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Dimension-3, -4, and -5 condensate contributions to the quark propagator are evaluated in the
presence of a nonzero current-quark mass (mL) explicitly breaking Lagrangian chiral symmetry
through the use of an operator-product expansion (OPE) of appropriate nonperturbative vacuum
expectation values in the fixed-point gauge. A gauge-parameter-independent shift away from the
purely perturbative propagator pole at mL is seen to occur, provided the corrected pole is identified
self-consistently with the OPE mass parameter, a mass which differs from mL by incorporating con-
tributions from nonperturbative condensates. The results obtained are argued to be valid to all or-
ders in the OPE, and are shown to encompass the entire O(g,') contribution of nonperturbative con-
densates to the quark propagator. Phenomenological consequences at (and near) the mL ——0 chiral
limit are also discussed.

I. INTRODUCTION

One of the outstanding problems within standard-
model physics is the mass spectrum of fundamental fer-
mions. Within the context of standard electroweak phys-
ics, ' quarks and leptons are assumed to acquire mass en-
tirely through their Yukawa couplings to the electroweak
vacuum expectation value (VEV) (P), a dimension-1 or-
der parameter characterizing spontaneous breakdown of
SU(2) XU(1) gauge symmetry. Within any given fermion
family, the fact that quarks are heavier than leptons
would seem to imply that Yukawa coupling strengths of
color-nonsinglet fermions are larger than those of color-
singlet fermions. This "QCD awareness" on the part of
electroweak Yukawa couplings must be regarded as un-
natural. If the electroweak interactions are responsible
for lepton masses, it is more reasonable to suppose that
the heavier masses of quarks are a dynamical manifesta-
tion of the additional QCD forces which quarks experi-
ence.

Indeed, there is strong phenomenological support for
the existence of both Yukawa (or current) and dynamical
components to the u- and d-quark masses. The current
mass denotes the small effective u- and d-quark masses
appropriate for current-algebra applications and deep-
inelastic phenomenology. These small masses are them-
selves one (or more ' ) orders of magnitude larger than
the electron mass, a discrepancy that, within grand-
unification contexts, perhaps may be a consequence of ad-
ditional SU(3)„l„contributions to the perturbatively gen-
erated renorrnalization-group equations for running
quark masses. We know, however, that u- and d-
quark masses on a much larger scale (-300 MeV) have
been quite successful in explaining hadron spectroscopy
and nucleon magnetic moments. ' Such large quark
masses cannot themselves devolve from the

renormalization-group behavior of the small masses gen-
erated through the VEV (P); since (P) has dimensions
of mass, masses generated through ( P ) can depend at
most logarithmically on external momentum scales. ' In
order to develop the large constituent-quark masses ap-
propriate for bound-state physics, the strong interactions
must somehow generate additional chiral-symmetry-
breaking order parameters of higher dimension than (tI) )
(Ref. 11), yielding "dynamical" quark masses even in the
explicit chiral-symmetry limit of vanishing Yukawa cou-
plings. ' '

In particular, the strong interactions are expected to be
sufficiently strong to condense local, Lorentz-scalar,
SU(3)-color-invariant but chiral-symmetry-violating
products of fields. The lowest-dimension operator of this
type is the quark condensate ( qq ), an operator of mass
dimension 3. From dimensional considerations alone,
tree-level (qq ) insertions on massless quark lines (analo-
gous to tree-level Yukawa-coupling-dependent ( P ) inser-
tions from spontaneous symmetry breaking) necessarily
correspond to effective masses that have inverse-square
dependence on off-shell fermion momenta: M,~(p )

—
~
(qq)/p ~. Moreover, renormalization-group effects

can at most modify this inverse-square behavior logarith-
mically. 12-14 Dynamical mass contributions are there-
fore expected to be significant at low

~ p ~, where
constituent-quark masses dominate low-energy hadron
physics, and unimportant at high

~ p ~, the regime of
current-quark-mass phenomenology.

'l3

From the perspective of perturbative quantum field
theory, a propagator pole is an "observable. " Indeed, the
pole positions of propagators do not depend on the
choice of gauge; for example, the gauge independence of
quark propagator poles in purely perturbative QCD has
been verified to two-loop order. ' In a truly perturbative
theory (such as QED), fermion propagator poles are
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identified with observed fermion masses (e.g., electron
mass). For QCD, such identification becomes obscured
at sufficiently large distances by quark confinement,
which must be understood to arise wholly from nonper-
turbative erat'ects. Nevertheless, one would like to contin-
ue identifying "constituent"-quark masses (as in observ-
able static hadron properties) with any propagator poles
that may occur in the absence of explicit nonperturbative
confinement-generating mechanisms.

It is of interest for such a program that confinement (as
evidenced by the qq potential's string tension) and
dynamical mass generation are widely held to be manifes-
tations of distinct nonperturbative order parameters, the
former devolving' from the chirally invariant gluon con-
densate of mass dimension 4, and the latter arising' from
the chiral-symmetry-breaking quark condensate of mass
dimension 3. Thus, there is reason to hope for a decou-
pling between confinement mechanisms and the mecha-
nism dynamically generating the scale of the constituent-
quark mass.

One approach to incorporating nonperturbative phys-
ics, pioneered in the development of QCD sum rules, " is
to allow nonperturbative order parameters to enter the
Feynman-Dyson perturbation series. Such condensates
characterize operator-product expansions of VEV's of
normal-ordered products of uncontracted fields arising
residually from the Wick expansion, ' VEV's which are
taken to be zero in purely perturbative contexts. The
short-distance character of the operator-product expan-
sion, corresponding to the perturbative domain of QCD
with a, ( 1, suggests the appropriateness of such an ap-
proach for studying nonperturbative contributions at
subconfining distance scales.

The approach described above has already been shown
to continue to support the same gauge-independent quark
propagator poles that characterize purely perturbative
QCD (Refs. 18 and 19). Indeed, earlier work has demon-
strated how the dynamical contribution to the quark
self-energy arising from the dimension-3 quark-
condensate still yields a gauge-parameter-independent
quark propagator pole, provided the quark mass appear-
ing in subleading operator-product expansion (OPE)
terms is self-consistently identified with that pole. ' Sub-
sequent work has pointed toward the gauge independence
of further contributions to the quark propagator pole
from the dimension-5 chiral-symmetry-breaking mixed
quark-gluon condensate. These results suggest a
correspondence between the constituent-quark masses of
static hadron properties and the quark propagator poles
obtained from the above-described "OPE-augmented"
QCD, a correspondence which is the central focus of this
paper.

In this paper we examine in detail the gauge depen-
dence of tree-level contributions to the quark self-energy
arising from nonperturbative vacuum expectation values
sensitive to the dimension-3, -4, and -5 order parameters
of nonperturbative QCD. We find gauge independence to
be a signature of the quark propagator pole, provided the
pole is required to coincide with the quark mass charac-
terizing the OPE of the particular nonperturbative VEV
under consideration. This self-consistency property en-

ables the construction of a relationship between the
current-quark mass and the quark mass one obtains after
contributions from nonperturbative condensates have
been included.

In Sec. II we consider 0(g, ) contributions to the
quark propagator arising from the chiral-symmetry-
violating dimension-3 quark condensate ( (qq ) ). Prior to
such corrections, the quark propagator is assumed to
have a nonzero spontaneous-symmetry-breaking com-
ponent corresponding to the current- (or electroweak-
Lagrangian-) quark mass. We find the new propagator
pole remains gauge-parameter independent, provided the
pole coincides with the nonperturbative mass characteriz-
ing the OPE of the nonperturbative VEV contributing to
the Wick expansion of the fermion two-point amplitude
(through a pair of uncontracted normal-ordered quark
fields). This self-consistency condition is then utilized to
obtain a gauge-independent relation between the
current-quark mass and the quark mass one obtains after
nonperturbative (qq ) corrections are included.

In Sec. III we consider further contributions to the
quark propagator arising from the chiral-symmetric
dimension-4 gluon condensate ( ( GG ) ). We first demon-
strate that any contributions to the quark propagator
from condensates of dimension &4 are necessarily ac-
companied by additional factors of the QCD coupling
constant g, . Consequently, only (qq) and (GG) con-
tribute to 0 (g, ) nonperturbative corrections to the quark
propagator. We then calculate the full 0(g2) contribu-
tion to the propagator pole. The expression we obtain,
utilizing OPE's of nonperturbative VEV's obtained in the
Appendix, is shown to be valid to all orders in the OPE
mass parameter m (Ref. 18). In the chiral limit of vanish-
ing current- (or Lagrangian) quark mass, the ( GG ) con-
tribution to the quark propagator is seen to vanish, '

perhaps indicative of a decoupling of nonperturbative or-
der parameters phenomenologically characterizing
chiral-symmetry breakdown ( ( qq ) ) and confinement
((GG) ).

In Sec. IV we discuss the 0(g, ) contributions to the
quark propagator generated through the chirally nonin-
variant quark-gluon mixed condensate ((qG oq ) ). The
contributions are evaluated using expressions obtained in
the Appendix for (qG crq) projections of nonperturba-
tive VEV's valid to 0 (m ) in the OPE mass parameter
m. The contribution of such VEV's to amplitudes corre-
sponding to "Abelian graphs" —graphs insensitive to
non-Abelian (multiple) gluon couplings —appears to
truncate after 0(m ) contributions are considered. The
0(m ) contributions arising from the only contributing
"non-Abelian graph" (involving a triple-gluon coupling)
appear to generate a geometric series in mgfip . If the
Abelian-graph contributions from the (qG crq) projec-
tion of the OPE indeed truncate after 0(m ), and if all
0 (m ";n )4) non-Abelian-graph contributions corre-
spond to higher-order terms in the geometric series al-
ready obtained explicitly to 0(m ), then an 0(g, ) ex-
pression for the mixed-condensate contribution to the
quark propagator can be obtained that is valid to all or-
ders of the OPE mass parameter m. Upon analysis, this
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expression leaves the quark propagator pole unshifted
from the value obtained from O(g, ) nonperturbative
corrections. This failure of (qG. o q ) to contribute to the
propagator pole is independent of the choice of gauge or
the magnitude of the current-quark mass.

In Sec. V we discuss the phenomenological implica-
tions of our results as the limit of explicit Lagrangian
chiral symmetry is approached, a limit appropriate for
the discussion of u- and d-quark masses. In particular,
we discuss the magnitude and gauge independence of
dynamical contributions to u- and d-quark masses, and
we predict an enhancement of the current u-d mass
difference relative to the constituent u-d mass difference.
We also obtain a chiral-limiting relationship between the
quark condensate and the dynamical quark mass through
an "inverse approach, " involving identification of the
condensate with a nonperturbative quark loop. This ap-
proach, which has already been discussed elsewhere, ' is
reconsidered here for arbitrary color number N, in order
to avoid spurious equality at N, =3 between the anoma-
lous mass-dimension exponent d=—g, y (g, )/2P(g, . ) and
the asymptotic-freedom parameter d'=—[a, (p )/
n]ln(p /A ). The result we obtain is shown to be con-
sistent with the (qq ) contribution to the quark conden-
sate obtained for arbitrary N, (Ref. 21), providing a use-

ful crosscheck of our results.
Section VI discusses and summarizes the field-

theoretical results of our paper. A speculation on the
link between unbroken non-Abelian symmetry and
confinement, within the context of OPE-augmented
QCD, is also presented.

