. IIB, we perform a coordinate transformation to
a new (a,p, x,y) coordinate system in which the
mathematical analysis of the field equations simplifies
considerably. Although this coordinate system and its
properties were known to Szekeres, he did not make ex-
tensive use of them since the coordinates (a,P) are badly
behaved on the initial null surfaces where the initial data
are posed. However, we will find this new coordinate sys-
tern very useful both in discussing the general solution of
the field equations (Section IIB), and in discussing the
asymptotic behavior of the resulting spacetime (subse-

quent sections).
It will become clear in Sec. IIB that some kind of

singularity is associated with the "surface" o.=0 in a gen-
eral colliding plane-wave spacetime. (Note: a is a time-
like coordinate which monotonically decreases to zero
along the world lines of all observers running into the
singularity. ) We show in Sec. IIIA that the spacetime
metric asymptotically approaches an inhornogeneous
Kasner' solution as u approaches zero, where the time
coordinate t of the asymptotic Kasner spacetime is mono-
tonically related to a, and the Kasner singularity at t =0
corresponds to the singularity at a=0. We give explicit
expressions which relate the spatially inhomogeneous
asymptotic Kasner exponents along the singularity to the
initial data posed along the wave fronts of the incoming,
colliding plane waves. In general, these exponents depend
on p, the spacelike coordinate running along the nontrivi-
al spatial (z) direction in the spacetime.

Our discussion in Sec. IIIA indicates that for some
specific choices of the initial data, the Kasner exponents
(either locally, or globally for a finite interval in the spa-
tial coordinate P) may take on the values associated with
a degenerate Kasner solution. A degenerate Kasner
spacetime is flat, and instead of a spacelike curvature
singularity, it possesses a Killing-Cauchy horizon at
t =0. It is then natural to expect that, when the asymp-
totic limit of the metric as +~0 is a degenerate Kasner
solution, our colliding plane-wave spacetime possesses a
nonsingular Killing-Cauchy horizon at cx =0, across
which the metric can be extended smoothly. However, to
demonstrate this rigorously, we need to study the behav-
ior of the spacetime curvature near @=0, and to show
that the curvature is indeed well behaved when the
metric approaches a degenerate Kasner limit at a=O.
This would give us information about the asymptotic be-
havior of the deriuatiues of the metric as a~O, comple-
menting our analysis in Sec. IIIA of the asymptotic be-
havior of the metric itself. Thus, in Sec. IIIB, we derive
expressions for the Newman-Penrose' ' curvature quan-
tities (with respect to the null tetrad that we set up earlier
in Sec. IIA) in tertns of the metric components in the
(a,p, x,y) coordinate system. We then read out from
these expressions the asymptotic structure of the curva-
ture quantities as a~0. This analysis indeed shows that
when the metric is asymptotic to a degenerate Kasner
solution, the curvature remains well behaved as a~O.

We begin Sec. IIIC by recapitulating the principal con-
clusion of the analysis of Sec. IIIB:When the asymptotic
limit of the solution is a degenerate Kasner metric, the
colliding plane-wave spacetime possesses a Killing-
Cauchy horizon (a coordinate singularity) at a=O across
which the curvature quantities are finite and well
behaved. We note that spacetime can be extended
through these horizons in infinitely many different ways;
the geometry beyond the horizons cannot be determined
from the initial data posed by the incoming, colliding
plane waves. We then briefly recall our earlier work in
Ref. 4, where we have proved general theorems stating
the instability of such Killing-Cauchy horizons in any
plane-symmetric spacetime against generic, plane-
symmetric perturbations. In the specific case of the



1708 ULVI YURTSEVER 38

Killing-Cauchy horizons which occur at a=O in our col-
liding plane-wave solutions, the existence of these insta-
bilities is particularly clear: We discuss how our equa-
tions imply (i) that the horizons at a=0 are unstable in

the full nonlinear theory against small but generic pertur-
bations of the initial data (since such perturbations drive
the asymptotic Kasner exponents away from the degen-
erate values}, and (ii) that in a very precise sense, "gener-
ic" initial data always produce all-embracing, spacelike
spacetime singularities at a =0 across which no extension
of the metric is possible.

In Sec. IV, we give severa1 examples of exact solutions
for colliding parallel-polarized plane waves, which illus-
trate some of the different asymptotic singularity struc-
tures that are discussed in the previous sections. Most of
the examples we consider are new, and are discussed here
for the first time. However, all of our examples have
asymptotic Kasner exponents which are uniformly con-
stant across the whole range of the spatial coordinate P.
It seems particularly difficult to write down a full solu-
tion, expressible in closed form, which would exhibit a
truly inhomogeneous asymptotic structure near the
singularity a=O. By using the same line of reasoning
that we have followed in Ref. 10, we construct exact col-
liding parallel-polarized plane-wave solutions, which pro-
duce Killing-Cauchy horizons at a =0 instead of a curva-
ture singularity. The maximal analytic extension of one of
these solutions across the horizon produces a colliding
plane-wave spacetime with a surprising global structure.

In the concluding section, we briefly list the major re-
sults of the paper, and discuss some suggestions and plans
for future research.

The notation and conventions of this paper are the
same as in Refs. 3, 4, and 10. In particular, we adopt the
metric signature ( —,+,+, + ), and we use the "rational-
ized" Newman-Penrose equations appropriate to this sig-
nature, which can be found, e.g., in Refs. 14 and 3 ~

M(u, u) +pi( &
B B

Bu

n= +Q'(u, v)
B B

Bv Bx

B 1 BI= +F(u, v) Bx G(u, v) By

(2.1)

1 B 1 B+F(u, v) Bx G(u, v) By
(2.2)

Finally, when the colliding plane waves have parallel
linear polarizations, the tetrad components in Eq. (2.2)
can be further restricted ' to give

I=2e, n=M

Bu Bv

Bm=N, +N2
Bx By

where

(2.3)

Here P', Q', M are real, and F, G are complex functions of
(u, v), with F'G —G'F&0 throughout the region on
which strict plane symmetry ' holds and on which the
tetrad (2.1) and the coordinate chart (u, v, x,y) are well

behaved. In the specific plane-symmetric spacetirnes
which describe gravitational plane waves propagating
and colliding in an otherwise flat background, there wi11

be a region, corresponding to the spacetime before the ar-
rival of either plane wave, where the metric is flat. It is
shown by Szekeres (see also Sec. IIIB of Ref. 4), that the
presence of such a flat region makes it possible to find a
new coordinate system, which we sti11 denote by
(u, v, x,y), in which P'=Q'=0 and the standard tetrad
(2.1) takes the simpler form

1=2eM(u, v) B =B
Bu Bv

II.THE FIELD EQUATIONS FOR COLLIDING
PARALLEI POLARIZED GRAVITATIONAL

PLANK WAVES AND THEIR SOLUTION

1+l (U —v)/2
xV~ = 8

2

(U+ V)/2e
2

7

(2.4)

A. Formulation of the problem in the Rosen-type (u, v, x,y)
coordinate system

In any plane-symmetric spacetime (see Sec. IIIB of
Ref. 3, or Sec. II of Ref. 4 for a careful definition of plane
symmetry}, there exists a canonical null tetrad' whose
construction is described in Sec. IIIB of Ref. 3. In this
null tetrad, which we call the standard tetrad, 1 and n are
tangent to the two null geodesic congruences everywhere
orthogonal to the plane-symmetry generating Killing vec-
tor fields g, and g'z, and m and its complex conjugate are
linear combinations of the g;, i =1, 2. As is shown by
Szekeres, it follows from the presence of only two non-
trivial dimensions in the spacetime, that we can find a lo-
cal coordinate chart ( u, v, x,y) in which f; = B /Bx '

[(x ', x )
—= (x,y)], and in which the standard tetrad can be

expressed as

g= —e™dudv+e (e dx +e dy ) . (2.5)

Thus, the x-y part of the metric is in diagonal form uni-

formly at all points in the spacetime, and the Killing vec-
tor fields B/Bx and B/By are everywhere hypersurface or-
thogonal; each of these facts being equivalent to the as-
sumption that the colliding plane waves have parallel
(linear) polarizations. ' The coordinate system (u, v, x,y)
is uniquely determined, up to transformations of the form
u =f (u'), v =g(v'), by demanding (i) that the metric in
it has the above form (2.5) (hence, in particular, that the

with U and V real and with M, U, and V functions of u

and v only. The presence of a difference between the
linear polarizations of the incoming waves (or, the pres-
ence of a circular polarization component in any of the
colliding waves) would manifest itself in the presence of a
(u, v)-dependent relative phase factor between N~ and N2
in Eq. (2.4) above. The tetrad (2.3}—(2.4} gives rise to the
metric
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plane-symmetry generators are B/Bx'), and (ii} that in the
Aat region describing the spacetime before the arrival of
either wave, (u, v, x,y) reduce to Minkowski coordinates.
[Here, f and g are functions which are constrained to be
of the form f (u')=cu', g(v')=v'/c in the Pat Min
komski region, but which are completely arbitrary else-
where. We will use this coordinate freedom below when
we discuss the initial-value problem for the field equa-
tions. ] Therefore, the coordinate system (u, v, x,y} is the
direct analogue of the Rosen-type coordinates associated
with each of the incoming, colliding plane waves. (For a
discussion of different coordinate systems associated with
plane-wave spacetimes, see Ref. 2, Sec. II of Ref. 3, and
Sec. I of Ref. 4.) We will thus call (u, v, x,y} the Rosen-
type coordinates on the colliding plane-wave spacetime.

The vacuum field equations for the metric (2.5) are '
2(U „„+M„U„)—U „'—V„'=0,
2(U „,+M, U „)—U „'—V, '=0,
U„„—U„U„=O,
V „,——,'(U „V„+U,V „)=0,

(2.6a)

(2.6b)

(2.6c}

(2.6d)

where the integrability condition for the first two equa-
tions is satisfied by virtue of the last two, and yields the
remaining field equation

M „,——,'(V„V,—U „U„)=0. (2.7)

Therefore, it is sufficient to solve Eqs. (2.6c) and (2.6d)
first and to obtain M by quadrature from the first two
equations (2.6a) and (2.6b) afterward, since Eq. (2.7) as
well as the integrability condition for Eqs. (2.6a) and
(2.6b) are automatically satisfied as a result of Eqs. (2.6c)
and (2.6d).

The initial-value problem associated with the field
equations (2.6) and (2.7) is best formulated in terms of ini-
tial data posed on null (characteristic) surfaces. A natural
choice for the initial characteristic surface is the surface
made up of the two intersecting null hyperplanes which
form the past wave fronts of the incoming plane waves,
and which, by a readjustment of the null coordinates u

and v if necessary, can be arranged to be the surfaces
Iu =0] and [v =0]. The geometry of the resulting
characteristic initial-value problem is depicted in Fig. 1.
The initial data supplied by the plane wave propagating
in the v direction (to the right in Fig. 1) is posed on the
u &0 portion of the surface Iv =0I, and the initial data
supplied by the plane wave propagating in the u direction
(to the left in Fig. 1) is posed on the v & 0 portion of the
surface I u =OJ. In region IV, which represents the
spacetime before the passage of either plane wave, the
geometry is Aat and all metric coeScients M, U, and V
vanish identically. Now recall that there is a remaining
coordinate freedom in the choice of the (u, v, x,y) coordi-
nate system, given by the transformations of the form
u =f (u'), and v =g (v'). This gauge freedom also mani-
fests itself in the choice of initial data on the characteris-
tic initial surface I u =0I U t v =0I: The choice of the ini-
tial data IM(u =O, v), M(u, v =0)] for the metric func-
tion M is completely arbitrary, since, clearly, for a single

plane wave [cf. Eq. (2.5)] M(u) [M(v)] can be adjusted
freely by coordinate transformations of the form
u =f (u ') [v =g (v')]. [This arbitrariness (gauge freedom)
in the choice of initial data in the (u, v) coordinates disap-
pears, when, as we will do in Sec. IIB, one formulates the
field equations in the (a,P) coordinate system. Then, any
two different but equivalent choices of initial data for the
functions V, U, and M in the (u, v) coordinates corre-
spond, in the formalism of Sec. IIB, to a unique choice of
the functions V(r, 1 ) and V( i,s) which determine the ini-
tial data. In fact, even the boost freedom (see below),
which eventually remains in the choice of the (u, v) coor-
dinates, is absent from the formalism based on the (a,P)
coordinate system. ] We will fix the above gauge freedom
once and for all by posing our initial data so that

M(u =O, v)=M(u, v =0)—=0 . (2.8)

g, i ———du dv+F, (u)d x+6, (u)dy (2.9)

( a)=(o
(r,s)=(-1

A =Q

FIG. l. The two-dimensional geometry of the characteristic
initial-value problem for colliding plane waves. The null sur-
faces [u =0( and [ v =0) are the past wave fronts of the incom-
ing plane waves 1 and 2. Initial data corresponding to waves 1

and 2 are posed, respectively, on the upper portions of the sur-
faces I v =0] and t u =OJ that are adjacent to the interaction re-
gion I. The geometry in the region IV is flat, and the geometry
in regions II and III is given by the metric describing the incom-
ing waves 1 and 2, respectively. The geometry of the interaction
region I is uniquely determined by the solution of the above
initial-value problem. The directions in which the various lines
of constant coordinates u, v, a, P, r, and s run are also indicated,
along with the descriptions of the initial null surfaces in these
different coordinate systems.

Then the only remaining coordinate freedom in the prob-
lem is the scale (or boost) freedom given by the scaling
(boost) transformations u =cu ', v = v '/c, where c is a
positive constant. This remaining boost freedom is harm-
less however; in fact, it is even useful in carrying out
computations involving colliding waves, when, for exam-
ple, it is known from physical arguments that the results
have to be scale invariant (see, e.g. , the discussion in
Refs. 15 and 16).

