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Thermal expansion and critical temperature in a geometric representation of quark deconfinement
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The critical temperature of the quark deconfinement transition is calculated combining a geome-
trical model of thermal expansion with a phenomenological description of hadronization. The value
thus obtained is perfectly compatible with lattice QCD and bag-model estimates.

Considering a single hadronic bag in thermal equilibri-
um in the framework of the MIT bag model, it was re-
cently argued’ that at finite internal temperature the bag
radius acquires a thermal dependence: in particular the
radius diverges as T increases towards a limiting temper-
ature T,; at this critical temperature quark decon-
finement is assumed to occur.

The aim of this paper is to show that an increase of the
hadronic volume at finite temperature can also be de-
duced using completely different arguments, in the con-
text of a geometric representation of the confinement pro-
cess based on the anti—de Sitter geometry. One obtains in
this way a thermal behavior of the effective confining ra-
dius in qualitative agreement with Ref. 1. What is re-
markable is that, in this context, it is possible to compute
the value of the critical temperature and, even more re-
markable, this is very close to what is predicted within
lattice QCD.

It is known® that the confining aspects of strong-
interaction dynamics can be represented formally by
embedding the quark in an anti—de Sitter manifold, with
negative cosmological constant (A <0). By using in par-
ticular such geometry? in order to reproduce the effective
potential responsible for the exponential damping of the
quark wave function postulated in a phenomenological
hadronization model,* one obtains a relation between the
characteristic length of confinement, x, and the effective
cosmological constant,’ i.e., A= —3/x (2)‘ A possible vari-
ation of A describes therefore, in this model, a variation
of the effective radius of the corresponding hadronic bag.

At zero temperature, the experimental data on
charmed-meson decays give the estimate* x,~1 GeV ™!
so that (—3/A)2~1 GeV~!. At finite temperature the
geometry is modified because of direct thermal contribu-
tions, and is also indirectly modified because of the
thermal corrections to the matter sources. The contribu-
tion of the latter corrections to the field equations, how-
ever, is weighted by the Newton coupling constant, so
that it may become relevant only for temperatures
sufficiently near the Planck mass, for example, in a
cosmological context, unless one makes rather wild as-
sumptions on the effective coupling constant of gravity
on the level of hadronic matter.

Consequently, we shall consider only the direct
thermal contributions to the effective microscopic
geometry. As discussed in Ref. 6, they can be classically
evaluated by using the projective invariance of a metric
affine geometric structure, on the grounds of a general-
ized principle of equivalence. An average of the thermal
corrections over a scale of lengths and times larger than
the Planck one gives then, as the only correction to the
geometry, the contribution 1272T?2 to the cosmological
constant.®

By including this thermal contribution, the cosmologi-
cal constant of the anti-de Sitter vacuum representing
quark confinement is then modified as

AT)==3/x}+127°T?, (1)

where T denotes the
geometric background.

Supposing that the hadronic density is high enough to
keep in thermal contact matter and geometry,*’ we can
thus immediately predict, with this model, that the
deconfining temperature [corresponding to the diver-
gence of the effective radius, i.e., A(T)=0] is

T.=1/2mx,~160 MeV (2)

intrinsic temperature of the

in very good agreement with QCD lattice calculations
and estimates based on the bag model (see, for example,
Ref. 8), which suggest T, ~ 150-200 MeV.

According to Eq. (1), the geometric model moreover

predicts, for the effective confining radius xq(7)
=[—3/A(T)]"?, the thermal behavior
xo(T)=xo(1—-T?/T?)~1/% . 3)

This expression describes an expansion of the hadronic
bag in qualitative agreement with Ref. 1, since x,— « as
T —T,., but with a different power-law dependence on T.
Following Ref. 1, the critical baryon-number density p,
at which quark deconfinement occurs may behave, in a
suitable approximation, as 1/x3(T). As a consequence of
Eq. (3) the geometrical model gives then for p. the
thermal dependence (1—T?/T?)*/%, instead of
(1—T*/T*)** obtained in Ref. 1.

In conclusion it should be noted that a thermal varia-
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tion of x, may have testable phenomenological conse-
quences in the context of this geometric scheme, as may
induce an energy dependence in the effective quark po-
tential describing hadronization,* like the energy depen-
dence empirically introduced and discussed in Ref. 9.

From the experimental data relative to the hadronization
process at high energy one could obtain then indirect in-
dications on a possible variation of x, and on the type of
thermal behavior, to be compared with the one obtained
geometrically here, and the one suggested in Ref. 1.
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