The Appendix to our paper provides a detailed exposi-
tion as to how OPE coefficients proportional to a given
condensate are extracted from residual normal-ordered

X
0 C-

l J z 0

FIG. 1. Lowest-order graph generating dimension-3 quark-
condensate contributions to the fermion propagator. A
dimension-5 mixed-condensate contribution also arises through
this graph, as discussed in Sec. IV.

II. THE QUARK CONDENSATE COMPONENT
OF THE QUARK MASS

We begin by considering the second-order contribution
to the fermion propagator SF(p) arising from a nonper-
turbative (NP) vacuum expectation value of normal-
ordered quark fields (Fig. 1). In the Appendix we show
that the quark-condensate component of this VEV is
given by

terms within the Wick expansion (i.e., the nonperturba-
tive VEV's of Figs. 1 —3). In particular, a closed-form ex-
pression [Eq. (A30)] for the quark-condensate component
of the VEV (:4,(x)qi~(y):) is obtained to all orders of
the operator-product expansion. The gluon-condensate
projection of the nonlocal two-gluon VEV is shown to in-
volve a single OPE term, which is explicitly obtained. Fi-
nally, the mixed (dimension-5) condensate components of
(:0';(x)'PJ(y):) and (:0', (x)8„(y)%~~(z):) are also ex-
tracted to 0 (m ) in the OPE.

—(0 ~:4„'(y)'V~(z):
~
0)~p= 5 P(qq ) g C ( im)J[y (y——z)]'„„

j=0

+ (contributions from higher-dimensional condensates)

=5 ~(qq) t 5„„/12—im[y (y —z)]„„/48—m (y —z) 5„„/96+ I+O(g, (qG oq) ),
(2.1)

where fermion field subscripts are Dirac-spinorial indices, fermion field superscripts are color indices, and where, from
Eq. (A29) of the Appendix, the coefftcients C, are given by

c, =~ [3(J /2 ).(J /2+ 1 )!4'Ji2+ "]—',
[6(j/2 ' )!(1/2+ 3 )[4~i+ ~ ~&2]—1 (2.2)

Pql(x) = —im 4(x) (2.3)

in the covariantized Taylor-series expansion of the non-
perturbative vacuum expectation value on the left-hand

As discussed in the Appendix, the fermion mass pa-
rameter m appearing in the operator-product expansion
(2.1) arises from incorporating the (QCD) equation of
motion

side of (2.1). Since m characterizes the expansion of this
nonperturbative quantity, we necessarily distinguish be-
tween m and the purely perturbative (current-) quark
mass mL characterizing the renormalized electroweak
Lagrangian. Thus for any particular choice of quark
Aavor, the current-quark mass mL is generated entirely
through the dimension-1 order parameter (P ) of spon-
taneous symmetry breaking, whereas the quark mass m
characterizing the OPE (2.1) also includes the effects of
higher-dimensional order parameters, the condensates of
nonperturbative QCD.

Of particular interest for up- and down-quark physics
is the dynamical quark mass —the value of m in the limit
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of vanishing mL —corresponding to a dynamical break-

down of explicit chiral symmetry. We are also interested
in studying migration of the quark propagator pole away
from its perturbative position mi once nonperturbative
condensate contributions are incorporated into the quark
propagator. Although we expect mL to continue to cor-
respond to the apparent location of the quark propagator

I

pole in the large-p limit (corresponding to our intuitive
understanding of current-quark masses), we also expect
the operator-product mass m to correspond to the quark
propagator pole upon inclusion of contributions from
condensates of nonperturbative origin.

The 0 (g, ) correction to the fermion propagator gen-
erated by Fig. 1 is given by'

2

I[SF '(p)]'ki = — ' fd'x e""f d'y fd" [ &o
I
T+'k(x)~;(y) l0&„,t r;".I,'.&0 I:~:(y)~',(z):1o&NP

X y„" I z (0
~
T%,"(z)+ I (0)

~

0) „,(0 ~
TB„(y)B'„(z}

~
0),„,] . (2.4)

In generating (2.4} the normal-ordered piece arises from the Wick expansion for the time-ordered product of several
fields: for example,

Ty(x)y(y) =y(x)y(y)+:y(x)0(y): = &0
I
Ty(x)y(y)

l 0&„„,+:y(x)y(y}: . (2.5}

The vacuum expectation value of the normal-ordered fields no longer vanishes in QCD [cf. Eq. (2.1)] (Ref. 17) as in
"condensate-free" perturbation theory, as is evidenced by the role of condensates in sum-rule physics. "' The "pertur-
bative" time-ordered products represent the usual fermion and gluon propagators generated explicitly from inversion of
the Lagrangian's bilinear terms:

„,+m
(o ~; );( )

~

o)„„,= "f
(2n ) ip

—mL
(2.6)

d4I
(0

~

TB (y)B;,( )
~

0)„„,= 5"f (2m. )

—g„„(1—a)k„k,
k2 (k2)2

(2.7)

Note the presence of an arbitrary gauge parameter a in (2.7); believable results for any condensate-corrected quark mass
m must be independent of this quantity.

We will use (2.4) to relate mL and m by incorporating the "m-sensitive" expression (2.1) for the nonperturbative vac-
uum expectation value in (2.4). We first note, however, that two configuration-space integrals can be easily evaluated by
writing the factor e' " in (2.4) as e' '" 'e'p' "e'p' and by changing integration variables from (d x d y d z) to
[d (x —y)d (y —z)d z]. The integrals over (x-y) and over z yield momentum-space 5 functions centered at the external
momentum p; integrals over these 5 functions then yield fermion propagators of momentum p:

+mL
) [S(2)( )]Po

2 2
P —ml.

y",„f d (y z)f d—k (0 ~:4 (y)4 „(z):
~
0)NP e'P

—g„„(1—a)k„k,,

k (k)
II +mL

~ J 2 2
mL . i

(2.8)

The full propagator SF(p) is related to its self-energy via the defining relationship

SF(p)=[p' —mr —X(p)] '=(I( —mi ) '+(p' —mi ) 'X(p)(INt —mL)

=(p' —mL ) '+SF"(p)+

We see from (2.8) that the self-energy does not depend on the Lagrangian mass mi .

&':(p}—:(P' —mL }k [SF '(p}]kl (P™L)I.

(2.9)

(2.10a}

2 4

I "A.}~„ f d (y z)f,—, (0 ~:e„(y)eI'(z):
~
0&» e "p-""&-"[—g „k'+(1 a)k k.]y'„'„. —

4(2m ) (k )

(2.10b)

Equation (2.10b) may now be evaluated using the expansion (2.1) for the nonperturbative vacuum expectation value.
We use the identity

fd (y —z)f d k [y.(y —z)]'e'P "" 'f (k)

iy fd—(y . z)fd k e—' "" 'f(k)=(2m. ) iy f(p—) (2.11)
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in order to obtain

&,„(p)=—4g,2 oo
Q g

J

I (qq )
I
y" g C ( im—)/ i—y "+

3 . o
J (jp p

&

(1—a)p„p,
(p

2 )2
r

[(3+a)—amP/p ] .
9p 2

(2.12)

m~+g, (3+a)
I

(qq )
I

/9p

1+g,'am
I (qq )

I
/9p'

In obtaining (2.12) we note that all j) 2 terms explicitly vanish when contracted into the bracketing factors of y" and

y so as to truncate the infinite summation within the operator-product expansion of the nonperturbative vacuum ex-
pectation value. This truncation is essential to the development of sensible physics on the)tK =m mass shell. In princi-
ple, the ratio of successive terms for successive values of j is scaled by the operator-product-expansion parameter
mP/p, which is unity on they/ =m mass shell. Convergence is not assured unless the series truncates.

The salient feature of the last line of (2.12) is its gauge-parameter independence when g/ equals the OPE quark mass m

of Eq. (2.3) (Ref. 14). This gauge independence is a signal of self-consistent physics, as we shall demonstrate shortly.
We first utilize (2.9) to write the (qq )-corrected inverse quark propagator as

g,'am
I (qq& I

SF '(p)=gf —mt —
2 [(3+a) am—p/p ] = 1+

9p
2 4

(2.13)

The apparent pole of the quark propagator mass in (2. 13)
continues to be at the current-quark mass in the large-p
limit:

such that

i2:—lim M,z(p ),
p —+p2 2

(2.17)

mL +g. (3+a)
I &qq &

I
/9p

lim =mL .
1+g, am

I (qq) I
/9p~

(2.14)
we obtain an algebraic constraint of the form

O=G(p, m, mL, a) . (2.18)

mL+g, (3+a)
I (qq) I /9p

M.tt(p ') =
1+g, am

I
( qq )

I
/9p"

(2.15a)

This gauge-independent result is hardly surprising; the
contributions of the dimension-1 order parameter ( P )
necessarily dominate those of the dimension-3 order pa-
rameter (qq) at largep .

However, to retain consistency with the equation of
motion (2.3), we now require the pole of the (qq)-
corrected propagator to be at the OPE mass m, as dis-
cussed earlier. Consequently, we see from (2.13) that the
effective mass

G is seen from (2.15a) to be given by

G(p, m, mL, a):—(mL —p)

g,'1&qq &
I+ [3+a (1 —m /p)] . (2.19)

9p

The constraint (2.18) serves formally to define p implicit-
ly as a function of the independent variables m, mI, and
a. However, if the pole p is to be phenomenologically
meaningful, it must be independent of the gauge parame-
ter a. Upon differentiating both sides of (2.18) with
respect to a, we find that

must satisfy the constraint M, tr(m )=m, in which case
(2.15a) yields the algebraic relation

aG al aG+
Bp Ba Ba

(2.20)

m (1+g, a
I
(qq) I

/9m )

=mL+g, (3+a)
I (qq) I

/9m . (2.15b)

The factor of g, a
I (qq )

I
/9m cancels algebraically

from both sides of (2.15b), leading to a gauge-parameter
independent relationship between quark masses before
(mL ) and after (m) the inclusion of (qq ) effects:

m =mL+g, 'I &qq) I
/3m'. (2.16)

It is worth noting that (2.16) could also have been de-
rived without explicitly constraining m, the operator-
product-expansion-parameter mass, to be the pole of the
(qq )-corrected quark propagator. If we denote the pole
position of the quark propagator by a new parameter p,

lim (m):—md„„,
mL ~0 (2.21)

we then find that m is related to the current mass mL via

We see from (2.20) that gauge-parameter independence of
the quark propagator pole p (Bp/Ra =0) is impossible
unless BG/da vanishes. Such is the case provided p=m
(2.19), thereby demonstrating the intimate connection be-
tween gauge independence and the requirement that the
mass in (2.3) correspond self-consistently to the propaga-
tor pole p. Indeed, we see froin (2.19) that the solution to
the simultaneous equations G =0, BG/Ba =0, is given by
equating p to both sides of (2.16).

If we use the chiral limit of (2.16) to define a dynamical
quark mass,
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the constraint

m =mL+md „/m3 2 (2.22)

Moreover, the product g, I (qq )
I

/3 occurring in (2.16)
corresponds to m d„„(Ref. 14). Some phenomenological
consequences of these relations are discussed in Sec. V.