Our choice of gauge, Eq. (2.8), implies that the metric
in region II (where u & 0, v (0 ), describing the geometry
of the incoming colliding wave that propagates in the v

direction (to the right in Fig. 1), is given by
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and that the metric in region III (where v )0, u &0),
describing the geometry of the incoming wave that prop-
agates in the u direction (to the left in Fig. 1), is given by

g„i———du dv+F2 (v)dx +G2 (v)dy (2.10)

Here, F„G,are C' (and piecewise C ) functions of u

(for u &0), and F2, G2 are C' (and piecewise C ) func-
tions of v (for v &0), which satisfy the initial conditions
F, (u =0)=G, (u =0)=Fi(v =0)=62(v =0)=1 (coordi-
nates Minkowski in IV), and satisfy the differential equa-
tions

F,"(u) G, "(u) F "(v) G "(v)

Fi(u) Gi(u) '
F2(v) Gz(v)

(2.11)

for u &0 and v )0, respectively [these difFerential equa-
tions follow from the field equations (2.6)]. The initial
data, induced on the characteristic initial surface

{u =OJ U {v =0] by the colliding waves (2.9) and (2.10),
are given by

Vi(u =0)= V2(v =0)=0. In the linearized regime (when

V, , V2 « 1 ), the functions Vi and Vz correspond to the
time-dependent physical amplitudes of the incoming, col-
liding gravitational waves [cf. Eqs. (2.9) and (2.10)]. The
remaining functions U, (u) and Uz(v) are uniquely deter-
mined, by the initial data (2.15), through the constraint
equations [cf. Eqs. (2.6a) and (2.6b)]

2U —Ui —Vi

2U2,„—U2 „——V2,

(2.16a)

(2.16b)

—UI (u j/2 —U&(U)/2
f(u)=—e ', g(v)=e (2.17)

we can express Eqs. (2.16) in the form of "focusing" equa-
tions:

juu I

4 1, Q (2.18a)

with the initial conditions U~(u =0)= U, (v =0)=0,
U, „(u=0)= Uz „(v=0)=0. Note that, if we define two
new functions f (u) and g (v) by

U(u, v =0)= Ui(u) = —ln [F,(u)Gi(u)], (2.12a)
I rr 2
4 2, v (2.18b)

F, (u)
V(u, v =0)—= Vi(u) =ln

G, (u)

U(u =O, v) = Ui(v) = —ln [F2(v)G2(v)],

F,(v)
V(u =O, v):—V, (v)=»

G, (v)

(2.12b)

(2.12c)

(2.12d)

conditions f (0)=g (0)=1,initialwith the

f '(0) =g'(0) =0.
In Secs. IIIA and III8, when we discuss the asymptot-

ic structure of the colliding plane-wave spacetime de-
scribed by Eqs. (2.3)—(2.5), we will need the following
equations which express the Newman-Penrose' curva-
ture quantities in the null tetrad (2.3}and (2.4) in terms of
the metric coefficients M, U, and V; the derivation of
these equations can be found in Refs. 6 and 15:

If the colliding waves are sandwich plane waves (Sec. II
of Ref. 3), we then have length scales f, , f2, a, f, ', f2',
and b such that

4o 2ie (—M „V„+V„„—V„U„},
e2= —e M„,,M

%4———[(U, —M, )V, —V„„],
for u &a, (2.13) %,=%,=0.

Fi(a) G, (a)
F,(u)= (u f, ), G, (u)—= (u f,)—a f, — a f2—

(2.19a)

(2.19b)

(2.19c)

(2.19d)

and
B.The field equations and their solution

in the (a,P) coordinates

We now construct a new coordinate system ( Pa, yx),

in which the field equations and the initial-value problem
associated with them take simpler forms. This coordinate
system is constructed as follows.

Consider the interaction region (region I in Fig. 1)
where u)0 and U)0. This region is the domain of
dependence' of the characteristic initial surface
{u =0] U {v =OJ, on which the initial-value problem
defined by Eqs. (2.6), (2.8), (2.15), and (2.16) is to be
solved. Consider the field equation (2.6c) in the interac-
tion region. It follows from this equation that if we define

for v &b . (2.14)

Although the initial data in the form of Eqs. (2.12) give
the information about the incoming, colliding plane
waves in an intuitively clear format [cf. Eqs. (2.9) and
(2.10)], in the more precise mathematical description of
the initial-value problem the initial data are completely
determined by only the two freely specifiable functions
V, (u), and Vi(v). In other words, the initial data consist
of

F2(b) G2(b)F2(v)=, (v f, ), G2(v)=— , (v f2 )—b fi'— b f,'—

{V, (u), Vi(v)I, (2.15} a(u, v) =—e (2.20)

where V& ( u ) and V2 ( v) are C ' (and picewise C )

functions for u )0 and U )0, respectively, which are
freely specified except for the initial conditions a„„=0, (2.21)

then, throughout the interaction region, a(u, v) satisfies



38 STRUCTURE OF THE SINGULARITIES PRODUCED BY. . . 1711

the flat-space wave equation in two dimensions. Equation
(2.21) suggests that we define another function, p(u, v),
such that

p„=—a„,p„=a,, (2.22}

since, clearly, the integrability condition for Eqs. (2.22) is
satisfied by virtue of Eq. (2.21). The general solution of
Eq. (2.21) is

a(u, v) =a (u)+b (v), (2.23)

where a ( u ) and b ( v ) are arbitrary functions. With this
solution for a, Eqs. (2.22} yield

P( u, v) = a(u—)+b (v)+c, (2.24)

where c is an arbitrary constant. Note that Eq. (2.20)
defines a not only throughout the interior of the interac-
tion region I where u ~0, U &0, but also along the
boundary Iu =Oj U tv =Oj of this region, which is the
characteristic initial surface. Hence, the boundary values
(2.12a), (2.12c) for the function U(u, v) yield, through Eq.
(2.20), the following boundary values for a:

a(u v =0)=e ', a(u =0 v)=e ' . (2 25)

These initial values (2.25), when combined with the gen-
eral solution (2.23) and the initial condition
U(u =O, v =0)=0, immediately yield the unique solution

(2.26)a(u, v)=e

for a(u, v), which holds throughout the interaction re-
gion. This solution, combining with Eq. (2.24) and set-
ting the arbitrary constant c equal to zero, yields the solu-
tion

—U2() —U( )

p(u, v) =e ' —e (2.27)

On the other hand, it immediately follows from Eqs.
(2.16), or more clearly from the "focusing" equations
(2.18), that as long as the initial data (2.15) are nontrivial
for both incoming waves [i.e., as long as neither V, (u)
nor Vz(v) is identically zero], and as long as the initial
surfaces I u =Oj and t v =Oj correspond to the true past
wave fronts of the colliding waves [i.e., as long as
Vi(u)&0 and Vz(v)&0 for all sufficiently small but posi-
tive u and v], we have

for p(u, v) and completes the construction of the new
variables (a,p). To see that these variables actually
define a new coordinate system, consider the two-form
given by the exterior product dahdP. When this two-
form is nonzero throughout some region Q, it follows
from the inverse function theorem' that the functions
a(u, v) and p(u, v) (together with the usual spatial coordi-
nates x, y) constitute a regular coordinate system
throughout 'M. Now, Eqs. (2.26) and (2.27) give

dahdP = 2U, '(u)Ui'(v)e ' ' du P, dv .

(2.28)

and their inverses

0„+1 1 1

2 a„a„ (2.31a)

whereas U~'(u =0)= Ui'(v =0)=0 because of the initial
conditions [cf. Eqs. (2.16)]. Therefore we conclude [Eq.
(2.28)], that as long as the initial data (2.15) are nontrivial
for both colliding waves, and as long as the null surfaces
Iu =Oj and Iv =Oj are the true past wave fronts, the

functions (a,p, x,y) constitute a coordinate system which

is regular wherever the coordinate system (u, v, x,y) is

regular in the interior of the interaction region,
u & 0, v & 0. On the other hand, the coordinates a,p are
singular along the initial null surfaces I u =0j and

Iv =Oj. In other words, the singularities of the coordi-
nate system (a,p, x,y) consist of the singularities of the

(u, v, x,y) coordinates (when there are any), and the singu-

larity along the initial characteristic surface

[u =Oj U Iv =Oj. Since the only place in the interaction

region where the coordinates (u, v, x,y) can develop
singularities is the "surface" (a=Oj (see Sec. IIIA), it
follows that the coordinate system (a,p, x,y) covers the
domain of dependence of the initial surface

( u =Oj U I v =Oj regularly except for the singularities on

Iu =Oj and (v =Oj.
The coordinates (a,p, x,y) enjoy a number of proper-

ties which make them useful in studying the field equa-
tions for colliding plane waves. First, the functions
a( u, v ) and p( u, v ) satisfy the wave equation in the two-
dimensional Minkowski metric —du dv (and, by confor-
mal invariance, also in the two-dimensional metric
—e du dv). Hence, it follows that the du dv part of the
metric (2.5) will be in diagonal form [Eq. (2.43)] in the
new coordinate system (a,p, x,y). Second, by performing
the transformation (2.26) and (2.27) from the variables
(u, v) to the new variables (a,p), we have eliminated one
of the metric coefficients [namely, the function U(u, v)]
from Eq. (2.5), and absorbed it into the definition of the
coordinate a. Therefore, the field equations in the new
coordinate system [Eqs. (2.44)] will involve only two un-
known variables, instead of the three functions M, V, and
U involved in Eqs. (2.6). Finally, the Eqs. (2.26} and
(2.27), which together with Eq. (2.20) yield the unique
solution to the initial-value problem for U(u, v) [Eq.
(2.41)], also provide expressions for the new variables a
and p purely in terms of the initial data on
tu =Oj U (v =Oj. In other words, it is not necessary to
solve any of the remaining field equations to perform the
transformation from the (u, v, x,y) coordinates to the new
(a, p, x,y ) coordinate system.

We now proceed with the mathematical analysis of the
initial-value problem defined by Eqs. (2.5), (2.6), (2.8),
(2.15), and (2.16), in the new coordinate system (a,P,x,y).
First we note the transformation rules

(2.30a)

(2.30b)

U, '(u) &0, f'(u) &0 Vu &0,

U2'(v) &0, g'(v) &0 Vv &0,
(2.29)

1 1 1
'Bp — BU Bt

2 Qu cxu
(2.31b)



1712 ULVI YURTSEVER 38

which are derived using Eq. (2.22). Here, 0„,8„,8, and

8& denote, respectively, the differential operators (=vec-
tor fields) 8/Bu, 8/Bv, 8/Ba, and 8/Bp. A short compu-
tation involving Eqs. (2.30) and (2.31) now gives

1—dQ du= 4a„a„( —da+dP ). (2.32)

(2.33)

for the spacetime metric, which is valid throughout the
interaction region (region I in Fig. 1). Next, another short
calculation using Eqs. (2.30) and (2.31) together with Eq.
(2.21) gives

When inserted into the expression (2.5) for the metric and
combined with Eq. (2.20), Eq. (2.32) yields the expression

e
—M

( —da+dp)+a(e dx+e dy }
4a U„U„

which, after some rearrangements, can be written in the
form

(2P+3lna) = —a(V + V& ),
(2P+31na) ii

———2aV VIi .

(2.38a)

(2.38b)

Equations (2.38) suggest that it will be convenient to
define the combination 2P+3lna as a new variable,
which, together with the variable V, would uniquely
determine the metric in the (a,p, x,y) coordinate system.
Thus, after first introducing the two "normalization"
length scales l, and I2 by the equations

1 1
I,:—,I, =

2U „(uo,uo) 2U, (uo, vo)
(2.39a)

where ( u 0, u0 ), u 0 & 0, uo & 0 is an arbitrary, fixed point in

the interior of the interaction region, we define a new

function Q (a,p) by the relation

(2.34)
Q/2 4I t eM U U a3/2&2e „„a (2.39b)

where a.', gati, and a„a, denote the second-order
differential operators 8 /Ba, 8 /BP, and a'/auBu, re-
spectively. Combining Eq. (2.34) with the field equation
(2.6d) and using Eq. (2.31a) yields

1+, —Vv=0 (2.35)

which is one of the field equations in the (a,p, x,y) coor-
dinate system. To obtain the remaining field equations,
we proceed as follows: First we note that we can rewrite
the field equations (2.6a) and (2.6b) in the form

Using Eqs. (2.39a), we can now fix the constant c which
occurs in Eq. (2.36):

c:—I] l2 (2.40)

so that

Note that the length scales li and li are determined by

Eqs. (2.39a} in a well-defined manner, since by Eqs. (2.20)
and (2.26)

—Ul (u) —U2(v)
U(u, u) = —ln a(u, u) = —ln (e ' +e ' —1),

(2.41)

2

eMU„U„

2

(e U„U„)„=U„+' +2U„,
, u

2

(e~U„U„)„=U„+' +2U„.
eMU U

U „(u,u)=

U, (u, u)=

Ui'(u)e
a(u, u)

1 —U (.)
U2'( v)ea u, u

Thus, if we define a new function P by

e —= 4ce U„U„, (2.36)

V„
2P „=3U„+U„

2

2P, =3U, +
, V

(2.37a)

(2.37b)

Combining Eqs. (2.37) with Eqs. (2.30) and using Eq.
(2.20), we obtain

2a „(P P{i)=——3(x
„ —aa „(V +V@ —2V Vp),

2a, (P +P p) =—3(X v —ua, (V + Vp +2V Vp),

where c is an arbitrary constant having the dimensions of
(length) [we will fix c later with our normalization con-
dition Eq. (2.40)], then P satisfies

and therefore, by Eqs. (2.29), U „(u, v) & 0, U, ( u, v ) & 0
for any point (u, u) in the interior of the interaction re-

gion, where u &0, v &0, and where [as long as (u, u)

is in the domain of dependence of the initial surface

I u =Oj U [ u =0j (cf. Secs. III A —III C)] a(u, v) & 0. It is

now easy to obtain the remaining field equations, satisfied

by the new variable Q(a, p): Combining Eq. (2.39b) with

Eqs. (2.40) and (2.36), and then using Eqs. (2.38), we find

Q = —a(V +Vii ),

Q p
———2aV Vp,

(2.42a)

(2.42b)

where the integrability condition for Eqs. (2.42) is
satisfied by virtue of the field equation (2.35}for V(a, P}.

We are now in a position to write down the complete
formulation, in the (a,p, x,y) coordinate system, of the
metric and the field equations in the interaction region of
a colliding parallel-polarized plane-wave spacetime. For
this, we first combine Eq. (2.39b) with the expression
(2.33) for the metric in the interaction region. This gives
us the expression of the interaction region metric in
terms of the two unknown variables V and Q. Then, we
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recall the field equation (2.35) for V(a, p), and combine it
with the unique solution of the field equations (2.42) for

Q(a, P), which we obtain by using the initial value of Q
that follows from the normalization conditions Eqs.
(2.39). As a result, we obtain the following expressions for
the metric and the field equations in the interaction re-

gion of a colliding plane-wave spacetime:

g = e
—&"P)" —( da—2+d p')

l]L~

v'a

dinates. Then, in the following paragraph, we give the ex-
plicit solution of this initial-value problem for V(a, p).