III. THE FULL 0(g, ) NONPERTURBATIVE
COMPONENT OF THE QUARK MASS

FIG. 2. Lowest-order graph generating dimension-4 gluon
condensate contributions to the fermion propagator.

In order to determine to 0 (g, } the full contribution of
nonperturbative condensates to the quark propagator, we

must now consider the second-order contribution arising
from a nonperturbative vacuum expectation value (VEV)
of two normal-ordered gluon fields (Fig. 2). In the Ap-
pendix [Eq. (A35)] we show that the component of this
VEV proportional to the dimension-4 gluon condensate is

given by

eration of a higher-dimensional condensate; e.g. ,
(:%,(x)+,(y):) contains

x„y„(:4(0)D "D'4( 0}:) g, x„y„(:V(0)G"(0W(0):)

-g, x„y„cr","(qG. crq ) .

(0 I:B„"(y)B '„(z):
I
0 ) Np

= 5 '(g,„g„„—g„g„„)y'z"(GG )/394

+ terms proportional to

higher-dimensional condensates,

(3.1a)

For the case of (3.1a), it is argued in the discussion fol-
lowing (A35) in the Appendix that evaluation of all non-
leading terms in (3.1a) necessarily entails use of either
(3.2a) or the field equation

[D"(x),G„,(x)] & g, iA'——
& g—4. '(x)A,; y„% (x)

flavor

where
=g,j„(x) (3.2b)

( GG ):—(0
I

GI'"(0)G„' (0)
I
0) . (3.1b)

[DP(0),D '(0) ] 0

= —g, G~p(0) I =g, [( —i A, ')i/2)G,""(0)]], (3.2a)

which replaces the product of two D's within the VEV
with a field strength [G„,(0)] accompanied by an addi-

tional factor of g, . This latter relation leads to the gen-

The terms proportional to higher-dimensional conden-
sates in both (2.1) and (3.la) necessarily involve at least
one additional power of the coupling constant g, . For
the case of (2.1), this property is demonstrated explicitly
in the Appendix for the dimension-5 mixed-condensate
component of the two-fermion VEV (A37). All the co-
variant derivatives (D) appearing in (A37) are eliminated,
either through systematic use of (2.3), which eliminates a
single D without injecting into the VEV any additional
"higher-dimensional-condensate generating" fie1ds, or
through use of the relation

for x =0. Consequently, an additional factor of g, neces-
sarily accompanies the collapse of two D's in (A31) into
an additional field strength (3.2a), or alternatively, the
reduction via (3.2b) of one factor of D and a field strength
into a fermion current j„(0) [or, through combination of
(3.2a) and (3.2b), the replacing of three D's with a fermion
current]. Thus D's can be eliminated from VEV's of
Taylor-series coe5cients only at the price of either gen-
erating additional fields within the VEV [through (3.2a)
and (3.2b)] or additional powers of m [through (2.3)].
Generation of additional fields, a prerequisite to obtain-
ing higher-dimensional condensates, necessarily entails
additional factors of the QCD coupling g, .

We see, therefore, that the 0(g, } contribution to the
quark propagator from Fig. 2 arises entirely from the
gluon-condensate projection of (3.1a), just as the 0(g, )

contribution from Fig. 1 arises entirely from the quark
condensate projection of (2.1). The 0 (g, ) contribution to
the quark propagator from Fig. 2 is then obtained in pre-
cisely the same way the 0(g, ) contribution (2.4) was ob-
tained, from Fig. 1 (Ref. 19),

i [SF '(p)]k, =
2

4 f d4x e' "fd y f d''z[ (0
I
T+~k(x)+;(y)

I »„, )'";.~,'.(0
I
T+:(y)+',(z)

I »,-
X y'j&@,„(0

I
T+J (z)+ / (0)

I
0)p,„,(0 I:Bp(y)B;, (z):

I
0)Np], (3.3)

where we now consider only the (GG) projection of the nonperturbative VEV in (3.3). Using (2.6) and (3.1), we can
evaluate (3.3) from precisely the same procedures as are delineated immediately after (2.7). We then obtain



1590 U. ELIAS, T. G. STEELE, AND M. D. SCADRON 38

2pltT

[~F '(P)]kl (g g v g g
288(2m. )

'

X fd'(x —y) f d'(y —z) fd'«"" "e"" "e"'[(y—z}'+z']z"

4r+mi f+mL g+mLd4ke-"' ' d'ie "" " d'qe-'~' y" y'
t 2 2 2 2 2 2

mL t mL q mL kl

gf+mL
2 2

mL

(GG ) p+mL

p —mL

g, ( GG )5~ mLp(g/ —mL )

12(p —mL )

P+m—l
~p, p —mL

2 2

gf+ mL
+

P —mL
2 2

p'+ mL
2 2

gn p —mL nI

p+mrr'
Bp 7i p —mL

P+mL
ap, apn p2 mL2—

(3.4)

Note that this contribution vanishes, as expected from chiral invariance of (GG ), if mL ——0 (Ref. 23). This contribu-
tion is also trivially gauge independent: there are no gauge-parameter-dependent gluon propagators in the Fig. 2 self-
energy. Using (2.10a), we see that the (GG) contribution to the self-energy X(p) is just the middle term in large
parentheses on the final line of (3.4):

g, (GG )mz (p —mLP)
~&(»(Ga) =

12(p mL )— (3.5)

The total O(g, ) nonperturbative-condensate contribution to the quark propagator is obtained by combining the self-
energies (2.12) and (3.5), so as to obtain the inverse propagator

SF '(p) =gf —mL —X(p}

=(1+g, [am
I (qq )

I
/9p +mr ( GG ) /[12(p ml ) ] I }[/——M,s(p )],

where

36p'(p' m)'Lm—+Lg'[4 I &qq &
I

p'(p' —mL, }'(3+a)+3&GG &mLp']
M,s(p') =

36p (p —m L ) +g, [4
I
( qq )

I (p m I ) am—+3( GG )m I p ]

As in the previous section, the pole-mass p is defined implicitly by the relationship

p= lim Ms(p ) .
P

2 2

After a little algebra, this constraint may be expressed in the form

0= Q(p, mL, m, a),
where

g(p, mL, m, a) =36@ (p,
' —ml )'(mi —p, )+g,'[ l2

I (qq )
I
(p' —mI )'p'+ 3( GG )mLp (}M—mL )

+4a
I &qq& I(I' mL)'v(1 —m)]. —

(3.6a)

(3.6b)

(3.7)

(3.8a)

(3.8b)

The solutions to (3.8), obtained by choosing p=mL or p=0, are trivial in that they are completely insensitive to the
condensates ( GG ) and (qq ). These solutions correspond to singularities of the self-energies (3.5) and (2.12). A non-
trivial solution, however, may be obtained as in the previous section by equating p with m to ensure gauge indepen-
dence (BQ/Ba =0 implies Bp/Ba =0), and by then having 0 vanish nontrivially by choosing

g,'& GG & m '
g,
'

I
& qq )

I

mL 1+- ' +
12(m —mL ) 3m

g, (GG)mL

12(m —mL )

g, (GG )m (m —mL )
+O(g, )=mr 1+

12(m —mz )
+, +O(g,') .

3%i

(3.9)
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The quark condensate's contribution to the propagator
pole clearly dominates that of the gluon condensate for
the phenomenologically motivated m L && m region.
Moreover, the gluon-condensate correction to the quark
mass is of order g, ml (GG ) /m, which falls far more
rapidly with m than the dynamical term
(-g,

~
(qq )

~

/m ) generated by the quark condensate in

(2.22).

(a)

IV. THE MIXED CONDENSATE COMPONENT
OF THE QUARK MASS

In this section we examine whether the chiral-
symmetry-breaking dimension-5 "mixed condensate" or-
der parameter

(qG o q ) = (0 ~:4 „(0) —G„'„(0)A,'~„„" %„(0):
~

0)
2

(4.1)

shifts the position of the quark propagator pole (p) from
that already obtained in (3.9) through insertions of
lower-dimensional order parameters. To determine
whether such a further shift in the pole position occurs,
we consider the lowest-order contribution to the quark
propagator arising from ( qG o q ) insertions.
Tree graphs leading to such insertions through the
nonperturbative vacuum expectation value
(0 ~:4 „(z)4~(y)B„(w):

~
0) (B is a gluon field) are given

in Figs. 3(a), 3(b), and 3(c). In addition, (qo"Gq )
coefficients also arise from the expansion of the
(0

~
%„(y)4~(z):

~

0) nonperturbative vacuum expecta-
tion value of Fig. 1. We will first examine this latter set
of coefficients.

The mixed condensate projection of the nonperturba-
tive VEV in Fig. 1 is calculated in the Appendix [Eq.
(A69)]. Recall from Sec. II that contributions to Fig. 1

from terms in (:%(y)%(z):) proportional to [y (y —z)]~
vanish for j)2. A similar argument shows that contribu-
tions to Fig. 1 from terms proportional to o,p' z[y

(y —z)]~ also vanish for j&2. Consequently, we see
from the general form (A70) given in the Appendix that
the only nonvanishing (qG crq ) contribution to the Fig.
1 amplitude (2.4) is obtained through use of the o"'y„z,,
portion of the lead term in (A69). The resulting expres-

FIG. 3. Other graphs generating 0(g,') dimension-5 mixed
condensate contributions to the fermion propagator.

—g, (qG crq )(P+mL )P(1 —a)
lSI"(p) =

36p (p —mi )2
(4.2)

We now consider the Fig. 3 contributions obtained
from expanding the nonperturbative VEV of two quark
fields and a gluon field. The mixed condensate projection
of this VEV is calculated to O(m ) in Eq. (A88) of the
Appendix. The contribution of Fig. 3(a) to the fermion
propagator is obtained through utilization of (A88), (2.6),
and (2.7) and (2.11):

sion may be obtained as in Sec. II by changing variables
of configuration-space integration to [d (x —y)d (y—z)d z]. Replacement of e' " with e' '" 'e' ' "e' '
and y, with [(y —z),+z, ] facilitates a factorization of
(x —y), (y —z), and z integrals, which are then evaluated
using (2.11). We then find the mixed condensate projec-
tion of the Fig. 1 ampltiude to be given by

; [&IzI(p)]aP ' d4(x y)e' '~ ——&~ J d4(y z)e'—3a lj 4

&(Id (z —w)e' " "'Jd w e'~ " (0~ T+, ( ')%x', (y)
~ 0)„„,yf A,;,, (0 ~

TB'(y)B"(z)
~
0),„,y„', As,

X (0
~

T41;(z)qi'„'(w)
~

0) „,y"„,A, ;„@(0
~

Tp„(w)qi, (0)
~ 0)p,„,

—(0 ~:4„(y)4„{z)B'(w):
~
0)NpPert 2

g, fi (qG oq){P+mL ),I
I [ —pp (1—a)]+m [2I((gf+mL )]+m [P(1—a)]+m [0]+

288p (p —mL )
(4.3)

As indicated in (4.3), the coefficient of m in (A88) does not contribute to the Fig. 3(a) amplitude. This result is sugges-
tive of a truncation of operator-product contributions beyond O(m ) analogous to the O(m) truncation already ob-
tained within the Fig. 1 amplitude, as is discussed in Sec. II and Refs. 18. The coefficient of m in (A88) also f»» «
contribute to the amplitude of Fig. 3(b), which yields the following correction to the quark two-point function:
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g, (qG oq)(go+mr )iS3b'(p)=, I[—P(2p +mL)(1 —a)]+m [4mLIi]+m [3P(1—a)]+m [0]+
288p (p —mL )'

However, the m term does not vanish when substituted in the "non-Abelian" two-point amplitude of Fig. 3(c):

g,'(qG. oq )(P+mL )
iS3,'(p)= ( —54 —18a)pp +( —45 —9a)mLp

288p (p —mL)

(4.4)

+(m —mr )

—18a(p +mLp gf)

(p —mL )
+m[(45+9a)(p +mLPp )]

+m [ —(45+9a)(Pp +mLp ))+m'[(45+9a)(p +mLit()]+ (4.5)

We now employ (2.9) to relate (4.2) —(4.5) to the quark self-energy, so as to obtain the following 0 (g, ) mixed-condensate
projections for Figs. 1, 3(a), 3(b), and 3(c):

ig,'(qG oq)
b, X,(p) = (P —ml )S, '(p)(gf —mL ) =

288p

(1—a)8(p —mLP )

p —mL
2 2

(4.6)

ig3(q—G oq)
b, X3, (p) =

288p

—(1—a)p'(p' —mLP )

(p
2 m 2 )2 p —mL

2 2

ig,3(—qG oq)
b, X3b(p) =

288p

(1—a)(p —mLg/)
+m i t [+O(m )](22)2

—(1 —a)(2p +mL)(p mLP) — 4mL(p mLP)—
(p —mL ) (p2 m2)2

3(1—a)(p —mLP )
+m [+O(m )]

(p —mL )

(4.7)

(4.8)

ig, (qG oq) p —mLP 18'(m —mL )
b, X3, (p) = ' —9(1+a)

288p p —mL p —mL

—9(5+a)[1—mgf/p +m /p —m P/p +O(m )] (4.9)

Additional contributions involving zero-momentum
propagators have been ignored, as discussed in Ref. 20.
Note that the results of (4.6), (4.7), (4.8), and (4.9) coin-
cide with those of Ref. 20 provided we keep terms only
linear in m and mL [i.e., (p' —mI )

' (P+mL)/p ], and
provided no distinction is made between the propagator
mass mL and the mass m characterizing the operator-
product expansion of nonperturbative VEV's.

To proceed further, we shall assume that the series in
the final line of (4.9) continues to alternate in powers of
mP /p, corresponding to a series representation of
P /(gf +m ). We shall also assume that b X3,(p) and

AX3b(p) truncate after the O(m ) terms listed in (4.7)
and (4.8). This assumption is motivated by the explicit
vanishing of the O(m ) contribution to the nonperturba-
tive VEV (A88) upon insertion of that contribution into
the amplitudes of Figs. 3(a) and 3(b), as noted in (4.4) and
(4.5). An analogous truncation of higher-order contribu-
tions in m for the Fig. 1 amplitude leads to closed-form
expressions [(4.6) and (2.12)] for the appropriate projec-

tions of the Fig. 1 self-energy. As remarked earlier, gen-
eral proof' of such truncation was possible for Fig. 1's
two-fermion VEV through use of the all-orders expres-
sions (2.1) and (A70). Unfortunately, no analogous all-
orders expression has so far been derived for Fig. 3's
higher-dimensional VEV. Consequently, truncation
beyond O(m ) of bX„and b, X» must be regarded only
as plausible, as evidenced by the vanishing of O(m ) con-
tributions.

With the assumptions delineated above for (4.7), (4.8),
and (4.9), we obtain the following expression for the
mixed-condensate contribution to the quark self-energy:

—ig, (qG.oq)E(p ) F(p )bX o = I(+
288p (p' —m')(p' —m')' E(p')

(4.10)

where
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E (p ):—p [(47m +20m L ) +a ( 16m t —9m ) ]+p [ ( —16m 2
—96m L m —24m L m —2m )

+a ( —20mL —12mLm +18m )]

+[(45m~m +16mLm +6mLm +4m~m )+a(9m~m +20mt m —18mLm —4mt m )],
F(p )—= p ( —65 —7a)+p [(106mL+4mLm +24m )+a(20m& —6m )]

+p [( 45—mL —16mt m 4m—Lm 4m—)+a( —9mL —2mLm +4m )] .

(4.11a)

(4.11b)

At the end of the previous section, the propagator pole
was found to occur at p=m, where [to 0 (g, )] m is relat-
ed to dimension-3 and -4 condensates by (3.9). Equation
(4.10) is higher order in g, than the corresponding self-
energies [(2.12) and (3.5)] used to derive (3.9). Conse-
quently, Eq. (4.10) generates an 0(g, ) correction to (3.9)
unless

lim = —m,F(p )

p'-m' E(p')
(4.12)

E(m )=9(5+a)m(m —mL )

F(m )= —9(5+a)m (m —mL)

(4.13a)

(4. 13b)

We therefore conclude that the mass relation (3.9)
remains upheld after 0(g, ) mixed-condensate correc-
tions to the fermion propagator are included. This result,
however, is contingent on the validity of (4.12) to all or-
ders in m, which rests in turn on the truncation and
geometric-series assumptions delineated in the paragraph
preceding (4.10}.

V. THE CHIRAL LIMIT

We have seen so far that the dimension-3 and -4 con-
densates generate a nonperturbative component to the
quark mass, which is given to 0(g, ) by (3.9). The 0(g, )

contributions generated through the dimension-5 mixed
condensate appear not to alter this relationship. The
only other possible nonperturbative 0 (g, ) contributions
arise from the dimension-6 gluon condensate ( G ) .
Since this condensate, like (GG), is trivially chiral-

in which case AX~ 6 &
can be absorbed entirely into an

(qG oq&
on-shell renormalization of the quark wave function.
Indeed, Eq. (4.12) is seen to be true for arbitrary "current
mass" mL and for arbitrary gauge-parameter a, as Eqs.
(4.11a) and (4.11b) simplify to the following expressions
when p =m:

symmetry invariant, it cannot contribute to the quark
mass in the mL ~0 limit of Lagrangian chiral symmetry.
We therefore expect that (2.16) and (2.22) are appropriate
equations for the chiral limit up to 0 (g, ) corrections.

In Sec. II, this limit has already been seen to imply that
the dynamical component of the quark mass is given by

m, „„=(4ma,
~
(qq)

~

/3)'" . (5.1)

The standard estimate of the quark condensate's magni-
tude obtained from QCD sum rules is

~
(qq )~

~

=(250
MeV} at M =1 GeV (Refs. 11, 28, and 29). If we substi-
tute into (5.1}this value for the condensate and the corre-
sponding (M =1 GeV) value for the QCD coupling [a,(1
GeV ) =0.5], we find that' '

md „=320 MeV=m„„,)„„/3 . (5.2)

Although this approximate quark mass scale has been an-
ticipated for quite some time, it is nonetheless satisfying
to note that (5.1) is derived here from a relativistic quan-
tum field theory in a gauge independent manner. The
original guess that m „,„k

——m„„,)„„/3, prevalent even in

physics of the late 1960s, was regarded to be a nonrela-
tivistic loose-binding quark mass accompanied by a large
(and relativistic) Fermi momentum p-R, '-400 MeV.
The derivation of (5.2) presented in Sec. II puts the many
successes of the original nonrelativistic quark model on a
firmer relativistic and gauge-independent footing.

The dynamical contribution to light (u- and d-) quark
masses clearly dominates any current-mass contributions,
which vanish entirely in the limit of explicit Lagrangian
chiral symmetry. A curious consequence of (2.22), how-
ever, is that current-quark mass differences are magnified
relative to constituent quark-mass differences. (We will
henceforth denote "constituent"-quark masses to be
quark masses which include contributions from nonper-
turbative QCD condensates. ) Consider, for example, a
naive application of (2.22) to the u-d mass difference,

(d) (u) m(d) (u), 3 ) ( (d)) —2
(

(u)) —2]

(
(d) (u)) (

(d) (u))[ 3
( (d)+ (u))/( (d) (u))2] (5.3)

where md„„ in (5.1) is a flavor-blind quantity. We see
from (2.22) that as mL"'") /m '"'")~0 (the chiral-
symmetry limit), then the constituent-quark masses
m'"' ' approach mpyp From (5.3), we find in the chiral
limit that the ratio of the current to the constituent d-u
mass difference is

m'" —m'"' m' 'm'")+ '"))
L L dyn

(d) (Mj
1+

(m (d)m (u))2
3.

m& jm 0

(5.4)

This numerical enhancement factor of 3 cannot be taken
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too seriously; if & GG ) effects are also included via (3.9),
we find that the ratio reduces to 3/[1+g, & GG ) /
12m d„„]. We note that enhancement of (m'"' —m'"'), „„
relative to (m'"' —m'"')„„„ is also expected from bag-
model considerations, and that some enhancement (by a
factor of —1.5) may be motivated by phenomenology as
well. '"

We have seen so far that the chiral limit appears to
correspond to quark masses generated entirely through
the dimension-3 & qq ) condensate: the dimension-1 order
parameter &P) is decoupled from quark masses in the
chiral limit (through vanishing Yukawa couplings), and
the chirally noninvariant order parameter of dimension 5

appears not to destabilize the position of the quark prop-
agator pole, as evidenced by (4.12). A graphical depic-
tion of this overall result, in which the quark condensate
is represented by the nonperturbative quark-loop graph
of Fig. 4, has already been suggested for color number
N, =3 (Ref. 14). In this "inverse approach" to relating

&qq) to md„„, the dynamically generated quark mass in

the Fig. 4 fermion loop runs according to the
renormalization-group expression

md„„(p ) =2 (5.5)

N,' —1 3~a, (M')
~

& qq ) M ~

2N, Pl dy&

(5.6)

In (5.6), the coupling constant runs according to the
renormalization-group for SU(N, ) symmetry

in the deep Euclidean region, where d =12(33—2NI)
for color number N, =3 (Ref. 32). Since Fig. 4 does not
explicitly depend on a perturbative gluon, it is not
surprising that the relationship of the quark condensate
to this running quark mass is independent of any pertur-
bative gauge parameter.

But to emphasize that this inverse graphical connec-
tion between Figs. 1 and 4 corresponds to the chiral limit
of (2.16), we first restate the result of Sec. II for arbitrary
color number N, . Equation (2.16), which is obtained
from Fig. 1, then generalizes to

=(9/2N, )(N, —1)(11N,—2NJ ) (5.9)

For the correspondence between Fig. 1 and Fig. 4 to be
meaningful, (5.6) should be obtainable from the Fig. 4
quark 1oop for arbitrary N, . At renormalization cutoff
M, Fig. 4 generates a quark condensate in terms of the
running dynamical mass of (5.5)

—i4N, M d p md'„(p )

&qq &M= 4(2n ) & p —md„„(p )
(5.10a)

md „(M )M ln(M /A ) . (5.10b)

In obtaining (5.10b) we have dropped md„„(p ) in the

denominator of (5.10a) for large M [implying

p && m d„„(p ) ], thereby permitting a Wick rotation of
the po contour with y = —p &0 and d p =i+ y dy. If
we use (5.7) to replace the logarithm in (5.10b) with a fac-
tor proportional to a, '(M ), and if we assume from the

running mass structure (5.5) that md„„(M )=md„„/M
for values of M above the coupling-constant freeze-out
point but beneath the deep Euclidean range, we then find

from (5.10b) that

N, (d'/d)
qq M 4 (M2) dyn (5.11)

Finally, we substitute (5.8) and (5.9) into (5.11), an
equation generated from Fig. 4 for arbitrary color num-
ber N„ to again obtain (5.6), an equation previously gen-
erated for arbitrary N, from Fig. 1. Note that the "in-
verse approach" through Fig. 4 successfully accounts for
both the scale and sign of &qq ), the former ( —

~

250
MeV

~
) linked to md„„-m„„,~„„/3, and the latter (nega-

tive) following from the minus sign of the Fig. 4 fermion
loop.