We begin by noting that [cf. Eqs. (2.26) and (2.27)] in
the a,p coordinates the initial null surfaces {u =Oj and

{u =Oj are expressed as (Fig. 1)

{u =0j ={a—p= 1j, {u =0j = {a+p=lj . (2.45}

Equations (2.45), together with Eq. (2.44a), suggest intro-
ducing the "characteristic" coordinates

+ a( e V( a, P)dx 2+ e
—V(a,P)d 2

)

where V and Q satisfy the following field equations:

r=—a —p, s:—a+p,
(2.43)

so that the initial null surfaces become

(2.46)

(2.47)
1

V +—V —Vpp
—Q,

«P}=f, ;.„.[- (V,.'+Vp')~a

—2aV Vpgp]

(2.44a)
In the new (r, s) coordinate system [Eqs. (2.46}],the field

equation (2.44a) takes the form

V„,+ (V, +V, )=0,1

2(r +s)

+ 2M(ao, po) + 3 lna, . (2.44b)

Here, ap=a(up vp) Pp=P(up vp) M(ap Pp):M(u~, v~),
and C is any (differentiable) curve in the (a,p) plane that
starts at the initial point (au, po), and ends at the field
point (a,p) at which Q is to be computed. The result of
the integral in Eq. (2.44b) depends only on the end points
of the curve C, since the integrability condition for Eqs.
(2.42) is satisfied by virtue of the field equation (2.44a).

Equations (2.43) and (2.44) summarize the mathemati-
cal problem of colliding parallel-polarized plane waves in
a remarkably compact form. In particular, the only un-
known to be solved for is the function V(a, p) which
satisfies the linear field equation (2.44a). Once V(a, p) is
known, Q is determined by the explicit expression (2.44b)
up to an unknown additive constant, which —by suitably
choosing the initial Point (up Uo) [or (ao, PO)]—can be
made arbitrarily small. The only disadvantage of this for-
malism based on the (a,p, x,y) coordinates is the coordi-
nate singularity that the (a,p) chart develops on the
characteristic initial surface {u =Oj U {u =Oj. This
coordinate singularity causes, among other things, the
function Q ( a,p) to be logarithmically divergent (to —~ )

on the surfaces {u =Oj and {u =Oj. Nevertheless, it is
sti11 possible to set up a well-defined initial-value problem
for the function V(a, p), involving the initial data posed
on the same characteristic surface {u =Oj U {v =Oj.

It becomes clear from Eqs. (2.43) and (2.44), that the
"surface" {a=Oj represents some kind of a singularity
[either a spacetime singularity or (at least) a coordinate
singularity] of the colliding plane-wave solution described
by the metric (2.43). Since we are primarily interested in
the behavior of the spacetime near this "surface" {a=Oj,
which is bounded away from the coordinate singularity
on the initial null surfaces, the formalism based on the
new (a,p) variables is well suited to our objectives.

In the remaining two paragraphs of this section, we
will describe the initial-value problem for the metric
function V(a, p) and its solution. First, in the next para-
graph, we explain how to pose the initial data given by
Eq. (2.15), in the new formalism based on the (a,p) coor-

which is a partial differential equation for the function
V(r, s) Th.e initial-value problem for V(r, s} consists of
Eq. (2.48), and the initial data on the characteristic initial
surface {r =1 j U {s = 1 j given by the freely specifiable
functions V(r, s =1) and V(r =1,s). More precisely, the
initial data consist of

{V(r, 1), V( l,s) j, (2.49)

where V(r, 1) and V(l, s) are C' (and piecewise C ) func-
tions for r C ( —1, 1] and s E-( —1, 1], respectively, which
are freely specified except for the initial conditions
V(r =1,1)=V(l, s =1)=0. Once the initial-value prob-
lem (2.48) and (2.49) is solved for the function V(r, s), the
function V(a, p) is determined by the obvious expression

V(a, P)=V(r =a —P, s =a+P) . (2.50)

—U&[u(r}]
I' =2e —1

—U2[v(s)]
s =2e (2.52)

Finally, the initial data {V(r, l), V(l, s)j in the form
(2.49) are determined uniquely from the data

{V, (u), V2(u)j by

There is a one-to-one correspondence between the initial
data of the form (2.15), and initial data of the form (2.49),
for the initial-value problem of colliding parallel-
polarized plane waves. When initial data are given in the
form of Eq. (2.15), i.e., when the functions V)(u) and

V2(v) are specified, initial data in the form of Eq. (2.49)
are uniquely determined in the following way: First, Eqs.
(2.16) are solved with the given data V)(u) and V2(u),
and the functions U, (u) and U2(v) are obtained as the
unique solutions [cf. Eqs. (2.16) and the discussion follow-
ing them]. Then, using the identities [cf. Eqs. (2.26) and
(2.27) and Eq. (2.46)]

—UI (u) —U&(U)r=2a(u)=2e ' —1, s =2b(u)=2e ' —1

(2.51)

along the initial null surfaces {u =Oj and {u =Oj, u(r)
and u (s) are defined as the unique solutions to the impli-
cit equations



1714 ULUI YURTSEUER 38

V(r, 1)=V, [u =u(r)], V(l, s)= Vz[U =U(s)] . (2.53) with the initial values

Conversely, when initial data are given in the form of Eq.
(2.49), i.e., when the functions V(r, 1) and V(l, s) are
specified, initial data in the form of (2.15) are uniquely
determined in the following way: First, the differential
equations

A (r, il;$, 71}= r+il
+il

A (g,s;(,il)= g+s
+'g

' 1/2

1/2 (2.57)

2Ui „„—Ui „——4e ' Ui „[V„(r=2e ' —l, l)]

(2.54a)

U2» —Uz „——4e ' U2, [ V, ( l, s =2e ' —1)]2,

(2.54b)

for the functions U, (u) and U2(u) are solved with the
initial conditions U, (u =0)= U2(U =0)= U, „(u=0)
= Uz „(U=0)=0 [cf. Eqs. (2.16)].Then, using Eqs. (2.52),
the initial data I V, (u), V2(U)j in the form (2.15) are
determined uniquely from the data [ V(r, 1 ), V( l, s) ] by

V, (u)= V(r =2e ' —l, l),
(2.55)

V, (U)=V(l, s=2e ' —1) .

This completes the formulation of the initial-value prob-
lein for the function V(a, P), or, equivalently, for the
function V(r, s) [cf. Eq. (2.50)].

The solution to a two-dimensional linear hyperbolic
initial-value problem of the form (2.48) and (2.49) is ob-
tained by using the appropriate Riemann function (Sec.
4.4 of Ref. 18). Specifically, the Riemann function for Eq.
(2.48) is a two-point function A (r, s;g, rl), which satisfies
the adjoint' equation to Eq. (2.48);

A „,— (A „+A,)+ A =0, (2.56)
1 1

2 r+s '" ' (r+s)

V, , l, s' + ', A 1,s', r, s s'V(l, s')
2(1+s'

+ J V „(r',1)+ ', A (r', 1;r,s)dr' .r, V(r', 1}
2 1+r'

(2.58)

It is found by Szekeres in Ref. 6, that the unique
Riemann function which solves Eq. (2.56) with the
boundary values (2.57) is

A (r, s;g, rl) =
1/2

(r —g)(s —il )

( +s)(g+g)

(2.59)

where P 1/2 is the Legendre function P for v= ——'

[Ref. 19, Eqs. (8.820) —(8.222)]. Combining Eq. (2.59) with
Eq. (2.58), and noting that V(1, 1)=0 [Eq. (2.49)], we ob-
tain the following explicit solution V(r, s) of the initial-
value problem (2.48) and (2.49):

Once the Riemann function A is known, the solution
V(r, s) of the initial-value problem (2.48) and (2.49) is

given by (Sec. 4.4 of Ref. 18)

V(r, s) = A(1, 1;r,s)V(1, 1)

V 1
V(r, s) = I V, (l,s')+

2(1+s')

1/21+s'
r+s

(1—r)(s' —s)P, &2 1+2, ds'
1+s r +s

+ V, r', 1 +-

1/21+r'
r+s

(1—s)( r' r)—P )~2 1+2, dr' .1+r' r +s) (2.60)

We have thus completed the full solution of the initial-
value problem for colliding parallel-polarized gravitation-
al plane waves, expressed in the (a,p, x,y) coordinate sys-
tem that we constructed in the beginning of this section.
We are now ready to study the asymptotic structure of
the colliding plane-wave spacetime near the singularity
o.=0.

III.THE ASYMPTOTIC STRUCTURE
OF SPACETIME NEAR a =0

A. The behavior of the metric near a=0:
An inhomogeneous Kasner singularity

Before embarking on a full mathematical analysis of
the asymptotic structure of the metric (2.43) near a=0,

we use the field equations (2.44) to make a few introduc-
tory observations about the asymptotic behavior of the
functions V(a, p) and Q(a, p). These observations yield
some preliminar'y insights into the asymptotic structure
of the metric (2.43) which we will find useful both in this
section and in the next one.

Our starting point is the solution of Eq. (2.44a) by the
well-known method of separation of variables. Using this
method, we easily find that the formal solution to Eq.
(2.44a) can be written in the form

V(a, P) =I [(AksinkP+BkcoskP)NO(ka)

+ (C„sinkP+DkcoskP) Jo(ka)]dk,

(3.1)
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V(a, P) =e(P)1na +5(P) +H(a, P)

for V(a, P), where

(3.2)

e(P) = —f ( AksinkP+BkcoskP)dk,

5(P) =f ™(Ci,sinkP+Di, coskP)dk

+ — y+ln —,'k Aksink +Bkcos

(3.3a)

lim H(a, P) —=0,
a~0

(3.3b)

(3.3c)

and where y is Euler's constant. ' From Eq. (3.2} it im-
mediately follows, using the field equation (2.44b), that
the asymptotic structure of the function Q(a, P) near
a=0 is determined by

where J0 and E0 are the Bessel functions of the first and
second kind, respectively. Using the series representa-
tions for JQ and N0 given by Eqs. (8.441) and (8.444) of
Ref. 19, we find that Eq. (3.1}yields the expression

this purpose, it is better to use the explicit solution (2.60}
for the function V(r, s) that we obtained in the last sec-
tion. Thus, in the next paragraph, we will analyze the
asymptotic behavior of the solution (2.60) near the singu-
larity a=0, and obtain explicit formulas for the functions
e'(P) and 5(P) expressed in terms of the initial data (2.49)
for the incoming waves. Then, in the remainder of this
section, we will use the analysis carried out so far to in-
vestigate the asymptotic structure of the spacetime
metric (2.43) near the singular surface a =0.

Note that in the (r, s) coordinate system of Sec. IIB,
the singularity a=O corresponds to r +s =0 [Eqs.
(2.46)]. Combining Eq. (2.60) with Eq. (2.50), it is clear
that the asymptotic structure of V(a, P) near a=O is
determined by the asymptotic behavior of the function
P, /2(1+2z) as z~ ~. To evaluate this asymptotic be-
havior, we first note that the integral representation [Eq.
(8.822) in Ref. 19]

1
&/2(z)= —f (z++z —I cosp) ' dp, Rez &0

0

(3.8)

Q (a,P }= —[e(P)] lna+ p(P)+L (a,P), (3.4) can be rewritten in the form

where

lim L( aP)—=0,
a~O

(3.5)

V(a, p)=e(p}lna+c, (p)a Ina+c2(p)a lna+

and p(P) is a (C') function of P determined by an expres-
sion similar to Eq. (3.3b). Note that the functions H (a,P)
and L (a,P} [although they remain finite (in fact, vanish)
as a~0] are not smooth functions near a=O. In fact, it
follows from the series expansions for JD and NQ [Eqs.
(8.441)—(8.444) in Ref. 19], that, for example, the func-
tion H(a, P) has the behavior

H(a, p) =c,(p)a lna+c2(p)a lna+

+ck(P)a "lna+ +d&(P)a

+d2(p)a + +dk(p)a "+, (3.6)

where ci, (P) and dk(P) are functions of P determined by
expressions similar to Eq. (3.3b). Equation (3.6), when
combined with Eq. (3.2), yields a more detailed expres-
sion for the asymptotic structure of V(a, P) near a=0:

P 1/2(z) =—(z ++z —1) ' E 2&z2 —1

z+&z' —1

' 1/2

(3.9)

v 2 —1/21 3v 21112 —1/2 0Z = Z 11Z + z- +0
1T m' Z'

(3.10)

which in turn yields the desired asymptotic behavior

P 1/2(1+2Z)= Z 111Z+ Z +01
~ //2 31n2 ~ y2 1

Z'"

where E is the complete elliptic integral of the second
kind. ' Subsequently, the asymptotic expression [Eq.
(8.113) in Ref. 19]

K(k)= —ln(+I —k )+ln4+0(1 —k ),
when combined with Eq. (3.9), yields the asymptotic rela-
tion

+5(P}+d,(P}a'+d,(l3)a'+ (3.7} (3.11)

Equations (3.7) and (3.4) summarize the asymptotic be-
havior of the metric functions V and Q near the singulari-
ty a=0. But Eqs. (3.3) are not terribly useful for express-
ing the key functions e(P) and 5(P) in terms of the initial
data (2.15) or (2.49) for the colliding plane waves. For

as z~ ~. Now we combine Eq. (3.11) with Eq. (2.60) and
Eq. (2.50), and then compare the resulting asymptotic
form of V(a, P) with Eqs. (3.2) and (3.7) to read out the
following explicit expressions for the functions e'(P) and
5(p):

T

e(p) — f V, (l,s)+ ds+ —f V ( 1) ("~ ) 1+"
2(1+s) &( I+p)(s —p) m 0' 2(1—+r) 1/(1 p)(r +p)

(3.12a)
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V( l, s) 1+s
p

' 2(1+s) &( I+p)(s —p)
2 ln2 1 (1+p)(s —p)+—ln

7r 1r 1+s ds

V(r, 1) 1+r
2(1+r) &(I p)(—r+p)

2 ln2 1 (1—P)(r +P)+—ln
'7r m' 1+T

dT . (3.12b)

We note that Eq. (3.12a) can be rewritten in the simpler form
1/2 1/2

e(p) = — f [(1+s)' V(l, s)], ds+ — f [(1+r)' V(r, 1)]„dr.
1+p p

' s — n 1 p —p
'" r+ (3.13)

q~(P) = —,'[e'(P) —1], q2(P) =1+@(P),

q3(P)=1 —e(P) .
(3.15)

On the right-hand side of Eq. (3.14), all quantities that
depend on p are to be regarded as constants when inter-
preting the metric g(P) as the asymptotic limit of the
metric (2.43); this asymptotic metric describes a region of
spacetime which is arbitrarily large in the Killing x, y
directions, but which extends (in general) very little [over
a range in p small enough for the variation in e(p) to be

negligible] in the p direction, and which covers a range
(O, rt) in the coordinate a where rl is arbitrarily small
(rl~O). Now, notice that the quantity q, (p) is always

greater than —2 [q& ) ——,
' by Eqs. (3.15)]. Thus, we can

introduce a new timelike coordinate t,

The timelike coordinate a is a parameter which mono-
tonically decreases to zero along the world line of any ob-
server approaching the singularity. Consider the space-
time metric (2.43) in the vicinity of such a world line as
the observer approaches the singularity a=0 at a fixed
spatial coordinate p. According to Eqs. (3.4) and (3.7),
the asymptotic behavior of the metric along the
observer's world line as a~O can be expressed as

g (P) e IJlP)I2l l
—~'t&

( d ~2+ dP2)

+ es'p ct dx + e s p'tt ' dy2, (3.14}

where

2[1+e(P) ]
e'(P)+ 3

2[1—e(P))
e'(P)+ 3

(3.18b)

(3.18c)

g(p)= dt'+t "dx—'+t "dy'+t "dz', (3.20)

where the asymptotic Kasner exponents pl„k=1,2, 3,
are given by Eqs. (3.18) and satisfy the relations (3.19).
Equations (3.18), when combined with Eq. (3.13), provide
the explicit formulas which express the asymptotic Kas-
ner exponents pk(p) along the singularity in terms of the
initial data (2.49) for the colliding waves.

The Kasner solution' defined by the global spacetime
metric (3.20) has the following curvature tensor:

It is easily seen from Eqs. (3.18) that the exponents p&(p),
p2(p), and p3(p) satisfy the Kasner relations'

p&(p)+p~(p)+p3(p) =p&'(p)+p2'(p)+p3'(p) =1,
(3.19)

for all values of e(p). Therefore, the asymptotic limit of
the metric (2.43) as a~0 at a fixed spatial position p is a
vacuum Kasner solution, which, after absorbing the con-
stant terms on the right-hand side of Eq. (3.17) into the
definition of the coordinates, and for simplicity using
units in which lengths are dimensionless, can be
represented in the form

ql + ql +t=—a ', a=t (3.16)
p, (p, —1 )

R = g ' ' (Xoeco +X,co )I8wco h&

which is monotonically related to a, and in which the
singularity +=0 is located at t =0. In terms of this new
timelike coordinate t, the asymptotic metric g(p) of Eq.
(3.14}takes the form

4I, I,e- ~'I"/2

g(p) —— dt + 1 12e "'p' t ' dp
[q (P)+2]'

+ g ', (X)I8 co"—X„N)co'@co", (3.21)

where the orthonormal basis [X„Iand its dual {co ] are
given by

a —
p&X=—,X=tat' ' ax'

(3.22a)

where

e'(p) —I

e'(P)+ 3

dy (3.17)

(3.18a)

p2
X2 ——t ', X3 ——t

ay az

GP =At, 6) = t dX

cu =t dy, co =t dz.
(3.22b)
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A number of fundamental properties of the Kasner space-
time can easily be deduced from the expression (3.21) of
the curvature tensor. First, it becomes clear that the vac-
uum field equations are equivalent to the algebraic rela-
tions (3.19) for the exponents pk. Next, a short computa-
tion using Eq. (3.21) gives

pvpcr 16
pvpcr 4 711273

t
(3.23)

provided that the vacuum conditions (3.19) are satisfied.
Assuming that (3.19) hold, the following main con-
clusions are then obtained. (i) The "surface" t =0 is a
curvature singularity of the vacuum Kasner solution un-
less one of the exponents is zero. This can only happen if
(p, ,pz, p3) is equal to a permutation of (1,0,0), in which
case we assume, without loss of generality, that
p, =1, pz

——p, =0. For these values of the exponents (a
degenerate Kasner solution) the metric (3.20) is flat [Eq.
(3.21) gives R—:0]; the surface t t =0 j represents a
Killing-Cauchy horizon (a coordinate singularity) across
which spacetime can be extended, e.g., to yield the rnaxi-
mal Minkowski space. The spacelike Killing vector 8/Bx
becomes null on this Killing-Cauchy horizon t t =Oj. (ii)
If all exponents are nonzero (the nondegenerate case),
then one and only one of the exponents is strictly nega-
tive, while the other two are strictly positive. And final-
ly, a straightforward application of the geodesic deviation
equation with the curvature tensor (3.21) reveals that (iii)
in a nondegenerate Kasner solution, timelike geodesic
congruences which run into the singularity converge to-
gether in those spatial directions for which pk &0, and
diverge apart in the direction for which pk &0. In other
words, physical three-volumes get squashed in the two
spatial directions with positive exponents, while they get
infinitely stretched in the remaining direction with the
negative exponent as the singularity is approached. '

After this brief interlude on the Kasner solution, we
now return to the discussion of the asymptotic limit
(3.17) and (3.18) of the colliding plane-wave metric (2.43).
For much more detailed expositions on the Kasner solu-
tion (including its generalizations and their application to
cosmology), the reader is referred to the literature listed
as Ref. 12.

The following conclusions are easily obtained from
Eqs. (3.17)—(3.20) combined with the results of our brief
review of the Kasner solution: (i) If

~
e(P)

~
&1, then

p, (P) and p2(P) are both positive and p3(P) is negative.
This corresponds to an anastigmatic ' singularity struc-
ture at (a=0,P); that is, focusing takes place in both the
x and y directions. In particular, if the incoming plane
waves are sandwich waves and either purely anastigmat-
ic or very nearly anastigmatic (i.e., if they have focal
lengths f, , f2 [cf. Eqs. (2.13)—(2.14)] which are either
equal (f, =f2) or satisfy

~ f2
—f, ~

lf, && 1), and if both
incoming waves are sufficiently weak [i.e., if V, , V2 «1,
cf. Eq. (2.15)], then Eq. (3.13) implies that at least
throughout a large subinterval of the range ( —1, 1) of P,

~
e(P)

~

will be much smaller than 1. Thus, under these
circumstances, the structure of the singularity will be
mostly anastigmatic. (ii) If, on the contrary,

~
e(P}

~
& 1,

then p3(P) is positive and one of p, (P), p2(P) is negative.

This corresponds to an astigmatic singularity structure at
(a=O, P); that is, focusing occurs in only one of the two
transverse directions x, y, whereas in the other direction
an infinite defocusing takes place. In particular, if the in-
coming plane waves are highly astigmatic (

~ f2 f,—~
If,» 1), or if they are sufficiently strong (V„V2—1), then it

is possible to have an interval in P with
~

e(P)
~

& 1, that
is, an interval in P with an astigmatic singularity struc-
ture at a=O. (See, however, our second example in Sec.
IV in which colliding highly astigmatic plane waves
create a purely anastigmatic singularity. ) (iii) Finally, if

~
e(P)

~

=1, then p3(P)=0 and one of p, (P), p2(P) is 1

whereas the other is zero. In this case the asymptotic
metric g(P) near a=O is a degenerate Kasner solution
(3.20) with either (p, ,p2,p3 ) =(1,0,0} or (p„p2,p3)
=(0, 1,0).

It seems evident that if the quantity F(P) is different
from +1 (across an interval in P or at any point P=Pp),
then the colliding plane-wave solution (2.43) has a curva-
ture singularity at (a=O, P). On the other hand, in view
of our conclusion (iii) in the above paragraph, it is also
quite natural to expect that if e(P)=+I throughout an
interval (P, , P2) in P, then the portion I a =0, P, &P &Pz j
of the surface (a=Oj is not a curvature singularity, but
instead it represents a nonsingular Killing-Cauchy hor-
izon of the colliding plane-wave spacetirne on which one
of the spacelike Killing vector fields 8/Bx, BlBy becomes
null, and across which the metric can be smoothly ex-
tended. However, our analysis so far is not sufficient to
reach these conclusions rigorously. The reason is that al-
though we now know the asymptotic limit of the metric
(2.43} explicitly [Eq. (3.17)], we do not yet have full con-
trol on the asymptotic behavior of the spacetime curva-
ture near the singularity a =0. In other words, in view of
the presence of a whole series of logarithmic terms in the
expansion (3.7) of V(a, P) [and similarly in the expansion
(3.4) of Q (a,P)], it is not clear a priori that the asymptoti-
cally Kasner nature of the metric as a~O implies the
corresponding asymptotically Kasner (as t —+0) behavior
of the spacetime curvature (which involves the deriva-
tives of the metric). Thus, in the following section, we
are going to study the behavior of the curvature associat-
ed with the metric (2.43) near the singularity a =0.

B.The behavior of curvature near a =0

Since in most of the literature on colliding plane
waves ' ' ' "the spacetime curvature is studied in terms
of the Newman-Penrose curvature quantities, we will also
find it convenient to carry out our analysis of curvature
using the curvature quantities (2.19) with respect to the
standard tetrad (2.3) and (2.4). Equations (2.19) express
these curvature quantities in terms of the tetrad
coefficients M, U, and V, and in the Rosen-type coordi-
nate system (u, v, x,y) for the colliding plane-wave space-
time. In this section, we will first obtain the correspond-
ing formulas expressing the same functions %0, %2, and
%4 in terms of the metric functions V(a, P) and Q(cL,P),
and in our favorite (a,P,x,y) coordinate system. Then,
using these expressions, we will read out the asymptotic
behavior of the curvature quantities as a~O.
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Consider first Eq. (2.19b) for the quantity 'P2. Combin-
ing this equation with Eq. (2.34) and Eq. (2.39b), and us-
ing Eq. (2.20), we obtain

e&/2
(3.24)

1 2

Now note the following identities

(a.~a, )M =—g.ig, +——1 1 a, uv

a 2
, U

And, substituting Eq. (2.30b) in the expression (2.19c) for
%'4, and then making use of the identity

ln(U „U„)=ln(a „)+ln(a„)—21na, (3.25a) together with the Eqs. (2.20) and (2.21), we obtain

a„a„ln(a„)=0, a„a,ln(a „)=0, (3.25b)

which are derived by using Eqs. (2.20} and (2.21), respec-
tively. If we take the logarithm of both sides in Eq.
(2.39b} and apply the operator a —a&2 on both sides of
the result, and if we then use Eqs. (2.34) and (3.25) to sim-
plify, we obtain the identity

q, = ——a, ' —,'( V.+ V~) Q.+Q ~+—

+ V + Vpp+ 2V~p (3.29}

(a 2 —ap )M= —,'(Q —Q pe
—a ), (3.26}

1 1(a.—a, )M =—g.—g, +——
2 ' ' a

a, uu

2a, u

together with the Eqs. (2.20) and (2.21), we obtain

7
aeQ(a, p) 3

—,'(V.—V~) Q.—Q,&+—

+ V ~+ Vpp —2V~p . (328}

which, when combined with Eq. (3.24), yields the desired
expression for the quantity %2.

e Q(a, Pj/2
1a'" g g~~ — .—{3.27}

8l l
1 2

The calculation of the corresponding expressions for the
remaining curvature quantities %0 and 4'4 proceeds along
similar lines. Substituting Eq. (2.30a) in the expression
(2.19a) for %o, and then making use of the identity

Note that the quantity a
„

that occurs in the expressions
(3.28) and (3.29) is not fully expressed in terms of the
inetric functions Q(a, p) and V(a, p). However, by Eq.
(2.26), a „=—U2 „e ' ', and thus by the Eqs. (2.29)
and the discussion preceding them, a

„

is nonzero and
finite for all —1 & p & 1 in the limit a —+0. Therefore, the
multiplicative factors involving a

„

in Eqs. (3.28) and
(3.29} do not contribute to the qualitative asymptotic be-
havior of the curvature quantities near a=O. Hence, we
will not attempt to further express the quantity a

„

in
terms of the metric functions Q and V; instead, we will
regard it as a (nonzero) constant, multiplying the asymp-
totic liinits of %0 and 4'4 as a~0 at a fixed spatial loca-
tion p.

Before proceeding with the analysis of the asymptotic
behaviors of %2, %'0, and %4 near a=O, we rewrite Eqs.
(3.27)-(3.29) in terms of the metric function V(a, p).
After eliminating the terms that involve the derivatives of
Q (a,p) by making use of Eqs. (2.42), we obtain

eg(a, P)/2
a 1/2

81, l2
—V —Vp +2aV (Vpp —V )—

2
(3.30)

e~' '~'a
—,'(V —V&) 2aV V& aV, aV—

& +——+V +V&& 2V,&-
8l 2 2a 2

(3.31)

%4= ——a „—,'(V +V&) —2aV V& —aV —aV& +—+V +V&& 2+V,&

7 2 2 3
(3.32)

Now, substituting the asymptotic expressions (3.7) and (3.4) for V(a,p) and Q(a, p) into Eqs. (3.30)—{3.32), we obtain,
after some lengthy algebra, the following equations revealing the asymptotic behavior of the curvature quantities +2,
%0, and %4, as a~0 at a fixed spatial coordinate p:

'p2(p) ——eP(P)/2
[I—e (p)]/2 P + 0( )

e (Ii)—1 1

8l1I2 a a (3.33)

q'p(p)—
ie"' '

(& p~@) e(p)[1—e (p)] 3[e (p) —1][e'(p)lna+5'(p)]
8$ $ 2a 2 2a

2e'(P) 1+ —0(a)a a (3.34)

e(P)[1—e'(P) ]2' 2a
3[e (p}—1][e'(p)lna+5'(p)] 2e'(p) 1 0+ + —0(a)

2a a a (3.35)
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In Eqs. (3.33)—(3.35), O(a) denotes the remaining terms
which are always of the form

O(a):—( )alna+( )a lna+ . y( )a(lna)2

+( }a (lna)z+ +( )a+( )a2+

(3.36)

—V = +2c, (p)lna+4c2(p)a lnae(p)
a

+[c,(p)+2d, (p)]+[c~(p)~4d~(p)]a

+O(a ), (3.37a)

V = — +2ci(p)lna+ 12c2(p)a Inae(p) 2

+ [3ci(p)+211(p)]

+ [7c2(p)+ 12d2(p))a +0 (a ), (3.37b)

Vti~=e"(p)lna+c, "(p)a lna+c2 "(p)a lna

+&"(p)+d, "(p)a'+d, "(p)a'+O(a') .

(3.37c)

where the ( ) denote well-behaved quantities that depend
only on P.