We shall now obtain the result (5.6) directly through
use of (5.5) within the nonperturbative quark loop of Fig.
4. Although d' is equal to d when N, =3, the value for
the anomalous mass-dimension exponent d obtained for
N, &3 differs from that of d' (Refs. 7 and 8):

d =y /2bg, '

such that

(4n.b )
' ~d'

ln(p /A ) ln(p /A )

(5.7)
VI. FIELD-THEORETICAL RESULTS

d'= —(4mb) ' = 12(11N. , —2N/) (5.8)

FIG. 4. Momentum-space quark-loop representation of the
dimension-3 quark condensate. The shaded circle represents a
quark propagator with mass m d, „(p-').

In the Appendix of this paper we have used fixed-point
techniques to determine the &qq ), & GG ), and &qG. o q )
projections of nonperturbative VEV's occurring in the
Wick expansion of the fermion two-point function in
QCD. We regard the following as central results of our
paper: (1) the & qq ) projections given by (A29) and (A30);
(2) the form of the & qG o q ) projection given by (A70);
(3) the &GG) projection given by (A35). These projec-
tions are valid to all orders of the OPE of the VEV's un-

der consideration. The specific O(m ) expressions for
&qG oq ) projections given by (A69) and (A88) should
also prove useful, particularly for future QCD sum-rule
applications.

Upon insertion of appropriate condensate projections
of nonperturbative VEV's into those terms in the 2-
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point-function Wick-expansion corresponding to Figs.
1 —3, we have been able to determine the contribution of
nonperturbative condensates (of dimension (5) to the lo-
cation of the quark propagator pole. We have proved
that only the first two terms [leading and 0(m}] of the
infinite OPE series can contribute to the (qq ) and
(qG.oq) projections of the Fig. 1 amplitude. We have
also proved that the OPE series for the ( GG ) component
of the nonperturbative VEV in Fig. 2 has only a single
term (A35). Moreover, we have provided plausible evi-
dence that only the leading 0(m) and 0(m ) terms of
the OPE for the ( qG o q ) projection of the VEV in Figs.
3 can contribute to the Fig. 3(a) and 3(b) amplitudes. Al-

though no such truncation of the infinite OPE series
seems to occur for the "non-Abelian" Fig. 3(c) amplitude,
we have found that higher-order OPE contributions [list-
ed explicitly to 0 ( m ) ] appear to generate the geometric
series for//(gf+m) [=(p —mP)/(p —m )].

We therefore conclude that the results obtained for
(qq) and (GG) components of the quark propagator
are valid to all orders of the OPE. The (qG crq ) com-
ponent (4.10) and (4.11) may also be valid to all orders of
the OPE, provided the apparent truncation of higher-
order OPE contributions to Figs. 3(a) and 3(b) and the as-
sumed series summation of such contributions to Fig. 3(c)
are indeed correct.

In dealing with condensates of successively higher di-
mension, we have demonstrated (in Sec. III) that the
0 (g, ) contribution of nonperturbative condensates to the
fermion 2-point function arises entirely from condensates
of dimension (4; condensates of dimension &5 neces-
sarily appear in conjunction with additional powers of
the coupling constant g, . This result suggests the possi-
bility of a perturbative ordering of contributions from
higher-dimensional condensates.

It is interesting to speculate of the effect of higher-
dimensional condensates in light of our salient field-
theoretical result: the fermion propagator pole must be
self-consistently identified with the condensate-sensitive
mass parameter m characterizing the OPE of nonpertur-
bative VEV's in order for that pole to be gauge-parameter
independent. We first note that the self-energies generat-
ed through ( GG ) and (qG oq ) exhibit singular behav-
ior at the old perturbative propagator pole (P =mL ) but
not at gf =m (Ref. 36). If condensates of dimension & 5
exhibit singular contributions to the self-energy at P =m,
so as to render the propagator (gf —m —X} ' nonsingular
at gf =m, then quarks may be prevented from propaga-
ting entirely. Such conjectured singular behavior would

be highly suggestive of confinement through nonpertur-
bative order-parameter physics.

It is worth recalling that all "Abelian" contributions
[Figs. 1, 3(a) and 3(b)] to the (qG crq ) component of the
quark 2-point function were argued, through OPE trun-
cation, to be polynomials of finite order in m (or, strictly
speaking, mg//p ). If OPE truncation is indeed a general
characteristic of Abelian graphs (i.e., those graphs insens-
itive to multigluon couplings), then such graphs can nev-
er yield self-energies that are singular at gf=m. Con-
versely, we have seen that the non Abe-lian graph Fig. 3(c)
appears to yield an infinite series in m, as discussed in
Sec. IV. For condensates of dimension & 5, any singular
behavior at P =m would similarly have to manifest itself
in an untruncated infinite series in the OPE mass parame-
ter m, as opposed to the finite polynomials anticipated
from Abelian graphs. Such results suggest, within the
context of contributions of nonperturbative condensates,
the possibility of an intimate connection between
confinement and the non-Abelian character of QCD.
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APPENDIX: CONDENSATE PRO JECTIONS
OF NONPERTURBATIVE VEV'S

A. ( qq ) projection of the two-fermion VEV

Consider the nonperturbative VEV

Expanding in a Taylor series about y =z =0 we have

(:4e(y)4 (z):)=(:Ve(0)% (0):)+y (:[8 + f(0)]+ (0):)+z (:0~(0)[Bp~(0)]:)+higher-order terms .

(Fermion superscript and subscript indices are over color and Dirac-spinorial space, respectively. ) We assume this
quantity leads to a gauge-independent nonperturbative contribution to the Fig. 1 self-energy. Consequently, we are free
to utilize the fixed-point gauge condition

x"B„(x)=0 (A2)

to reexpress (Al) in terms of gauge-covariant quantities. Repeated differentiations of (A2) evaluated at x =0 lead to the
relations
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a„(o)=o, a,.. . . ..a„,(0)=o . (A3)

(Subscript parentheses indicate symmetrization. ) This result implies that all derivatives (8) in the Taylor series (Al)
may be replaced by covariant derivatives (D). We then integrate by parts with respect to covariant derivatives, so as to

obtain"

(:P(y)% (z): ) = ( 7~(0)%'.(0):) —(y —z )(:P[D (0)% (0)]:)

y yI' z z~
+ + —y z~ (:W~(0)[D (0)D&(0)p,(0)]:)+ (A4)

The first term on the right-hand side (RHS) of (A4) is proportional to the (qq ) condensate, as is evident from Lorentz
in variance

&:e', (0)O;(0):)=(& /3)(5„l4)(:+](0)q '„(0):)=—(5' /3)5, , & qq ) l4 . (A5)

Color superscript indices (p, a ) in (A4) will always lead to a trivial (5I' /3) Kronecker-5 factor; we shall suppress such
indices henceforth. Consider a general term in (A4), containing the object

(:e,(0)D. (o) D. (0)e,(0):) .

Only the completely symmetric part of this object has a (qq ) component. Terms with any antisymmetry in the indices

ai a„will end up contributing terms proportional to field strengths G„„(=G~,(x)=ik; G„'„(x)l2;
[D (0),D&(0)]=g,G&~(0)) and covariant derivatives of field strengths. Such objects cannot be eliminated through
equations of motion to project out a term linear in (qq ). If only the symmetric part of (A4) is retained, one then finds

that

(:~P;(y)P ( ):)= g ' '
&:iP, (0)D,.(0) D. , (0)+,(0):)

(2n)!

n=0

(y —z) '
(y -z) '"''

(2n +1)! (:~P;(0}D, (0) D (0)%', (0):)

+(terms proportional to higher-dimensional condensates) . (A6)

The "even" and "odd" terms in (A6) have been separated for convenience. Let us first consider the term in (A6) in

which an even number of indices are contracted. Consider the quantity

( P;(0)D (0) D (0)ip, (0):)(,„)=A2„5; S (A7)

where S . . . is a Lorentz-invariant and completely symmetric tensor. For example,
1 2n

ala2a3a4 -ala2- a)a4 - ala3- a2a4 - ala4- a2a3 (A8)

In general, the tensor S . . . will contain the sum of N~„products of n metric tensors; e.g. , from (A8) we see that
1 2n

N4 = 3. These factors of Nz„are important because they occur when (A7) is substituted into the "even" term of (A6):

00

(:%,(0)D (0) D (0)%,(0):)= g Nz„(y —z) "Az„5,, l(2n)! .
2n )! n=0

To And N2„explicitly, we note that

S . . . =g S . . . +g S . . + . . +g S
1 2n g2 2n ~1 2n+2 1 2n 2n+1 1 2n+2 2 2n 2n+1 2n 1 2n+2

in which case

(A9)

(A 10)

N2„+2 =(2n +1)N~„.
We see from (Al 1) and our knowledge of No, N2( = 1), and N4( = 3) that

1, n=0,
(2n —1 )!!=(2n—1)!2 /(n —1 }i, ii +0 .

(A12}

The constant A2„appearing in (A7) and (A9) can be determined by contracting the products of n metric tensors and a
spinor-index Kronecker 5
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a~a2 a3Q4 . pn —1 pn

Jl g g

into both sides of (A7). When one uses the equation of motion (2.3), one finds upon contraction that

( i—m) "&qq & =4Az„(g ' ' . g
'" ' '")S . . . —=4Hz„Szn, (A13)

in which case

Az„=( —im) "(qq) /4Sz„. (A14)

To find Az„, we first note that Sz ——g
' 'g, =4, and that S~=g ' 'g ' '(g g +g g ~ +g g )=24. By

contracting g
' '

g
'"+' '"' into both sides of (A10), we find that

Sz„+z——(2n +4)Sz„.
We then see from (A15) and our known values for Sz and S4 that

Sz„———,'(2n +2)!!=2"(n +1)!.

Upon substitution of (A16) into (A14), we see that

( im—) "(qq)
2n+2( +1)!

Further substitution of (A17) and (A12) into (A9) completely determines the "even" term of (A6):

(A15)

(A16)

(A17)

n=0

(y —z) '
(y -z) '"

(2n )!

( im) —"(y —z) "5; (qq )
(:q2;(0)D (0) D, (0)'P2(0): ) = g

n=0
(A18)

We now consider the "odd" term in (A6), involving contraction of an odd number of indices. As before, we consider
the quantity

(:;(o,(o),
,

( ),( ):),y —— z„+)(, )„,
where the tensor (S . . . , ),; is Lorentz invariant and symmetric; e.g. ,

2n +1

(S )-=( ) +( )- +( )a~a2Q3 ji Xa~ jiga2Q3+ ~a2 jlga~a3+ XQ3 jlgatap

(A19)

(A20)

The tensor (S . . . ), will be the sum of Nz„+, terms, each of which being the product of a y matrix and n metric
2n + I

tensors; e.g., from (A20), N3 ——3. Such factors of Nz„+ ~
occur when (A19) is substituted into the "odd" term of (A6):

r y ' y '
&:e,(0)D. (0) D.

,
(0)e, (0):&= X

'"" ' '
2

"1
n=0 n =0

Using the relation

(A21)

(A22)

it is easy to verify that Nz„+, ——(2n + 1)Nz„[=Nz„+z via (Al I)], in which case we see from (A12) that

Nz„+~ ——(2n +1)!2 "In! .

The quantity A 2n+, may be obtained by contracting

( y
I
) g

2 3
g

2ll 2II +

into both sides of (A19). We perform this contraction using the equation of motion (2.3), so as to obtain

Az„+, ——( im) "+'(qq )—ISz„+, ,

where

(A23)

(A24)

(A25)

For example, we see from (A20) that Sz ——96. In general, we see from (A22) that

Sz„+&

——(16+8n )Sz„, (A26)
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in which case we find from (A16) that

S,„+,——2"+ (n+2)! .

Upon substitution of (A27), (A24), and (A23) into (A21), we find that the "odd" term of (A6) is given by

ao 1. . . (2n+I
(:P;(0)D (0) D (0)q' (0):& = g(2n + 1 )i '

i ~2m+ i 2 "+ n!(n +2)!

(A27}

(A28)

Equations (2. 1) and (2.2) of the text correspond to substitution of (A28) and (A18) into (A6):

(:ql~(y)ql, (z):)= (fi~ /3)(qq) g „™,4"+'n!(n + 1)!

im [y (y —z)],
2(n +2)'I +

+(contributions of higher-dimensional condensates) . (A29)

Thus, we have obtained the full coefficient of the ( qq ) component of the nonperturbative two-fermion vacuum expecta-
tion value.

It is interesting to note that this coefficient (A29) can be expressed in closed form. If x =y —z, x &0, the series in
(A29) are summable and

( )
6m

5p i(y x);
Ii(m~ —x )+ Iz(m+ —x )V' —x' ' —x'

+ ( contributions of higher-dimensional condensates ), (A30)

where I„I2 are modified Bessel s functions. A similar expression exists for timelike x, containing ordinary Bessel
functions.

B. ( GG ) projection of the two-gloon VEV

Consider the evaluation of the nonperturbative VEV of two gluon fields at different space-time points

If we demand that the external gluon fields satisfy the fixed-point gauge condition (A2), then the fields may be expanded
in a gauge-covariant fashion

B„'(x)= —,'x "G'„„(0)+—,
'x'x [D„(0),G;„(0)]

+ +,x x x "[D (0),[D (0), [ [D (0), G~ „(0)] ]])+ (A31)

The lowest-order contribution to the nonperturbative
VEV of two-gluon fields is generated through the lead
term of (A31).

(:B;(y)B,'(z): ) =-,'y'z'(:G'„, (0)G'„(0):) +

(A32}

C = ( GG & /96 . (A34b)

The gluon-condensate component of the two-gluon non-
perturbative VEV is then obtained from substitution of
(A34} into (A32):

The RHS of (A32) can be expressed in terms of the
gluon-gluon condensate, defined by

(:B;(y)B (z):)= (g„,gi —g g~, )(GG)+
384

(A3S}
(:G' (0)G' (0):&—= (GG &, (A33)

by noting from symmetry considerations that

(:G'„i,(0)G, (0):)=C5' (g„,gi —g„gi, ) . (A34a)

Contracting 6'"g„,g& into both sides of (A34a) we find
that

The ellipsis on the RHS of (A35) refers to contributions
arising from nonleading terms in (A31). These contribu-
tions are not proportional to (GG ), but only to higher-
than-4-dimensional condensates. To see this, consider
the general form of the VEV coefficient of
y - y "z ' z '" within (A35) arising from nonlead-
ing terms of (A31):
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(:[D (0), [ [D (0),G i(0)] ]][D)i (0), [ [Dp (0),G)i (0)] . ]]:) .

Lorentz invariance implies proportionality of this VEV
coefficient to products of metric tensors, as this VEV
coefficient does not contain any Dirac-spinorial indices. '

Hence, contractions analogous to the one generating
(A34b) necessarily involve contracting products of metric
tensors into the above VEV coefficient. Such contrac-
tions necessarily remove covariant-derivative factors of D
by generating fermion fields through the equation of
motion (3.2b) or through increasing the number of field

strengths 6 through the equation of motion (3.2a). Con-
sequently, we see that QCD equations of inotion can be
used to eliminate covariant derivatives D (0) from VEV
coefficients generated by nonleading terms in (A31) only

by increasing the number of fermions ( 4, ~p ) or field
strengths (6) appearing in these coefficients after con-
traction is performed. In particular, multiple-metric-
tensor contractions of such higher derivative VEV
coefficients can never yield a quantity involving only two
field strengths (GG) once all covariant derivatives are el-
iminated via field equations of motion. The (GG) pro-

jection of the two-gluon VEV is therefore given entirely
by (A35).

(qG oq ) =—( qI (0)G„~(0)a",j'ql)~(0):),

G„~(x)=i';,pG„'„(x)I2 .

(A36a)

(A36b)

In (A4), the covariantized Taylor-series expansion of the
dimension-3 VEV, only second- and higher-order terms
can have Taylor-series coefficients of dimension-5. The
first four terms relevant for obtaining the components of
(:+;(z)4 (y):) proportional to the mixed condensate are
just"

C. ( qG o q ) projection of the two-fcrmion VEV

We now consider the (qG crq) "mixed-condensate"
projection of the two-fermion VEV on the left-hand side
of (A4). The mixed condensate is a dimension-5 object
containing both fermion fields and a field strength (G):

P 1' P 1'

(:ql, (z)4 (y):)„= (:%,D, D,4')+ (:4,D, D,4, :)—y"z'(:+,D, Dql, :),, (A37a)

(:ql, (z)%,(y): ),« —= —„'(y"y'y —z "z"z")(:%,DI„D,D,„,+, : ) + —,'z "z'y (:4;DI„D„,D„%,: )

——,'(z y"y')(:+,D„D,„D,%,:),
(:+;(z)ql,(y):), = ,', (y y~y"y—'+z z~z"z")(:O',D, D&D D,%') ,'(y z~z—"z—')(:%,D, D, ,DP D 4:)

——„(y"y'y~z )(:4;D D,„D„D&,%', :)+ ~ (y"y'z z~)(:+,DI D&,DI D, ,%:),
(:ill, (z)ql, (y):)v=— ,', (y y~y"y'y ——z z~z"z "z )(:+,D„D&D„D,,Di, iII, :)

+ —,', (y z~z"z"z )(:0;D~&D„D„DiID 4, :)—,', (y~y"y'y z —)(:4,D D~&D„D,,DiIV:)
—

—,', (y y~z"z'z )(:+,D,„D,,D&,D, D&, 4, :)+—,', (y"y'y z'z~)(:iII, D~ D&~Dt„D,,D~, +,:) .

(A37b)

(A37c)

(A37d)

On the RHS of (A37), all covariant derivatives and all
fields are evaluated at x =0. Subscript parentheses indi-
cate symmetrization of indices. Note also the color in-
dices have been ignored, since they lead trivially to a
Kronecker-6/3 factor, as discussed earlier in this appen-
d1X.

To evaluate the mixed condensate contributions in
(A37) two identities [(A39} and (A40)] are required. The
first follows from an obvious Dirac-matrix relation

'VP3'1 =gPV
—I &1,1 ~

This implies [upon application of (32a)] that

D"D„D„=,'(D D, +D,D ) .— (A40)

Consider now those terms in (A37a) requiring evalua-
tion of (%D„D,, %). The expectation value of a gauge
covariant is Lorentz invariant; therefore,

I

This simplification of the QCD equation (3.2b), in which
the fermion current generated by the commutator is
dropped, is justified since such currents will not contrib-
ute to the ( qG 0 q ) projection of the two-fermion VEV,
but only to condensate components of dimension )6.
With [D",G„„)=0, it is easy to obtain the simplified rela-
tion

SB=D i cr„,g)„D, =D —+g, (i l2)o","6„, , (A38) (e,D„D.P, ) = Ao,,g„,+B(o„.),, (A41)

in which case

D =8@ g, (i/2)G—cr, (A39} (A42)

Contracting both sides with 6, g" and e"; we obtain

(4D +) =16A,
where G o. =cr"'G„, and 6„,, is giv, en by (3.2a). The
second identity (A40) is obtained by setting [D",6„,, ]=0.

——(Vcr"'G„,,ill)—: (qG oq) =48B . (A43)
2
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Using the identity (A39) to find the mixed condensate
component of (A42), we obtain 3 = —ig, ( qG. o q ) /32,
in which case (A41) becomes

(+,D„D,)Ir, ) =g, [ ( i—5„g„)/32

g, ( i—m)( —i /2)(qG oq ) =96A

in which case

(:)Ir;D(„D D ))Ir:)

(A48)

—(cr„,, )„/96](qG.oq ) . (A44)

Substituting (A44) into (A37a) gives the lowest-order
mixed-condensate contribution to ( (T((z)q)(y):):

(:qr;( )(p, (y):)„

=g, (qG oq) — y z, cr";", —(y —z) 5;
96 " ' J' 64

(A45)

= —g, 2 96
(qG ~q &(r„,,g, +r,, q„.+1',g„.) .

(A49)

Now consider

(:qr;D(„D„)D )Irj') =Ag„y +8(g„y„+g„y„).
(A50)

Contracting with g""y,i,g" y;i yields two equations:

Now consider the third order terms (A37b). From co-
variance, we find that

(:qr;D(„D„D„)qr')= A(y„g, +y, , g„+y g„,, ) .

(A46)

Contracting both sides of (A46) with yI'g, ,„gives

—'(:qr(8D +D 8+D"8D )qI:) = 316(4+1+1).

(A47)

(%D 8%':)=16(4)A +16(2)8,
—,
' (:4(gD +D"gD„)%:) =16A +16(5)B .

Using (A39), (A40), and (2.3) we find that

—g, (qG crq) =43 +28,'2 16

—g, (qG oq) =A +58 .' 2(16)

(A51)

(A52)

Identities (A39) and (A40), as well as the equation of
motion (2.3) permit simplification of (A47):

Solving the above equations for A, B, and substituting
back into (A50), we obtain the same expression as on the
right-hand side of (A49):

(:qI,D(„D,,)D,„P,. :)= —g, (qG crq)(y„g„„+y,, g„+y„g„„).