Equations (3.33)—(3.35} provide a clear demonstration
of our earlier statement (Sec. IIIA) that whenever

~
e(p)

~

&I (across an interval in p or at an isolated point
p=po}, the colliding plane-wave spacetime possesses a
curvature singularity at (a=O, P). [The asymptotic form
of the curvature invariant (3.23} can be computed using
Eqs. (3.33}—(3.35) along with the identities 4, = 43 =—0; it
is easily seen that as a~0 this invariant diverges in
accordance with Eqs. (3.23) and (3.16), i.e., as
—a ( '~'+ 1, whenever

~

e(p)
~

&1.] In order to prove
our second statement (Sec. IIIA), that when e(p) ~—:1

throughout an interval (p, ,p2} the surface [a=0,p,
&P&Pz[ is a nonsingular Killing-Cauchy horizon, we

will need to perform a somewhat more detailed analysis
of the asymptotic behavior of V(a,p) near a=0. Thus,
in the few remaining paragraphs of this section, we will

present such an analysis and see that our conclusions
indeed provide a proof for this second statement. Then,
in the next section (Sec. IIIC), we will discuss the physi-
cal significance and the instabilities of these Killing-
Cauchy horizons which occur at a =0.

Before proceeding with our discussion, we note that
when

~
e(p)

~

=—1 across an interval in p, all divergent
terms in the expressions (3.33)—(3.35) vanish except (pos-
sibly) for the logarithmically divergent terms which could
be introduced by the remainders O(a)/a [Eq. (3.36)]. To
learn more about these logarithmic terms, consider the
expansion (3.7) for V(a, p). Equations (3.12) and (3.13)
give expressions for the two most important coefficients
e(p) and 5(p) which occur in this expansion, and the oth-
er coefficients c„(p)and dk(p) can be computed from the
original field equation (2.44a) for V: The following expres-
sions for the derivatives of V that occur in Eq. (2.44a) are
obtained straightforwardly by using Eq. (3.7):

Inserting Eqs. (3.37) in the field equation (2.44a) and col-
lecting together the coefficients of identical terms in a, we
obtain the identities

c, (P)= —,'e"(P), c2(P)= ,', e—""(P), . . . , (3.38a)

d i (P ) = —,
' [&"(P)—e"(P)],

d, (P) =—„',[26""(P)—3e'"'(P)],
(3.38b)

which express all of the coefficients ck(p) and dk (p) in

Eq. (3.7) in terms of the coefficients e(p) and 5(p).
It now becomes clear that when

~
e(P)

i

= 1

throughout an interval (pi, p2) [in fact, whenever e(p) is
constant across such an interval], all the coefficients
ck(p), k ) 1 ~anish for pF(p„pz). In that case, the ex-
pansion (3.7) of V(a, p) does not contain any logarithmic
terms except for the leading term e(p)lna. In particular,
the derivatives V, V&, V, V &&, V

&
contain no loga-

rithmic terms whatsoever in a, for pE(pi, p2). Therefore,
by Eqs. (3.30)—(3.32), the remainder terms O(a) in Eqs.
(3.33)—(3.35) also do not involve any logarithmic terms
in a across the same interval; in other words

O(a)=( )a+( )a + V p&(p~, p2) . (3.39)

Combining Eq. (3.39) with Eqs. (3.33)—(3.35), we find
that we have proved the following result.

If
~
e(p)

~

—= 1 throughout an interval (p~, pz) in p, then
the curvature quantities 40, %2, and 0'4 are all bounded
(=ftnite, but in general nonzero) as a~O, whenever p be-
longs to this interval (pi, p2); i.e., all curvature quantities
are perfectly well behaved across the surface

Clearly, if
~
e(po)

i

=1 at an isolated point p=po, and
furthermore if e'(po)=e"(po)=0, then by Eqs. (3.38a),
c, (Po) =S, and consequently

O(a)=( )a lna+( )a lna+ +( )a (lna)

+( )a+( )a'+ at p=p, . (3.40)

C. Instability of the Killing-Cauchy horizons that occur at a =0

We begin this section by rephrasing, in a somewhat
more precise format, the three fundamental conclusions
of the preceding section (Sec. IIIB).

(i) When
i
e(Po )

~ &1, the two-surface I a =0,P=Po,
—~ & x & + ~, —~ &y & + ~ I is a curvature singulari-

ty of the colliding plane-wave metric (2.43}. This singu-
larity is of asymptotically (nondegenerate) Kasner type,

Therefore, combining Eq. (3.40) with the Eqs.
(3.33)—(3.35) as above, we obtain the following similar re-
sult.

If
~

e(p)
~

= 1 at an isolated point p=po, and if, in addi
tion, the ftrst two derivatives of e(p) at the point po vanish,
then the curuature quantities 40, +2, and %4 are bounded
(=finite, but in general nonzero) as a~O at the point
p= po
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and it is in general inhomogeneous in the spatial P direc-
tion.

(ii) When
~
e(P)

~

=1 at an isolated point P=Po, i.e., if
the C' function [ e(P)

~
maps a small interval containing

Pv into a real interval containing 1 in such a tvay that the
inverse image of 1 is a single point (namely, Po), then there
are two possibilities: If e'(P v)

= e"(P o)=0, then the two-
surface P= [u=O, P=Po, —ao &x &+ ao, —~ &y &

+ ~ ] is not a curvature singularity, but it still represents
a spacetime singularity since no extension of the metric is
possible across P. Such an extension does not exist be-
cause in any spacetime neighborhood of P there are
boundary points corresponding to true curvature singu-
larities; consequently, any extension of the metric beyond
the two-surface P would be incompatible with the topo-
logical manifold structure of the spacetime. [Note that,
by Eqs. (3.14) and (3.15},P is a regular coordinate near Po
when

~
e(Po)

~

=1. Also note that similar topological
singularities frequently occur in the exact solutions for
colliding plane waves, see, e.g. , Refs. 8, 5, and 3.] If, on
the other hand, either one (or both) of e'(13v), e(P )Dare

nonzero, then P is a genuine curvature singularity of the
colliding plane wave metric (2.43).

(iii} Finally, when
~
e(P) ~—:1 throughout an interval

(P„P2), the three-surface 4= [a=0, P, &P &P2, —~
&x &+ oo, —ce &y &+ 00 ] is a nonsingular Killing-
Cauchy horizon for the colliding plane-wave spacetime.
The asymptotic Kasner exponents [p, (P),pz(P), p3(P)]
take one of the degenerate values (1,0,0) [if e(P) =+ 1] or
(0,1,0) [if e(P) = —1] for PE (P„P2)[Eqs. (3.18)], and cor-
respondingly one of the spacelike Killing vectors B/Bx or
B/By becomes a null vector on S. As can be seen easily by
inspection of the metric (2.43), eV is a null hypersurface in
spacetime, and the Killing vector that becomes null on S
is tangent to the null geodesic generators of S. In fact, I
is a "Killing-Cauchy horizon of type II" in the terminol-
ogy of Ref. 4, where the reader can find a much more de-
tailed description of such horizons. The spacetime curva-
ture is perfectly well behaved across 4, and consequently

represents only a coordinate singularity of the
(a,P,x,y) [or equivalently the (u, v, x,y)] coordinate sys-
tem,' it is possible to extend the metric and the spacetime
beyond S after constructing a new admissible coordinate
chart that covers I and its spacetime neighborhood regu-
larly.

Now suppose
~
e(P)

~

=1 across some subinterval I of
the range ( —1, 1) of P. (Note that I might not be a con-
nected interval. } Thus, the metric (2.43) can be extended
beyond the null surface 4= [a=0, PEI,x,y I in a per-
fectly smooth manner. This extension is not unique,
however; the initial data posed by the incoming colliding
plane waves do not uniquely single out a specific exten-
sion among the infinitely many possibilities. Therefore,
the Killing-Cauchy horizon S is a future Cauchy hor-
izon' for the initial characteristic surface [u =0] U [v
=OI, i.e., 4 represents a future boundary for the domain
of dependence D+[[u =OI U [v =0]] of this initial sur-
face. Since this means a breakdown, beyond the surface
4', of the predictability of the spacetime geometry from
the initial data posed on [u =OI U [v =OJ (or,

equivalently, a breakdown of global hyperbolicity' ), the
occurrence of these Killing-Cauchy horizons in colliding
plane-wave spacetimes may seem to contradict the cos-
mic censorship hypothesis, ' ' or at least a version of
this hypothesis suitably formulated for plane-symmetric
spacetimes. But recall that a careful formulation of
cosmic censorship always insists that the hypothesis
holds only for "generic" spacetimes, where the notion of
"genericity" is conveniently left unspecified so that it can
be interpreted appropriately for specific examples. In
fact, there are many "counter-examples" to cosmic cen-
sorship, which, in one way or another, fail to satisfy the
criterion of "genericity. " ' ' Perhaps the best-known
such examples are the maximal Reissner-Nordstrom and
Kerr solutions; the inner horizons of these solutions con-
stitute Cauchy horizons for all partial Cauchy surfaces
located in the asymptotically flat region, and therefore
cause the breakdown of global hyperbolicity in the corre-
sponding maximal spacetimes. However, it is now well
known that these inner horizons are unstable against a
large class of linearized perturbations (such as gravita-
tional waves, electromagnetic radiation, . . . ). It is there-
fore expected (but not yet fully proved), that in the interi-
or of any rotating or charged black hole which is formed
via "generic" gravitational collapse, the growth of these
linear instabilities would destroy the inner horizon, turn
it into a (spacelike) curvature singularity, and thereby re-
store the global hyperbolicity of the resulting spacetime.

Now, physically, though not in a formal mathematical
way, the Killing-Cauchy horizon 4 of the colliding
plane-wave solution (2.43) is similar to the inner Cauchy
horizons of the Kerr and Reissner-Nordstrom solutions
(which are also Killing-Cauchy horizons). To better un-
derstand the physical significance of the issue of the sta-
bility of the horizon 4', consider the geometry of the col-
liding plane-wave spacetime depicted in Fig. 2. For
enhanced dramatical effect, we have assumed in this
figure that the interval I [across which

~
e(P)

~

=—1] is a
disconnected interval made up of several connected
pieces I&, I2, . . . ,I„.Hence the Kilhng-Cauchy horizon
4 is also disconnected; it consists of several distinct hor-
izons 4, , 4'z, . . . , 4„.The spacetime is extended beyond
each of the horizons 4; in a different way; and there is
also a large amount of freedom in the choice of each indi-
vidual extension. In particular, one can choose the exten-
sions in such a way that the n horizons 4; act as door-
ways (through the otherwise singular surface a=O),
which can be used by the observers living in the interac-
tion region of the colliding plane-wave solution as "tun-
nels" into n different spacetirnes, each causally discon-
nected from all the others. Or, any two distinct horizons

may be joined, through suitable extensions, to the
same spacetime but at different locations in time and
space, thus giving the interaction region observers the
possibility to influence the extended spacetirne "sirnul-
taneously" at two different timelike-separated points
(breakdown of global hyperbolicity in the extended space-
time). Although these possibilities are intriguing, clearly
they cannot be realized (or at least they cannot be made
physically plausible} unless the Killing-Cauchy horizon 4
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is stable —unlike the unstable inner horizons of the Kerr
and Reissner-Nordstrorn solutions —against small per-
turbations of the colliding plane-wave spacetime. [In fact,
similar speculations (such as using the interior regions as
worm holes for spacetime travel) were made on the global
structure of the maximal Kerr and Reissner-Nordstrom
solutions these speculations were later rendered im-

plausible by the instability results we mentioned above
(however, see Reference 23 in this context, where the
worm-hole concept is revisited and resurrected in an
unexpected direction). ] Thus, for example, any "realis-
tic" attempt to "build" a spacetime tunnel between two
different universes by means of generating and colliding
two gravitational plane waves would fail, unless the
Killing-Cauchy horizons S; at a=O are stable; in other
words, unless the set of all initial data from which such
horizons evolve constitutes an open subset (with respect
to an appropriate topology ), or a subset with nonvanish-
ing volume (with respect to an appropriate ineasure) in
the set of all plane-symmetric initial data.

Now the horizons S; are not the first examples of
Killing-Cauchy horizons produced by colliding plane
waves. As we have discussed in the Introduction, the oc-
currence of Killing-Cauchy horizons in colliding plane-

singul

( &i )
ylV

singulanty (

( &n )
$lrtg U(grit y

FIG. 2. The geometry of a colliding plane-wave solution
(2.43) for which

~
e(P)

~

=1 throughout an interval I in P. The
interval I is disconnected and is made up of several connected
pieces I&, I2, . . . ,I„.Since the surface a=0 corresponds to a
Killing-Cauchy horizon whenever pCI, the singularity at a=0
is interrupted by the n Killing-Cauchy horizons $1, 42, . . . , S„
which are located along the intervals I&, I2, . . . , I„,respective-
ly. Through each of the horizons 4, the spacetime curvature is
finite and well behaved. Consequently, across each horizon g;
the metric can be extended smoothly to a maximal spacetime
(possibly a different one for each i) whose choice is essentially
arbitrary. In particular, the observers living in the interaction
region I can use these horizons S', as tunnels along which they
can travel (e.g. , following the timelike world lines y in the
figure) into different universes. Equation (3.13) in the text, which
relates the function e(p) to the initial data for the colliding
waves, can be regarded as describing a kind of superposition, at
a=0, of the two wave forms constituting the initial data for the
incoming colliding plane waves. For example, to compute E(P)
at the point p in the figure, the initial data located in the cross-
hatched portions of the two initial surfaces are superposed
through Eq. (3.13). In order to have

~
e(pl

~

constant across a
connected interval like the interval I&, it is necessary to adjust
the initial data so as to cancel precisely the two separate contri-
butions to e(P) which would arise as the point p is moved across
the interval I, .

wave spacetimes was first discovered by Chandrasekhar
and Xanthopoulos" when they produced several exact
solutions which contained such horizons. Shortly after
this work, Chandrasekhar and Xanthopoulos dis-
covered that the presence of a perfect fiuid with (energy
density)=pressure, or the presence of null dust, in their
spacetime destroys the horizon in the full nonlinear Ein-
stein theory. Independently and simultaneous with this
discovery, the author formulated and proved general
theorems which established the instability of Killing-
Cauchy horizons in any plane-symmetric spacetime
against generic, linearized plane-symmetric perturba-
tions. (In addition, there already exists a considerable
amount of literature ' ' on the instabilities of several
particular examples of Killing-Cauchy horizons, and of
general compact Cauchy horizons. ) However, except
for the above-mentioned example of Chandrasekhar and
Xanthopoulos involving null Auids, the nonlinear
growth of these linear instabilities and the subsequent
transformation of the horizon into a singularity have
remained only as plausible conjectures. Note that this sit-
uation is quite similar to the state of knowledge on the in-
stability of the inner horizons of the Kerr and Reissner-
Nordstrom spacetimes; there most of the convincing in-
stability results are valid only for linearized perturba-
tion s, and we do not even have a Chandrasekhar-
Xanthopoulos-type analysis for special kinds of non-
hnear perturbations. (See, however, Ref. 26 where a
qualitative argument is given for the full nonlinear insta-
bility of the Reissner-Nordstrom Killing-Cauchy hor-
izon. )

It is therefore remarkable that the formalism which we
have described thus far provides concise and rigorous
proofs that (i) the Killing-Cauchy horizons S; at a=0 are
unstable in the full nonlinear theory against small but
generic (plane-symmetric) perturbations of the initial data
for the colliding plane waves, and (ii) that in a very
specific sense, "generic" initial data in the form (2.15) or
(2.49) always produce all-embracing, spacelike spacetime
singularities without Killing-Cauchy horizons at a=O.
Morover, the proofs of these statements are almost trivi-
al. We shall demonstrate them in the following remaining
few paragraphs of this section.

It is clear from our analysis thus far, that the structure
of the singularities at a =0 is completely determined by a
single quantity: namely, the C' function E(p) This func-.
tion e(p) is C' on the interval ( —1, 1) because of Eq.
(3.13) and because of our insistence [Eqs. (2.15) and
(2.49)) that the initial data V(r, 1), V(l, s) be C' func-
tions. Now consider the space of all such C' functions on
( —1, 1), which we will denote by F. This space F can be
made into a Banach space after endowing it with a suit-
able norm (such as the sup- or I ~ norms ) and construct-
ing its completion; but the precise choice of the norm is
immaterial for the discussion that follows. Now the func-
tional 6, which assigns a unique function e(p) to each
choice of initial data in the form (2.49) or (2.15), can be
regarded as a mapping from the space of all possible ini-
tial data to the Banach space F of all possible functions
e(p). This mapping 8 is known to us in explicit form; us-
ing Eq. (3.13), we can write
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6: {V(r, l), V(l, s)] ~ e(P),

e(p) = — f [(1+s)' V(l, s)],
1+P p s—

1/2 ' 1/2

1+r' VT1
m v'I p p

' r+

(3.41)

Or, using the Eqs. (2.51), we can write equivalently

(:{V, (u), V, (U) J
~ e(P),

e(p) = ——1 2

1+P

1 2
1 —P

' 1/2

' 1/2

—U&(U)

f u(p) —U2(u)/2
]

2e
—U2(u)

2e ' —1 —P,
—U)(u)

f„(p) —U((u)/2

2e ' —1+p

1/2

' 1/2

where U, (u), U2(u) are determined by Eqs. (2.16), and U (p), u ( —p) are defined by
—U2[u(P)] —U) [u( —P)]=2e

(3.42a)

(3.42b)

Since it is obviously more transparent, we will use the representation of the mapping 6 given by Eq. (3.41) [instead of
Eqs. (3.42)] throughout the present discussion. We will first prove the assertion (ii) that we have made in the last para-
graph above, namely, that for generic initial data in the form (2.49), the surface a=0 is an all-embracing spaeetime
singularity which does not involve any Killing-Cauchy horizons. We will then discuss the assertion (i) that the Killing-
Cauchy horizons 4, are nonlinearly unstable against generic perturbations in the initial data, and will see that its proof
follows very easily from the proof of assertion (ii).

Now Eq. (3.41}tells us that we can represent the map 8 symbolically as

(3.43)

where D, the space of all initial data in the form {V(r, 1),V(l,s)], has been identified with the direct sum of Banach
spaces FeF [cf. Eq. (2.49) and the discussion following it]. Consider, for each 5 & 0, the subset Hs of F given by

Hs —= {e(p) E F
~

there exists a connected subinterval in ( —1, 1) of length & 5 across which
~

e(p)
~

=1] . (3.44)

It is clear that 0& is a closed subset of F with the proper-
ty that its complement, H&', is dense in F with respect to
the Banach space (norm) topology. We shall define a
closed subset of a Banach space with this property as a
nongeneTic subset; i.e., a nongeneric subset in a Banach
space 8 is a closed subset whose complement is dense in
8. [This notion of a "nongeneric" subset intuitively cor-
responds to a physicist s notion pf genericity. However,
our notion does not necessarily coincide with the more
frequently used notion of a "subset with measure zero."
In fact, even in finite-dimensional Banach spaces there
exist nongeneric subsets with nonzero Lebesgue measure
(e.g., the fat Cantor set in the unit interval as a subset of
8 '). It is not yet clear whether our topological notion of
genericity can be replaced with a measure theoretical al-
ternative so as to leave the conclusions of this section in-
tact. (See also the remarks at the end of the next para-
graph in this connection. )] Thus, Hs is a nongeneric sub-
set of I' for any 5~0. Note also that H& DH& whenever

2

5, (52.
It is now clear from the conclusions (i), (ii), and (iii)

which we have listed in the beginning of this section, that
if e(p) is an element of F that does not belong to Hs for
any 5, then the corresponding colliding plane-wave solu-
tion possesses an all-embracing spacetime singularity at
a =0; this singularity is in general a curvature singulari-

ty, possibly crisscrossed with isolated (with respect to p)
topological noncurvature singularities. Therefore, in or-
der to prove our assertion (ii), we need only to prove that
for all 5 & 0, the inverse image 8 '(Hs ) of Hs under the
map 8 is a nongeneric subset of the space of all initial
data D. [The reader might be puzzled at this point as to
why the subset 4 '(Us +s}of D is not what needs to
be proved nongeneric. The answer lies in physics: From a
physically realistic standpoint, there is always an absolute
short-distance cutoff (a lower bound} on the length of a
connected interval in p; this lower bound 5, on 5 is given
by the Planck length lp (or more precisely by
5, =1P/Ql, /2). A Killing-Cauchy horizon that extends
less than a Planck length 5, in the p direction will almost
certainly be indistinguishable, in its semiclassical mani-
festations, from a spacetime singularity. Furthermore,
the subset Us ~s CF in question is not a nongeneric
subset; in fact, it is easy to show that U s ~s is dense in
F and hence is neither closed nor nongeneric. Thus,

( Us ~s) also is not nongeneric, and possibly it is
dense in D. With our present somewhat naive (but physi-
cally satisfactory) notion of genericity, 8 (Us ~s)
cannot be properly shown to be "nongeneric. " In fact, it
may be helpful to note that our genericity concept is simi-
larly unable to identify the subset of all rational numbers
in the unit interval as a "nongeneric" subset; the notion
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of the Lebesgue measure, and not just a topological no-
tion like ours, is needed to implement a formulation of
genericity powerful enough to handle such questions
effectively. It is conceivable that in our case too, a suit-
able extension of the notion of measure to infinite dimen-
sional Banach spaces could yield both a more appropriate
formulation and a proof for the "nongenericity" of the
subset~ '(Us +s).]

Turn now to the proof of the assertion that
'(Hs) CD is nongeneric for any 5&0. For this proof,

we need to consider some basic properties of the mapping
~:D ~F. First of all, it is easy to see that ~ is an onto
map; that is, for any element e(P) in F, there exists a
choice (in fact infinitely many choices) of initial data in D
which would yield, under the map ~, precisely the ele-
ment e(P). [In fact, the inverse image ~' '(q) of any point
q:e(p) E—F is an infinite set in D; to find just one element
in this set, take V(l, s) to be any function and solve the
resulting integral equation (3.41) for V(r, 1).] The second
basic property of ~ is that ~ is defined on the whole
Banach space D; that is, the domain of ~ is D [To se. e
this, apply a formal partial integration on both of the in-
tegrals in Eq. (3.41}; the result can be written in a form
which does not involve any differentiations of the func-
tions V(r, 1) and V(l, s).] And finally, ~' is a continuous
linear mapping from D onto F This fo. llows (i) by first
noting that ~ is a closed linear operator2 [linearity of ~
is obvious from Eq. (3.41); closedness of ~ follows since ~
is essentially the composition of a differentiation operator
(which is closed} and an integral operator (which is con-
tinuous)], and (ii) then using the closed graph theorem
(Sec. II. 6 of Ref. 27) which says that a closed, onto linear
mapping ~:D ~F with domain =D is continuous.
Now we are ready to prove that ~ '(Hs) CD is nongen-
eric: Since ~ is continuous, ~ '(Hs) is a closed subset of
D. To see that the complement of ~ '(Hs) in D is dense,
use the open mapping theorem (Sec. II. 5 of Ref. 27) to
conclude that ~ is an open map. If the complement of

'(Hs) were not dense in D, ~ '(Hs) would contain an
open subset, and the open map ~ would send this open
set onto an open subset of H& in F. This is impossible,
since the subset H& is nongeneric and hence cannot con-
tain an open set. This contradiction demonstrates that

'(Hs} is a nongeneric subset of D for any 5&0.
It is now very easy to prove our remaining assertion:

namely, that the Killing-Cauchy horizons ~; are non-
linearly unstable against generic perturbations of the ini-
tial data. Consider a given choice of initial data
represented by a point p in the Banach space D. If the
colliding plane-wave spacetime which evolves from these
initial data p possesses Killing-Cauchy horizons 4; at
a=O, then there is a 5'&0 such that p E @ '(Hs ) (just

0
take 50 as the size of the smallest horizon SJ). Conse-
quently, p E ~ '(Hs) for each 5 &50. Now for each such
5&5v, no matter how small, the set ~' '(Hs) to which p
belongs is a nongeneric subset of D. Therefore, for each
5 &50 no matter how small, a generic perturbation of the
point p representing the initial data will push p outside
the subset ~ '(Hs); in other words, for any fixed but ar-
bitrarily small 5)0, a generic perturbation of the initial

IV. EXAMPLES OF EXACT SOLUTIONS WHICH
EXHIBIT SOME OF THE ABOVE-DISCUSSED
ASYMPTOTIC SINGULARITY STRUCTURES

Our first example is the well-known Khan-Penrose
solution for colliding impulsive plane waves. The reader
is referred to the original references ' ' for comprehen-
sive descriptions of the Khan-Penrose solution; here we
will only discuss it from the point of view of our analysis
in Sec. III above. The initial data for the Khan-Penrose
solution written in the form of Eq. (2.15) are

V( ) 1
1+(ula) V( ) 1

I+(vlb)
1 —(ula) '

1 (v Ib)—
which give, by Eqs. (2.16),

(4.1)

2u v2U'(u)= —ln 1—,U2(v)= —ln 1 — . (4.2)
a

From Eqs. (4.2), (2.26), (2.27), and (2.51), we obtain the
explicit forms of the various coordinate transformations
we have discussed in Sec. IIB,

Qa=1—
Q2

v2 u2 v2

b2 ' a2 b2

(4.3)

u2 v2r=1 —2, s =1—2
g2

data p would destroy all horizons 4; at a=O that are of
length & 5, and turn them into spacetime singularities. In
fact, since from a physically realistic standpoint all
Killing-Cauchy horizons have to be of a size large com-
pared to the Planck size 5„even the nongenericity of just
the set ~' '(Hs ) is sufficient to conclude that the hor-

C

izons 4, are nonlinearly unstable against plane-symmetric
perturbations.

To get an intuitive feeling about these instabilities, it
might be useful to think of Eq. (3.41) as describing some
kind of a superposition, at a=O, of the two wave forms
described by the functions V(r, 1 } and V(l, s) which con-
stitute the initial data (see Fig. 2). Killing-Cauchy hor-
izons form at a=O only when this superposition results
in a "perfectly destructive interference" (~e(P) ~:—1)
across some interval in the spatial coordinate P. Any gen-
eric perturbation in the wave forms V(r, 1) and V(l, s)
causes small imperfections in the precision of this des-
tructive interference [~ e(P)

~
slightly deviates from 1];

and any small deviation from perfect destructive interfer-
ence is sufficient to turn the Killing-Cauchy horizons into
spacetime singularities (Fig. 2).
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1+&(I r—)/2
1 —+(1 r)/—2

1+&(1—s)/2
1 —&( I —s) /2

(4.4)

which, when combined with the Eq. (4.1), yield the
Khan-Penrose initial data in the form (2.49):

When computed with the initial data (4.4), the explicit
solution (2.60) gives an expression for VKp(a, P) in closed
form. If we take the normalization point (uo, uo) as

[—,'(&3—1)a, —,'(&3—l)b], and insert VKp(a, P) into Eq.
(2.44b), the function QKp(a, P) can also be evaluated in
closed form. Finally, by combining these results with Eq.
(2.43), the Khan-Penrose metric is found to have the fol-
lowing expression in the (a, P,x,y) coordinate system:

2

( —da+8 )
[(1— )' —P']'"[(I+ )' —P']'"[&(1— )' —P'+&(I+ )' —0']'

+a &I+a—P+Vl —a —P dx 2

&I+a—P—&I —u —P

Pl+a —P—&I —a —P+a &I+a—P+&I —a —P
&I+a+P—&I —a+P
& I +a+P+ & I —a+P

(4.5)

After expressing a and P in terms of u and U as in Eq.
(4.3), Eq. (4.5) reduces to the standard expression of the
Khan-Penrose metric in the Rosen-type (u, v, x,y) coordi-
nate system. Inspection of Eq. (4.5) shows that

q, (P), q2(P), and q3(P) [cf. Eqs. (3.14) and (3.15)] for the
Khan-Penrose solution are equal to the constant values —,',
—1, and 3, respectively. This implies that

[p, (P),pz(P), p3(P)] [Eqs. (3.16) and (3.17)] are equal to
the constant values ( ——,', —,', —,

' ), and using the inverse re-

lations to Eqs. (3.18) given by

p3(P) .e(P)= —1 —2 if p2(P)&0,
p, (P)

P3(P)e(P)=1+2 if p, (P)&0,
pi

(4.6)

these equations in turn imply that e(P)=——2. Thus, for
the Khan-Penrose solution

(4.7)

Numerical computation of the integrals in Eq. (3.13) with
the Khan-Penrose initial data (4.4) indicates that both of
the two terms on the right-hand side of Eq. (3.13) [involv-
ing the integrals of Vxp(r, 1) and VKP( l, s)] are separately
constant, and equal to —1 for all P. Note that since

~
e(P)

~
& 1, the Khan-Penrose singularity is an astigmat-

ic one [cf. the discussion following Eq. (3.23) in Sec.
IIIA]. This is not surprising, since the incoming plane
waves of the Khan-Penrose solution [which are described
by the initial data (4.1) and Eqs. (4.2)] are (i) highly astig-
matic (one of the focal lengths is infinite whereas the oth-
er is a or b), and (ii) very strong (both Vi and V2 are of
order unity).