This result is also applicable for (:)Ir,D D(„D„)(p'). Substitution of (A49) and (A53) into (A37b) yields

(A53)

(:q';(z)q' (y): )(()=g,
—m(qG oq&

(y "y "y 3y "y'z +3—z"z "y z"z "z )(y„g—„+y~„+@~„„)j;
—m(qG oq) 2

384 [y (y —z)];(y —z)11 (A54)

One can similarly evaluate the mixed condensate component of the fourth- and fifth-order terms in (:%(z)%(y):).
For example, consider within (A37c) the term

( '.4 ( D ( &Dp )D ( )J
D & )

0j '.):A g ~ug &p5(j +8 ( g &ijgp & +g ))kg && )5[j +C (g &j)o&~ +g~po&v +g &+epr) +g~& cr jto )j)

Contracting both sides of (A55) as indicated and extracting only the mixed condensate component yields

g"'g ~5, XEq. (A55)~64M +328 = (:VD2D'qr:)

g "g~'o, )&Eq. (A55)~163 +808 =—'( qr(D D"D D„+D D D ))Ir:)

g "cr~i'XEq. (A55)~288C= —,( q'(cr~"D D&D D„+D o~'DjjD, D, +cr~"DaD D +o~'D&D D„D ))Ir:) .

(A55)

(A56a)

(A56b)

(A56c)

We extract the mixed condensate components of the right-hand sides of (A56) first through use of the relations
(j =fermion current; G —= field strength)

D D"D D +D D~D =2D'D +O(g,'Dj)+O(g,'G ),
cr~'D&D D =i' 8 —iD D +O(g, G )+O(g, Dj ),
o-I D DpD D =—,'o~ DpD D,, ——,'g, D 0.-G+O(g, Dj),

D~D D D = ~i ~1DD'D —,'g, cr GD'+O(g, 'Dj)+O(g

(A57a)

(A57b)

(A57c)

(A57d)
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op'D DpD D = —,'g—,D o.G —,'g,—o"GD +O(g, G )+O(g, Dj ),
and then through use of (2.3) and (A39) in order to find the following mixed condensate projections:

64A + 32B =g, im ( qG. o q ),
16 A + 80B =g, i m ( q G cr q ),
288C =g, (m /2) ( qG. oq ) .

Solving (A58) for A, B, and C and substituting back into (A55), one finds that

(A57e)

(A58a)

(A58b)

(A58c)

~ 2

(:iI/;D/ Dp, Di„D„+')=g, (qG crq)
™

[65, (g pg„„+g „gp„+gp„g „) i(g—„op,+g „crp„+gp„cr „+gp„o ), ] .
576

(A59)

Similarly, one can show that

(:+,Di DpD„D„/q/') =g, (qG crq

(:4/, D D/„D„Dp, '4/, :)=g, (qG oq

(:O',Di„D„DpID 4') =g, (qG crq

sm
fiij gapgpv+gapgp v+ga gvip, ) &

~ 2
~ ~m

filj (gang pv+gavgpp +gapgpv ) (oapgpv+ oapgpv+ avgpp )ji ]

tm
fiij(gang pv+gavgpp+gapgpv )+/ (oapgpv+oapg pv+oavgpp )ji ]

(A60)

(A61)

(A62)

Upon substituting (A59) —(A62) into (A37c) one finds that the fourth-order term of the nonperturbative vacuuin expec-
tation value is

~ 2

(:q/, (z)% (y):),v=g, (qG oq) [3(y —z) 5;, +2iz y„o /'(y —z) ] .
24 96

(A63)

Evaluation of the mixed condensate projection of (A37d) requires determination of the coefficients A Fin the ex-pres-
sions

(:4;Di Dp)D(„D,D/, )+') = Ag p(y/g„, , +y„g,/, +y~„/„)j;

+B [y / ( g aug pv +g plug av ) +y v( g aug p/ +gplug a/. ) +y p( g avg p/ +g ai gpv ) ]ji

+C[y (gag /, +gp g/. /. +gp/gp )+yp(gapgi/+g g/.a/v+g igpav)]j/

(:q/;D D(pD„D„D/„)4'&. ) = Dy (gp„g, /, +gp, g„/, +gp,g„„).
++ [ yp(gapgvk +gavgp/. +ga/ gpv ) + yp gapgvt. +gavgpi. +gakgpv )

+ yv(ga/3gp/ +gapgp/ +ga/ g pp +yk gapgp +vgapgp +vgavgpp ]ji

(:4;D( DpD„D„D/, )4') =F[ y (gp„g„i+gp,g„i+gag„„)+yp(g „g,,i+g,g„/+g ~g„„)

+yp(gapg vk. +gavg pk +g ai g pv ) + Yv(gapgpi. +gapgp/ +gaigpp

+'Yx(gapgpv +ga~gpv +gavgpp ) ]ji

(A64)

(A65)

(A66)

We contract the indices of (A64) —(A66) into the indicated tensor structures in order to obtain mixed condensate projec-
tions of the coefficients A —F:

g Pg"'y, , XEq. (A64)~4A +2B+2C=g, m (qG oq)/96,

g "gp"y, XEq. (A64)~A +-5B+2C=g, m (qG.oq)/96,

g g""yaij XEq. (A64)~ A +2B+5C =g, m (qG.oq )/96,
gP"g' y„XEq. (A65) 4D+4F. =g, m (qG.oq)/96,

g "g' yP XEq. (A65)~D+7E =g, m (qG.oq )/96,
gp"g""y, X Eq. (A66)~F=g, m (qG oq ) l(768) .

We see from (A67) that A Fall equal g, m (qG—.o q ) l(768), in which case we find from (A37d) that

(A67a)

(A67b)

(A67c)

(A67d)

(A67e)

(A67f)
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G.
(:4,(z)e (y):) = —g, (y —z)'y,";(y —z)„.

64 96
(A68)

Consequently, the mixed condensate projection of the two-fermion vacuum expectation value is found to order m to be

(0 ~:)I)', (z)%,(y):
~

0) =g, (qG.oq ) I [ i—5,, (y z—) /64 cr—,";"y„z„/96]+m [ —y", (y —z)„(y —z) /384]

+m [i5,~(y —z) /768 —o", y„z,(y —z) /1152]

+m [ —y J, (y —z )„(y —z ) /6144]+ 0 ( m ) I . (A69)

Equation (A69) suggests that the mixed condensate projection of the two-fermion vacuum expectation value takes the
general form

(Ol:%,(z)% (y): IO) =g, (qG crq) g Ia„[y (y z)]—"+b„y„z„cr"[y (y —z)]" '),;m" .
n=0

(A70)

This expression is justified by observing that any contri-
butions to the RHS of (A70) involving more than one cr"'
necessarily correspond to a further commutation

[D„,D„] in the covariantized Taylor series (A37), thereby
introducing via (3.2a) an additional field strength G. We
note that there is no mixed condensate projection of any
local vacuum expectation value coefficient unless that
coefficient contains just one field strength 6, as additional
6's can be eliminated through (3.2b) only at the price of
introducing into the coefficient VEV two more fermion
fields, again eliminating the dimension-5 mixed-
condensate projection.

D. (qG. (rq ) projection of the quark-antiquark —giuon VKV

Consider the mixed condensate component of the
nonperturbative vacuum expectation value
(0 ~:'P;(z)B'(u))4, (y):

~

0). The gluon field may be ex-
panded covariantly using the fixed-point gauge'

B„'(u))= —,
) u) Gi„(0)+ [D (0),Gi„(0)]

+ [D (0), [D,(0),Gi„(0)]]+

(A71)

Only the first term of (A71) will contribute to the mixed
condensate projection of the nonperturbative vacuum ex-
pectation value under consideration. All subsequent
terms, involving successively nested cornmutators of D's
with field strengths G (if Gpl=ik:4, 6p. /2, then
6„',= i 7);„&—G~„ /8), eventually yield further field

strengths ([D,D~]~g, G~ ) or additional fermion fields

([D,G &]~gj &). As a result, we find the following co-
variantized Taylor series to be appropriate for the extrac-
tion of a mixed condensate projection of the VEV under
consideration:

QQ T—(0
~
%; (z)B„'(w)(Ir (y):

~

0) =
A a—(:(p,G,pl'J .') + (:O'; G,„D (IIJ . ) — ( P; D~ 6,„'(p:)

4

2
(:O', D G,„Dii(Ir/. )

1'

+ (:)P;D( Dg)G,„D,, qr, :)— (:)Ir,D, G,„D( Dp)qr, :), (A72)

In (A72), all fields and covariantized derivatives on the
RHS are evaluated at the origin of configuration space,
and contracted color indices between A.

' and G,„have
been suppressed (A.'6,„=A. '&6,„").

Consider the lowest-order term on the RHS of (A72)
with all color indices now inserted. By covariance, this

l

term must have the following structure:

)(,'„~(:)I(;6~„")P~:) = A A, ii (o,„), . (A73)

Upon contraction of both sides of (A73) with A.'&(o'")„
we find that
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163 [( '",„),, ]=(:4;G,'„;,ei':)A,:A,:,
= 8i (4;G;„A:~,',Pq /': )

=16(:+ G ~o'"~I'~')
I TP IJ J'

—= 16(qG.o q ) . (A74)

coefficients of covariant quantities, with the stipulation
that the A,

' initiating the (RHS) of (A72) eventually ac-
quires the uncontracted color indices of the left-hand
side's fermion fields. Thus in the next-to-leading order
term

(:I/, D 6,„+,:)=B(o,„y ),, +C(y~ „—y„g, ),,
In evaluating A, all color indices in (A73) clearly could
have been ignored (A/(qG crq. )=[(o'"o,„);;) '=

—,', )

provided we note that the color indices coP (contracted
into G) are converted to the fermion field color indices
Pcc. Thus the lowest-order (LO) contribution to (A72) is

given by

(A76)

the coefficients 8 and C are obtained from the following
contractions:

(y"o'"), XEq. (A76)~2B iC—= im—(qG oq)/96,

2
—(0 ~:+;( )B„'( )+/'(y):

~

0)„
(y'g ");,XEq. (A76)~iB+C =0 .

(A77a)

(A77b)

(qG crq ) i//'(cr, „)j, . (A75)
32X48

We will henceforth ignore color indices in computing
I

The result thus obtained for (A76) (which is identical to
that for (:~I/, G„,D iI/:) ) yields the following first-order
(I) contribution to (A72):

ga 7 0 a—'(0~4', ( )B'„( )e;(y):~O), = y (:O', G,„D.e;:)—' (q', D.G,„e;:)

m ( qG cr q ) u/'[i ap,y (y —z) + (y —z),y p
—(y z)py, ],; .— (A78)

Consider now the second-order terms in (A72). The coefficients (:q/, DI D&,G,„iI/, :) and (:4;G,„D, D&I%:) are

found to be identical; we sketch here the derivation of the first of these:

Ia pi rp+j ') +(gaporp)p + grpoap+graopp+gppora+gpaorp)p

The coefficients E and F are obtained via the following contractions:

(A79)

(A80b)

(g ~cr P)XEq. (A79)~F. +F= —m'(qG oq)/192, (A80a)

(g'~cr;',p)XEq. (A79)~E+4F =0 .

Thus E = —m (qG oq)/144= 4F. In deriv—ing the RHS of (A80) liberal use is made of (A39), (A40), (2.3), and
(A57). From covariance the remaining second-order coefficient has the following structure:

(:4,DG,pD&%/, :)=. Hg &(cr,p)„+K(o /icr, p)„+L (g&„g „g»g, )&,, —

+ (gapor/3 ga7 op/3)j t + g p/3oar g rp ap )p

The coefficients in (A81) are obtained through the use of the following contractions:

(g ~cr, p)XEq. (A81)~4H+2N 2P = —m (qG —oq )/48,
g~'g P5, XEq. (A81)~ —K+L =0,
( ~o),,g "XEq. (A81)~H+2iK+3N P=0, —

(o '),,g»XEq. (A81)~ H+2iK —N+3P =0,—

(@ cr'py~)~ XEq. (A81)~2iL 6N+6P = —m (qG.oq)—/48 .