Turn now to our second example; a colliding plane-
wave spacetime described by the initial data

V~(r, 1)= —Vxp(r, 1 ), V ( I,s) = Vzp(1, s) . (4.8)

Since the integrals in Eq. (3.13) are both linear in their
respective arguments V(r, 1) and V(l, s), and since for
the Khan-Penrose initial data (4.4) these integrals both
take the constant value —1, it follows that, for the collid-
ing plane-wave solution which evolves from the initial
data (4.8),

~ (P)=0, pi(P)—:—', , p&(P)—:-', ,

p3(p)—:——,
' &p&( —1, 1) .

(4.9)

Therefore, as e~(P)
~

& 1, the solution developing from
(4.8) has a purely anastigmatic singularity structure at
a=0. This is interesting, because the incoming waves de-
scribed by the data (4.8) are highly astigmatic. In fact,
both incoming plane waves are impulsive waves identical
in structure to the incoming waves of the Khan-Penrose
solution [it is easy to see that Ui(u), U2(U), a, P, r, and s
for the initial data (4.8) have exactly the same forms as in
the Khan-Penrose solution where they are given by Eqs.
(4.2) and (4.3)].The only exception to this identical struc-
ture is that one of the waves (namely, the wave that prop-
agates in the U direction, see Fig. 1) has its direction of as-
tigmatism "twisted" with respect to the other; in other
words, one of the waves focuses in the x direction and de-
focuses in the y direction, whereas focusing by the other
wave occurs with the roles of the x and y directions inter-
changed. Now, the solution V (a,P) of the initial-value
problem given by the field equation (2.44a) and the initial
data (4.8) is easy to find: It is immediately seen after a
short calculation that VKp(o. ,P) is the sum of two pieces
that separately satisfy Eq. (2.44a); and therefore, by the
linearity of Eq. (2.44a), taking the difference of these
pieces instead of their sum produces the unique solution
of Eq. (2.44a) which satisfies the initial conditions (4.8).
However, with this solution for V (a,P), the integral in
Eq. (2.44b) cannot be computed analytically to yield an
expression for the function Q ~(a,P) in closed form. Nev-
ertheless, since the coordinate transformations between
the (a,P) and (u, v) coordinates are known explicitly
[Eqs. (4.3)], we can still write down the interaction-region
metric for our solution in the following semiclosed form:
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9 v e Q [ (,u), P(u, U)]/2
gx 8

&1—u' —U'
du du+ (1—u' —v' )

+1—u +U

&1—u' —U'

&1—U' —u'
dx

&1—U'+ u'

/2 I+1—9 —U+(1—u' —U' )
&1—u'+v'

&1—U'+u'
dg

&1—U' —u'
(4.10)

1 1+(u/a)V&u= —ln
2 1 —(u /a)

T

1 1+(v /6)
2 1 —(0/6)

(4.12}

Unlike with the Khan-Penrose solution, Eqs. (2.16) can-
not be solved analytically with the initial data (4.12); and

I

where u'—:u/a, v'=U/b, Q~ is given by Eq. (2.44b), and
a(u, U), P(u, v ) are determined by Eqs. (4.3). The metric in

the remaining regions II, III, and IV (Fig. 1) of the solu-
tion (4.10) is found by extending (4.10) via the Penrose
prescription. ' ' Inspection of Eq. (4.10) makes it ap-
parent that in the vicinity of the singularity a =0
(u' +v' =1 in the u, u coordinates), the asymptotic be-
havior of the metric is characterized by e(P):—0 [cf. Eqs.
(3.17) and (3.18)].

Our third example is the colliding plane-wave space-
time which develops from the initial data

V] /p(r 1)=—VKp(r 1) V//2(1 s)= —VKp(1 s) (4.11)

or, equivalently

consequently, U&(u), U2(U), a(u, u) and P(u, u) cannot be
expressed in closed form for the solution (4.11). On the
other hand, from the linear dependence [Eq. (3.13)] of
e(P) on the initial data [ V(r, 1), V( l, s) I, it is very easy to
see that the asymptotic structure of the solution (4.11)
near a =0 is characterized by

e, /2(P} = —1, p, (P)—:0, pz(P)—:1,
p3(p)=0 Vp&( —1, 1) .

(4.13)

Therefore (Sec. III C), the solution (4.11) possesses a non-
singular Killing-Cauchy horizon at a=0 across which
the spacetime can be smoothly extended. Although the
metric for this solution cannot be expressed in closed
form in the Rosen-type u, u coordinate system [since the
transformation to (a,P) coordinates is not available in an-
alytic form], it can be easily computed in the (a,P) coor-
dinates: By the linearity of the field equation (2.44a}, it is

clear that V, /2(a, P)= —,
' VKp(a, P); this implies, by Eq.

(2.44b), that up to an additive constant, Q, /2(a, P)
= —,'QKp(a, P). Therefore, combining Eq. (2.43) with Eq.
(4.5), we obtain

co ab
( —da +dP )

[[(1 ~)2 P2]l/2[(1+~)2 P2)1/2[/(1 /)2 P2+/(1+~)2 P2]2
I

1/4

' 1/2 ' 1/2

+a &1+a—P+&1—a —P &1+a+P+&1—a+P dx
v 1+a—p —&1—a —p &1+a+p—&1—a+p

' 1/2

+ o!
&1+a—P—&1—a —P &1+a+P—&1—a+P
&1+a—p+v 1 —a —p &1+a+p+&1—a+p

1/2

(4.14)

where c0 is a numerical constant. Although the solution
(4.14) is the first example of an exact colliding parallel-
polarized plane-wave solution producing Killing-Cauchy
horizons at e =0, it has one undesirable feature: The in-
coming plane waves described by the data (4.12) are not
sandwich waves; that is, the focal plane' ' of each single
incoming wave represents a curvature singularity of the
single plane-wave spacetime instead of just a coordinate
singularity. (Readers can convince themselves of this fact
by inspecting the behavior of the curvature [Eqs. (2.19)]
in the single plane-wave spacetimes defined by Eqs. (4.12),
(2.16), and (2.8). For a more detailed discussion of these
issues, see Sec. II of Ref. 10.) As a result, it seems
exceedingly difficult to carry out and analyze a maximal
extension (of which we know there are infinitely many) of
the spacetime (4.14) beyond the Killing-Cauchy horizon

[a=0). In our final example below, we will discuss
another exact colliding plane-wave solution which simi-
larly produces a Killing-Cauchy horizon at a=0, and we
will see that the above-mentioned difficulty with singular
focal planes does not arise in this solution. In fact, the
maximal analytic extension of this solution across the
horizon is readily available and produces a maximal col-
liding plane-wave spacetime with a surprising global
structure.

We now turn to this final example: a family of colliding
parallel-polarized plane wave solutions producing non-
singular Killing-Cauchy horizons at a=0. These solu-
tions are derived by a procedure that is almost identical
to the procedure by which we have constructed the
infinite-parameter family of exact solutions discussed in
Ref. 10. To follow the details of our presentation, the
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r=M(1-cos

e=O {coordinate singularity)

r=M(1+cos e)

the horizon

(coordinate singularity)

r=M(1+c (1-cos 0)

reader must refer to Ref. 10; however, the qualitative
features of our example can be understood from the dis-
cussion here, and especially from the Figs. 3, 4, and 5.
The equation numbers that refer to equations of Ref. 10
will be denoted by a prefix "10";for example, Eq. (10.3.4)
refers to Eq. (3.4) of Ref. 10.

Consider the colliding parallel-polarized plane-wave
solution described by Eq. (10.2.4). In Ref. 10, this solu-
tion was constructed from the interior Schwarzschild
metric in the following four steps (Fig. 3).

(i) The coordinate transformation (10.2.2} was carried
out to define a new set of coordinates (tt ', u', x,y) in terms
of the Schwarzschild coordinates (r, e, g, t), and the inte-
rior Schwarzschild metric was expressed [Eq. (10.2.3)] in
terms of these new coordinates.

(ii) Two length scales tt and b were introduced by re-
scaling the null coordinates Q' and U' through the rela-
tions u'=u/a, u'= v/b, where ab =4M .

(iii) The resulting interaction-region metric (10.2.3}
was then extended beyond the null surfaces [u =0]
and [v =0] by the Penrose prescription: ' u/a~(u/
a)H(u/ tt), U/b~(v/b)H(u/b), where H is the Heavi-
side step function.

(iv) The global topology of the resulting spacetime was
changed from S &(R to R by means of the coordinate
transformation (10.2.2) and the nonanalytic extension (iii)
across the null surfaces [ tt =OI and [u =0]. In Fig. 3, we

e(P)—:—3, pi(P)—:—
—,', p2(P)—:-', ,

pi(P) = —,
' VPE ( —1, 1) .

(4.15)

Note that by combining Eqs. (4.15) with Eqs.
(3.33)—(3.35), we can reproduce the results of Ref. 10
dealing with the asymptotic behavior of the curvature
quantities near the singularity ( tt /a)+ (U /b) =m. /2.

Now, in order to obtain colliding plane-wave solutions
which produce Killing-Cauchy horizons at a=0, we sim-

ply reverse the roles of regions I and IV in Fig. 3; that is,
we take region I to be our interaction region, and apply
the steps (i)—(iv) above to this new interaction-region
metric. This results in a new colliding plane-wave solu-
tion whose metric is easily seen to be given by Eq.
(10.2.3), but this time for u &0, v &0 (which describe re-
gion I) instead of tt & 0, v &0 (which describe region IV).
Therefore, redefining Q and v as —Q and —v, respective-
ly, the interaction-region metric of the new solution can
be written in the form

have indicated these null surfaces by their expressions in
terms of the Schwarzschild coordinates; these expressions
are [r =M(1+cos8)I and [r =M(1 —cosO)I for [u =OI
and [U =OJ, respectively.

The interaction region of the resulting colliding plane-
wave solution (10.2.4) is locally isometric to the region
denoted by IV in Fig. 3. In particular, the Schwarzschild
singularity at r =0 corresponds, under this isometry, to
the singularity at a=O [at (u/a)+(v/b)=n/2 i.n the
Rosen-type coordinates of Ref. 10] created by the collid-
ing waves. In Ref. 10, the above steps (i)—(iv) were repeat-
ed almost identically for an infinite-parameter family of
regular interior Weyl solutions generalizing the interior
Schwarzschild solution. As a result, the infinite-
parameter family (10.3.18)—(10.3.22) of colliding plane-
wave solutions was obtained. Use of Eqs. (4.6) and inspec-
tion of the solution (10.2.4) reveal that for this solution
(which corresponds to all parameters dk being zero), and
for all the other solutions (10.3.18)—(10.3.22) (as long as
all but finitely many dk are zero), the asymptotic behav-
ior of the metric near the singularity is characterized by

8—K (coordinate singularity) Q U

g&
——— 1+sin —+-

a b

2

dQ dv

FIG. 3. The region I in Schwarzschild spacetime to which the
interaction region of the colliding plane-wave solution (4.16) is
locally isometric. This region I is shown shaded in this figure,
which is drawn in a [t =constI, [rtr=0, rr[ plane. As explained
in the text, the geometry in region I is extended nonanalytically
beyond the null surfaces r =M(1+cos8) and r =M(1 —cos8),
which correspond to the wave fronts [u =0[ and [U =0I, re-
spectively. After this extension, the geometry in regions II and
III represents incoming single plane sandwich waves [Eqs.
(4.18)]; and region IV is flat. The interaction region I is bound-
ed by a Killing-Cauchy horizon which corresponds to the event
horizon of the Schwarzschild spacetime at [ r =2M J. In Ref. 10,
we have used the region IV of the interior Schwarzschild space-
time as the interaction region of the colliding plane-wave solu-
tion (10.2.4); the solution of Ref. 10 was obtained by exactly the
same procedure as the solution (4.16) which we outline in Sec.
IV here.

Q U
1 —sin —+-

a b

Q U1+sin
a b

T

Q U+ 1+sin —+-
a b

2

cos — dg
Q U

a b
(4.16)

where the interaction region on which the inetric (4.16}is
defined is given by [u &O, v &OI. Note that Eq. (4.16)
can be obtained by applying the simple transformations
u ~—u, U~ —v to Eq. (10.2.3). The metric on the rest of
the solution (4.16) (i.e., in regions II, III, and IV) is ob-
tained by extending the interaction-region metric (4.16)
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via the Penrose prescription; ' (u/a)~(u/a)H(u/a),
(u lb)~(ulb)H(v lb) I.t is clear from Eq. (4.16) that the
solution thus obtained has an asymptotic structure near
a =0 characterized by

e(P) =1, p](P) =—1, p2(P) =0,
p3(p) =0 ]]'pE( —1, 1) .

(4.17}

+ [1+sin(u/a)] cos (u/a)dy (4.18a)

g]]]———[1+sin(u/b)] du du+ . dx2 1 —sin( v /b)
1+sin v b

+ [1+sin(v/b)] cos (vlb)dy (4.18b)

In contrast to Eq. (10.2.5), the incoming plane waves
(4.18) are true sandwich waves; that is, the focal planes
u =m.a/2 and u =nb/2 of the incoming waves (4.18)
represent nonsingular Killing-Cauchy horizons in the
respective single plane-wave spacetimes. Similarly, it is
easy to see (i) that the infinite-parameter family of gen-
eralizations of the solution (4.16) all have interaction re-
gions locally isometric to an analogous region I in the in-
teriors of the corresponding Weyl solutions, and (ii) that
the Killing-Cauchy horizons created by these generalized
solutions correspond to the horizons of the Weyl solu-
tions from which they are derived. For each of these gen-
eralized solutions (as long as all but finitely many dk are
zero), the incoming single plane waves have a similar
structure to the plane waves (4.18), and hence are also

Therefore, a =0 is a nonsingular Killing-Cauchy horizon
produced by the colliding plane-wave solution (4.16). By
applying exactly the same reasoning as above to the
infinite-parameter family (10.3.18)—(10.3.22) of colliding
plane-wave solutions, we obtain an infinite-parameter
family of generalizations of the solution (4.16}. These
generalized solutions can be found by simply applying the
transformations u ~—u, v ~—U throughout Eqs.
(10.3.18)—(10.3.22). As long as all but finitely many of the
parameters d„arenonzero, the generalized solutions all
have the same asymptotic structure near a =0 character-
ized by the exponents (4.17); i.e., all generalized solutions
create Killing-Cauchy horizons at a=0. The proof that
the colliding plane-wave spacetime (4.16) and its generali-
zations described above are genuine solutions (in the
sense of distributions) to the vacuum Einstein equations
is provided by exactly the same arguments with which we
showed the solutions (10.3.18)—(10.3.22) of Ref. 10 to be
genuine vacuum solutions.

The interaction region of the solution (4.16) is locally
isometric to region I (Fig. 3) of the interior Schwarzschild
solution. In particular, the Killing-Cauchy horizon at
o,'=0 [at (ula)+(ulb)=v/2 in the Rosen-type coordi-
nates] corresponds, under this isometry, to the horizon
[r =2M I of the Schwarzschild spacetime. This interac-
tion region I of the solution (4.16) is formed by the col-
lision of single plane waves whose forms in the precol-
lision regions II and III (cf. Fig. 1) are

T

2 1 —sin( u /a) 2
g]]———[1+sin(u /a)] du dv+ dx1+sin( u /a )

[1+sin[(u la)+(u/b)]I2

ab
(4. 19)

and the other curvature quantities also exhibit similar

true sandwich waves.
In the remaining paragraphs of this section, we will

concentrate on the colliding plane-wave solution (4.16)
and discuss its properties in detail. In particular, we will
show that the maximal analytic extension of (4.16) across
the Killing-Cauchy horizon [a=01 is easy to find and
yields a (weakly) asymptotically flat extended spacetime.
The infinite-parameter family of generalizations of the
solution (4.16) have qualitatively identical features with
the solution (4.16), provided that all but finitely many pa-
rameters dk are zero. In particular, each of these general-
ized solutions can be extended analytically across the
horizon in a similar fashion; however, the extended
spacetimes are not asymptotically Aat since the general-
ized solutions are derived from Weyl solutions which
violate asymptotic Aatness. '

We first consider in some detail the structure of the
colliding plane-wave spacetime (4.16) near the Killing-
Cauchy horizon [a=O]. Note that when we apply the
coordinate transformation (10.2.2) to the interior
Schwarzschild solution, and later extend the metric
nonanalytically into the precollision regions as described
in the steps (i)—(iv) above, we change the topology of the
resulting spacetime from S XR to R (cf. Ref. 10). Thus
(Fig. 4), the topology of the Schwarzschild horizon is also
changed from S X R ' to R (when we regard the
Schwarzschild horizon as the progenitor of the Killing-
Cauchy horizon [a=0[ which has topology R ). The
spacelike plane-symmetry-generating Killing vector i)/Bx
which becomes null on the horizon [a=01 corresponds,
under the transformations (10.2.2), to the Killing vector
r)Ir)t of the Schwarzschild spacetime which becomes null
on the Schwarzschild horizon. The bifurcation two-
sphere I of the Schwarzschild horizon, on which d/Bt
vanishes, corresponds in our solution (4.16) to the crease
singularity (—:bifurcation set } of the Killing-Cauchy hor-
izon [a = 0]—:[ ( u /a ) + ( v /b ) =m /2 I, on which the Kil-
ling vector 8/Bx (which is tangent to the null generators
of the horizon) vanishes (Fig. 4). Of course, when the
solution (4. 16) is not extended beyond the Killing-Cauchy
horizon [a=OI, the remaining Killing vector i}/By is not
cyclic, in contrast to the corresponding Killing vector
a/ay of the Schwarzschild spacetime which is cyclic.
Therefore, the bifurcation set of the Killing-Cauchy hor-
izon [u=OI has the topology R in the unextended
spacetime, in contrast to the bifurcation sphere S of the
Schwarzschild horizon. [Note that, strictly speaking the
Killing-Cauchy horizon [a=O] is not part of the space-
time manifold for the unextended colliding plane wave
solution (4.16); in other words, the unextended solution
(4.16) is represented by those points in Fig. 4 which lie
strictly to the past of the horizon [a=O).] It is easy to
see that the curvature quantities ]Ilo, ]P2, and ]P4 [Eqs.
(2.19)] for the solution (4.16) are all finite and well
behaved near and on the Killing-Cauchy horizon
[(u la)+(v/b)=m/2I. For exa.mple, the quantity %2 is

given by
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smooth behavior at (u/a)+(v/b) =n /2. Hence, clearly,
the spacetime can be extended smoothly beyond the hor-
izon Ia=Oj to obtain a maximal colliding plane-wave
solution. In fact, since the metric in the interaction re-
gion I (Fig. 3) is everywhere locally isometric to interior
Schwarzschild, and the maximal analytic extension of the
Schwarzschild metric across the Schwarzschild horizon is
well known, the maximal analytic extension of the collid-
ing plane-wave solution (4.16) across the Killing-Cauchy
horizon ta=Oj is very easy to describe. In the following
final paragraph we wi11 discuss the local description and
the global structure of this maximal analytic extension.

Before proceeding with the detailed description of the
extension, note that the two boundary points of the unex-
tended solution (4.16) denoted by P and Q in Fig. 4 are
spacetime singularities. The reason is that the amplitudes
of the delta-function contributions to the curvature quan-
tities along the null surfaces Iu =Oj and t v =Oj diverge
as these two points are approached. However, aside from
these two singular points P and Q located on the bifurca-
tion set of the Killing-Cauchy horizon [a=Oj, the
geometry at all the other boundary points of the unex-
tended spacetime is perfectly smooth and well behaved.
Now, the local description of the maximal analytic exten-

No
foc

Bifurcation set = IR

rec

Q =- singularity

Nonslngular Kllling-
Cauchy Horizon

FIG. 4. The global structure of the colliding plane-wave solu-

tion (4.16). One of the spacelike Killing directions, namely, the y
direction, is suppressed. The remaining spacelike Killing vector
B/Bx becomes null on the Killing-Cauchy horizon as depicted;
in fact, it is tangent to the null generators of the horizon. This
Killing vector B/Bx corresponds to the Killing vector B/Bt of
the Schwarzschild spacetime, which similarly becomes null on
the event horizon. The suppressed Killing vector B/By corre-
sponds, under the local isometry with the Schwarzschild space-
time, to the cyclic Killing vector 8/BP. However, in construct-
ing the solution (4.16), we have changed the topology of the
spacetime from the topology R )(S' of Schwarzschild to R .
Therefore, the Killing vector B/By is no longer cyclic. In par-
ticular, the bifurcation two-sphere 4 of the Schwarzschild hor-
izon is "tom" open in our solution to a bifurcation set which
has topology R . The Killing vector field B/Bx, which becomes
null on the horizon, vanishes on this bifurcation set. Although
the focal planes for each of the incoming plane waves in the
solution (4.16) are nonsingular, the points P and Q where thece
focal planes intersect the bifurcation set of the Killing-Cauchy
horizon represent spacetime singularities (see the discussion in
Sec. IV).

sion of (4.16} is particularly clear: Near the Killing-
Cauchy horizon I (u /a)+ (v /b) =m/2. j, the metric is lo-
cally isometric to the Schwarzschild solution near the
horizon t r =2M j. It is clear that, because of the specific
time orientation that we are using on the unextended col-
liding plane-wave spacetime, this Schwarzschild horizon
to which our Killing-Cauchy horizon {a=Oj corre-
sponds is the past horizon of the Schwarzschild space-
time, rather than the future one. Construct, then, the
usual Kruskal-type regular coordinate system on the
(past) horizon (a=Oj, and simply extend the solution as
the maximal analytic extension of the metric in such a
coordinate system. Clearly, this would give us precisely
the usual Schwarzschild solution outside the past hor-
izon. However, just as the maximal analytic extension of
a metric like dx +sin x dy forces on us the fact that the
coordinate y is periodic, and forces on us the fact that the
metric represents a two-sphere; so also here, the maximal
analytic extension in the above-described manner forces
the coordinate y to be 2~ periodic; i.e., forces us to identi-
fy any two points (u, v, x,y+2nn } and (u, v, x,y+2trm)
throughout the spacetime, including, of course, the re-
gions I, II, III, and IV lying before the Killing-Cauchy
horizon. Thus, the maximal analytic extension of (4.16)
yields us an exact solution, which describes the collision
of two plane-symmetric sandwich gravitational waves
propagating in a cylindrical universe with topology
R )&S'. When these waves collide, they produce a
Killing-Cau8hy horizon, which, (i) when added to the
unextended spacetime region I [[(u/a)+(v/b)
=n /2 j ] (with topology R XS ') causes the topology of
the extended spacetime to become R g S because of the
above identifications, and (ii) encloses a spacetime singu-
larity (the future Schwarzschild singularity) that is space-
like. In fact, the collision produces a Schwarzschild
black hole, complete with its future horizon and the two
asymptotically flat regions. In Fig. 5, we have tried to
depict symbolically the global structure of this maximal
colliding plane-wave spacetime. Note that, after the max-
imal analytic extension is carried out, the singular points
P and Q of the solution (4.16) are contained in the bifur-
cation sphere 4' of the extended Schwarzschild horizon.
Also note that it might be helpful to visualize, as we have
done in Fig. 5, the cylindrical spacetime with topology
R XS ' (representing the history of the colliding waves
"before" the Killing-Cauchy horizon forms} as the direct
product of R ' (representing the time direction} with a
finite-sized but open-ended cylinder R XS ' (representing
a slice of constant time). As we also explain in Fig. 5, the
cylinder R 'XS' is topologically equivalent (homeomor-
phic) to a twice-punctured two-sphere; therefore, the
slices of constant time R )&S' are homeomorphic to the
direct product of R ' with a twice-punctured two-sphere.
When the Killing-Cauchy horizon Ia=Oj forms and the
spacetime is extended beyond it in the above-described
manner, the missing pairs of points of these "twice-
punctured" spheres are supplied by points from the hor-
izon, and thereby the extended spacetime acquires the to-
pological structure of R &S, instead of the topology
R )&S' of the original cylindrical background on which
the colliding plane waves propagate.
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V. CONCLUSIONS

xS2

time
)I

lRx', '

I

IRx, i

~

IR xS'universe
t with x (Killing)

direction
suppressed.

FIG. 5. The global structure of the maximal colliding plane-
wave spacetime obtained by analytically extending the solution
(4.16) across its Killing-Cauchy horizon using Kruskal-type glo-
bal coordinates. The description in the figure is only symbolic,
and is intended to help the reader in visualizing the true
geometry of this maximal extension. As explained in the text
(Sec. IV), the maximal analytic extension of the metric (4.16)
(leading to the Schwarzschild spacetirne outside the past hor-
izon) causes the (Killing-) coordinate y to become cyclic, and
thereby causes the topology of the extended spacetime to be-
come S'XR' instead of R [see Fig. 4 for a description of the
global structure of the unextended solution (4.16)]. Similarly,
this change in the topological nature of the coordinate y implies
that the region of the maximal spacetime which lies to the past
of the Killing-Cauchy horizon has topology R')(S' instead of
R . Since this region describes the history of the colliding plane
waves before they create the Killing-Cauchy horizon, it follows
that the incoming waves propagate and collide in a cylindrical
universe with topology R )&S'. Note that, after the maximal
analytic extension is carried out, the singular points P and Q of
the solution (4.16) are contained in the bifurcation sphere I of
the extended Schwarzschild horizon. Also note that it might be
helpful to visualize, as is done in the figure here, the cylindrical
spacetime with topology R ' XS' (representing the history of the
colliding waves "before" the Killing-Cauchy horizon forms) as
the direct product of R ' (representing the time direction) with a
finite-sized but open-ended cylinder R')(S' (representing a slice
of constant time). The cylinder R '

)&S ' is topologically
equivalent (homeomorphic) to a twice-punctured two-sphere;
therefore, the slices of constant time R )&S' are homeomorphic
to the direct product of R ' with a twice-punctured two-sphere.
When the Killing-Cauchy horizon [a=OI forms and the space-
time is extended beyond it, the missing pairs of points of these
"twice-punctured" spheres are supplied by points from the hor-
izon, and thereby the extended spacetime acquires the topologi-
cal structure of R &S, instead of the topology R')&S' of the
original cylindrical background on which the colliding plane
waves propagate. Thus, the analytic extension of the solution
(4.16) gives a maximal spacetime, in which a Schwarzschild
black hole is created out of the collision between two plane-
symmetric sandwich waves propagating in a cylindrical
universe.

We can summarize the main results of this paper as
follows.

(i) In a suitable coordinate system, the structure of the
singularities produced by colliding parallel-polarized
gravitational plane waves can be analyzed in full generali-
ty and detail. This analysis (a) reveals that the asymptotic
structure of these singularities are of inhomogeneous
Kasner type, and (b) provides explicit expressions for the
asymptotic Kasner exponents in terms of the initial data
posed by the incoming, colliding plane waves.

(ii) For specific choices of initial data for the colliding
waves, the asymptotically Kasner form that the space-
time metric takes near the singularity can be that of a de-
generate Kasner solution. In this case, the curvature
singularities created by the colliding waves degenerate to
coordinate singularities, and nonsingular Killing-Cauchy
horizons are thereby obtained. The mathematical forrnal-
ism that is built in this paper proves (a) that these hor-
izons are unstable in the full nonlinear theory against
small but generic perturbations of the initial data, and (b)
that in a very precise sense, "generic" initial data always
produce all-embracing, spacelike curvature singularities
without Killing-Cauchy horizons.

(iii) An abundance of exact colliding parallel-polarized
plane-wave solutions can be constructed, which exempli-
fy some of the asymptotic singularity structures discussed
in general terms in this paper. In particular, an infinite-
parameter family of such solutions are found which
create Killing-Cauchy horizons instead of curvature
singularities. The analytic extension of one of these solu-
tions across its Killing-Cauchy horizon results in a maxi-
mal spacetime, in which a Schwarzschild black hole is
created out of the collision between two plane-symmetric
sandwich waves propagating in a cylindrical universe.

There are a few specific directions for further research
along the lines discussed in this paper that are worth list-
ing. These are the following.

(i) A similar study of the more general problem of col-
liding plane waves with arbitrarily oriented polarizations.
It will be interesting to find out whether the fundamental
aspects of our results (i) and (ii) above remain intact after
the new degree of freedom associated with a discrepancy
in the incoming polarizations enters the problem. (In fact,
recent work by the author shows that this is indeed the
case. )

(ii) A similar analysis of the problem of colliding plane
waves coupled with matter fields. Again the most in-
teresting targets for such an inquiry will be understand-
ing the validity of the results (i) and (ii) above under the
presence of a nonzero stress-energy tensor.

(iii) Finally, an analysis of the structure of singularities
produced by colliding almost-plane waves (see Refs. 3, 15,
and 31 in this connection). Although such an analysis
may well be beyond the capabilities of current analytical
techniques, the question of whether the relaxation of
strict plane symmetry in the initial data will cause the
asymptotic singularity structure to deviate significantly
from inhomogeneous Kasner (and, e.g. , to become inho-
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mogeneous mixmaster' or some more general structure)
is an extremely interesting one.

Note added in proof A. fter this paper had been accept-
ed for publication, the author learned that solutions simi-
lar to the solution derived from the Schwarzschild metric
and studied in Sec. IV here have been discovered and

studied from another viewpoint previously and indepen-
dently by Ferrari, Ibanez, and Bruni.
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