(A81)

(A82a)

(A82b)

(A82c)

(A82d)

(A82e)

Substituting the solutions of (A82) and (A80) into (A81) and (A79), respectively, yields the following second-order con-
tribution to the nonperturbative vacuum expectation value (A72):

—(:~Ii;(z)B'(i//)4'(y):)ii —— ii/'[2(y —z) o, —(y —z),(y z)"cr„——(y —z) (y —z) cr, ], . (A83)

[The color subscript indices of A,
' have been referenced to those of the fermion fields, as in (A75) and (A78).]

Consider now the following third-order terms in (A72):
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(:tP;G,„D( DpD, (+j.) = A [(gp, y +g,yp+g py, )tr, ,„],
(A84)

+H [(gapOrp+gpjtlOra garO/ip gprOpa)rv]ji +K [gap(gvju Yr gvry/I)]ji

+B [(ga gvpp +gpvgap +gapgpv )y (gavgpr +gpvgar+gapg )3 p]ji

(:V,D.G,„D(.Dp(e, :)= Cg.p(o,„y,),, +E[o,„(y.g„,+y pg, ,.)],;+F[g.p(g,.y„g—„.y, )„+g,(g,pr„g—„pr,),; J

+L [g pv(grpya+gra Yp ji gvr(g(rp3 a+gpa Yp ji ]

The coefficients A, B,C, E,F,H, K,L are obtained via the following contractions:

gp"(o'"y ) j XEq. (A84)~2A +iB =im (qG oq )/576,

g "gp"y,', X Eq. (A84) ~ i A +—B =0,
g p(y"o'")„XEq. (A85)~4C+2E+iF+4H 2iK—iL =—im (qG o.q)/192,

g "p(cr'"y )„XEq. (A85)~ —5iF 6H+—iK iL =—im (qG oq)/96,
g'pg "y",, XEq. (A85)~C+5E+5iF+4H iK+i—L =0,
g "(y'o'P);, XEq. (A85) 2C+E+2iF+ 8H iK 2i—L =—0,
g'pg'"y, ', XEq. (A85)~ —2C F. iF—2H—+2i—K+iL =0,
g'"g'py'„XEq. (A85) —C+E+iF 4H+iK—+5iL =0 .

(A85)

(A86a)

(A86b)

(A87a)

(A87b)

(A87c)

(A87d)

(A87e)

(A87f)

The solutions to the above are A =im (qG oq)/576= iB =C =—E = iF =+—iK, H =L =0. Explicit calculation
shows for mixed condensate projections that (:(p;D( DpD„G,„qj') =(:(p;G„,D( DpD„(O'), (:4;D( Dp(G,„D,+j).
= (:qj;D,,G,„D( Dp('(lj:), in which case the third-order term of (A72) can be completely determined. Cotnbining this
O(m ) contribution with the lead, first (O(m)), and second (O(m )) -order contributions of (A75), (A78), and (A83),
respectively, we obtain the following expression for the vacuum expectation value in (A72):

X;,(qG oq)u'—(0 ~:qj, (z)B„'(uj)%,'(y):
~

0) = ( o,„)„+—[ i o,„y'.(y——z) + (y —z),y„y,(y —z—)„],,

m [2o, (y —z)' —(y —z),(y —z)"tr —(y —z) "(y —z) o ],

+ [io, y (y —z)(y —z)'+y, (y —z) (y —z)'

—(y —z),y (y —z) ];+O(m ) (A88)

'S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); Abdus Salam, in
Elementary Particle Theory: Relativistic Groups and Analyti-
city (nobel Symposium No. 8), edited by N. Svartholm
(Almqvist & Wiksell, Stockholm, 1968), p. 367.

~Realistic fermion mass matrices [H. Fritzsch, Nucl. Phys.
B155, 189 (1979)] may be obtained from extending the stan-
dard model to encompass additional symmetry [e.g. , S. Dimo-
poulos, Phys. Lett. 129B, 417 (1983)]. However, such grand-
unified-theory-motivated approaches are still unable to ac-
count for the disparity between current- and constituent-
quark masses, as discussed below.

3To the best of our knowledge, this hypothesis was first stated in
the literature by J. C. Pati and Abdus Salam, Phys. Rev. D
28, 1240 (1973}.

4A. Gasser and H. Leutwyler, Nucl. Phys. B94, 269 (1975);
Phys. Rep. 78, 77 (1982).

5N. Fuchs and M. D. Scadron, Phys. Rev. D 2D, 2421 (1979);
Nuovo Cimento SDA, 141 (1984); P. Fomin, V. Gusynin, V. A.
Miransky, and Y. Sitenko, Riv. Nuovo Cimento 6, 1 (1983).

V. Elias and M. D. Scadron, J. Phys. G (to be published).
7H. Georgi and H. D. Politzer, Phys. Rev. D 14, 1829 (1976).
8V. Elias, Phys. Rev. D 21, 1113(1980).
V. Elias, Phys. Rev. D 22, 2255 (1980);V. Elias and S. Rajpoot,

ibid. 28, 580 (1983).
'OSeminal work in this regard is that of M. A. B. Beg, B. W.

Lee, and A. Pais, Phys. Rev. Lett. 13, 643 (1964); A. De
Rujula, H. Georgi, and S. Glashow, Phys. Rev. D 12, 147
(1975); N. Isgur and G. Karl, ibid. 18, 4187 (1978); 19, 2653
{1979).

''Order parameters of bound-state (constituent mass) physics
are related to properties of low-lying resonances via QCD
sum rules, as in M. Shifman, A. Vainshtein, and V. Zakharov,
Nucl. Phys. 8147, 385 (1979);B147, 448 (1979).

'~H. D. Politzer, Nucl. Phys. B117,397 (1976).
'3K. Lane, Phys. Rev. D 10, 2605 (1974); H. Pagels, ibid. 19,

3080 (1979).
' V. Elias and M. D. Scadron, Phys. Rev. D 3D, 647 (1984).
'5R. Tarrach, Nucl. Phys. 8183, 384 (1981).



38 (qq ) AND HIGHER-DIMENSIONAL-CONDENSATE. . . 1605

' J. M. Cornwall, Phys. Rev. D 26, 1453 (1982).
'7P. Pascual and R. Tarrach, QCD Renormalization for the

Practitioner (Springer, Berlin, 1984), pp. 155—191.
' V. Elias, M. D. Scadron, R. Tarrach, and T. Steele, Phys. Rev.

D 34, 3537 (1986); L. J. Reinders and K. Stam, Phys. Lett. B
180, 125 (1986).

' V. Elias, M. D. Scadron, and R. Tarrach, Phys. Lett. 162B,
176 (1985).

V. Elias, M. D. Scadron, and R. Tarrach, Phys. Lett. B 173,
184 (1986).

'P. Pascual and R. de Rafael, Z. Phys. C 12, 127 (1982).
The quark condensate, a negative quantity when evaluated at
Euclidean momenta (p' &0), yields a positive "Euclidean"
mass -(qq)/p' (Ref. 21). As remarked in Ref. 14, we as-

sume this mass remains positive upon reflection into Min-

kowski space.
If mL is zero, corresponding to full chiral symmetry of the ini-

tial Lagrangian, no (GG )-generated shift from a pole at zero
can occur, as (GG) is itself a chiral invariant. This is
verified in Ref. 19.

24This expression for the self-energy is in agreement with that
quoted by Reinders and Stam (Ref. 18) for fixed-point gauge.
The conflicting expression obtained in Ref. 19 for the gluon-
condensate contribution is erroneous.

25Contrary conclusions are drawn in the absence of the
"reflection assumption" of note 22. The coefficient of
g, ~

(qq )
~

in (3.9) is then negatiue, and the positive contribu-
tion through ( GG ) must clearly dominate that of (qq ) to
realize a positive range of values for m, particularly if
m &&mL.

A factor of g, was absorbed in the definition of the mixed con-
densate in Ref. 20, leading to corrections whose mixed-
condensate projections appear to be O(g,').
If mL ——m and only terms linear in m and mL are kept, Eqs.
(4.10) and (4.11) correspond to the mixed condensate contri-
bution derived in Ref. 20: E(p )~mp (67+7a) and
F(p') p ( —65 —7a).
S. J. Eidelman, L. M. Kurdadze, and A. I. Vainshtein, Phys.
Lett. 82B, 278 (1979).

We find this result quite remarkable, since the natural conden-
sate scale is the distance between confined nonstrange and
strange quarks, which we presume to be R, =0.5 fm on the
basis of many low-energy scattering experiments. Converting
this radius to a qq number density, we estimate

(qq )
~

=(4trR„'/3) ' =(250 MeV)', consistent with Refs. 11

and 28.
We are grateful to R. Mendel (private communications) for
pointing out that in the naive MIT bag model when one ap-
proaches the chiral limit of m,.„„,&g2/R, where R is the —1

fm bag radius,

+ 0(m currR)

'N. H. Fuchs and M. D. Scadron, Phys. Rev. D 26, 2421
(1979).

32Calculation of (qq ) from the phenomenological quark loop of
Fig. 4, as described in Ref. 14, corresponds closely to calcula-
tion of ( 4+ ) from Schwinger-Dyson physics, as described in

C. N. Leung, S. T. Love, and W. A. Bardeen, Nucl. Phys.
B273, 649 (1986).

This result follows from Eq. (4.10) of Ref. 21, specialized to
Landau gauge (a =0), where Ref. 21's results and ours coin-
cide. The gauge-parameter dependence found in Ref. 21 (as
discussed in Ref. 14) occurs through identifying the mass ap-

pearing in (2.1) with the Lagrangian mass mL, which vanishes

in the chiral limit, rather than with the self-consistently
defined propagator pole m, which becomes md„„ in the chiral
limit.

34H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973); D. J. Gross
and F. Wilczek, Phys. Rev. D 8, 3633 (1973).
For example, only condensates of dimensions 5 and 6 will gen-

erate O(g ) contributions to the fermion 2-point function.
The factor of (p' —m ) in the denominator of (4.10) arises
from summing the series in (4.9), a series whose sum

[(p' —mttt)/(p'- —m')] goes to t asP~m.
D. Johnston, LPTHE Orsay Report No. 86/49, 1986 {unpub-
lished).
V. A. Fock, Phys. Z. Sowjetunion 12, 404 (1937);J. Schwinger,
Particles and Fields (Addison-Wesley, New York, 1970); M.
A. Shifman, Nucl ~ Phys. B173, 13 (1980); C. Cronstroem,
Phys. Lett. 90B, 267 (1980); M. Dubikov and A. Smilga, Nucl.
Phys. B185, 109 (1981).
V. Elias, Can. J. Phys. 64, 595 (1986).

4oSee Eqs. (5.18.5) and (5.22.7) of E. Hansen, A Table of Series
and Products (Prentice-Hall, Englewood Clift's, NJ, 1975).

'It is this absence of spinorial indices that ensures that the
VEV (A32) does not have a dimension-5 mixed-condensate
projection.


