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We point out intriguing connections between the chiral quark model in which the nucleon is

treated as a soliton and the ordinary potential-binding quark model. The axial-vector coupling
comes out near the value —', rather than around 0.7 as in the Skyrme description and can be easily

"fine-tuned" to its experimental value. A "linear potential" in some sense is generated as a collec-
tive effect of the "meson cloud. " Contact with QCD is made by introducing a gluonium field so as

to satisfy the trace-anomaly equation. In the simplest treatment of this field one predicts a scalar-
isoscalar state at 900 MeV in agreement with a recent analysis of experiments. The model is used to
discuss how a "nontrivial winding number" emerges for the meson fields. A number of additional
features of the model are treated.

I. INTRODUCTION

In the last few years there has been a great deal of
work by many different groups with somewhat different
points of view which nevertheless points to a similar pic-
ture for the structure of the nucleon. Everyone agrees
that, at some level, the nucleon contains three valence
quarks. These are traditionally confined in an ad hoc
though reasonable way by imposing baglike boundary
conditions. ' An important realization has been that
chiral symmetry requires the existence of a "meson
cloud" (as believed long ago) surrounding this bag. In
fact, the successful revival of the Skyrme model which
pictures the nucleon purely as a solitonic excitation of the
efFective chiral Lagrangian describing the meson cloud
suggests that the cloud plays a major role in the low-

energy description of the nucleon. The precise de-
lineation of the role of the quarks versus that of the
cloud, is, of course, model dependent but an interesting
conceptual argument, the "Cheshire cat" picture, sug-
gests that one may get the same physics with an arbitrary
division between the core and the cloud. A possible way
in which this might work in practice is that as one intro-
duces more different kinds of mesons in the chiral La-
grangian describing the cloud, the role of the quark core
diminishes. For example, if the core is neglected com-
pletely the chiral Lagrangian should contain in addition
to the pions, vector mesons and perhaps other still
heavier particles. This is reasonable since it is now well
known that the Skyrrne model of pions gives only a crude
description of the nucleon which is improved (but not
perfected) by the addition of vector mesons.

In this paper we shall be concerned with a model in
which the pions but not the vector mesons contribute to
the cloud. There are several options for treating the

meson coupling to the core. The most conceptually
straightforward involve the explicit introduction of a
bag. This has the advantage that confinement is built in
but the disadvantage that the inclusion of the bag degree
of freedom complicates the calculation. Here, instead,
we shall investigate some aspects of the chiral quark mod-
el, ' in which no mechanism for confinement is explic-
itly assumed. We are not trying to demonstrate that this
model is superior to others for fitting nucleon properties.
(The uncertainties associated with the precise formula-
tion and method of handling each model would probably
preclude a fair comparison anyway. ) Rather we are at-
tracted by the fact that the chiral quark model is about
the simplest one available. Furthermore, by not imposing
confinement it leaves open the relation between nucleon
structure and the QCD gauge fields and so may enable
one to test various pictures of this relationship. In partic-
ular we will be interested in investigating the effects of a
gluonium-type order-parameter field 0 which will be in-
troduced into the effective Lagrangian in such a way as to
mock up the trace anomaly' of QCD. It was previously
shown' that such an approach could produce, in the
Skyrme and related pure meson models, a "nonperturba-
tive vacuum" outside the matter-field region, thereby
simulating an important aspect of bag confinement. The
same general picture will be seen to hold in the chiral
quark model. It will also be seen that the process of
confinement is most directly related to the matter, rather
than glue, fields in this model. We will see how this may
be reconciled with the fact that asymptotic freedom
(which essentially amounts to confinement) requires the
glue fields to play a dominant role.

In addition, we shall also study the way in which the
nucleon mass and axial-vector coupling constant depend
on the parameters and the way in which the topological
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aspect of the Skyrme model emerges. We will demon-
strate that another possible matter term, which cannot be
denied on a priori grounds, enables one to improve the
agreement of the model with experiment.

Section II contains a review of the chiral quark model,
a discussion of the behavior of the soliton mass and
axial-vector coupling g~ in both the linear and nonlinear
cases, and a discussion of the effects of an extra deriva-
tively coupled quark-meson term. It furthermore con-
tains a discussion of two conceptual aspects of the model:
how a nontrivial "winding number" for the meson fields
emerges (in the linear case) and how a "linear potential"
arises as a collective effect of the meson cloud. In Sec. III
we treat a model for adding gluon effects based on the
QCD trace anomaly. Assuming a parallel structure to
the eff'ective Lagrangian for the U(1) anomaly in QCD
one is led to an interesting relation between the masses of
the 0+ isovector and (nonstrange) isoscalar mesons. Sec-
tion IV is devoted to alternative models for adding
gluonium-type fields to the chiral quark model. Finally
in the Appendix we investigate, for a speculative applica-
tion of the chiral quark model to heavy "fourth"-
generation quarks in the standard model, the nontrivial
effects of a noninfinite Higgs-meson mass.

1 . 1M—= —(a+is rr): —pU . —
2 2

(2.2)

Here we have also indicated an alternative decomposition
of M with p a chiral singlet and U a 2 X 2 unitary unimo-
dular matrix. The pion decay constant is F„=&2 u

=&2(a) =&2(p) =132 MeV. g is the Yukawa cou-
pling constant and c is a dimensionless parameter related
to the mass of the o.. In the limit when c gets very large p
gets frozen to its vacuum value and we have the non-
linear version of the model.

Although the chiral quark model has been around for
quite a while' ' it is only recently that the mean-field
treatment of the baryon state in it has been pursued. A
number of authors have made advances in computing
corrections of the "cranking" type to the collective
quantization" ' necessary for the baryonic states.
Furthermore a justification for the nonlinear model from

II. THE CHIRAL QUARK MODEL

Here, for orientation and for establishing notation, we
will briefly review the chiral quark model (CQM}. We
will also make some new remarks. In our present context
the chiral quark model ' is essentially the SU(2) Gell-
Mann Levy' o model (with the u- and d-quark fields re-
placing the proton and neutron) treated with the mean-
field approach suggested by Kahana, Ripka, and Soni
and by Birse and Banerjee. The Lagrangian density is

X = —
—,'Tr(c}„Mc}„M) —qy„c}„q

&2g(qiMq~—+q&M qL)

—c[Tr(MM ) —v ]

where the left- and right-handed quark-field projections
are defined by qL ii

——[(1+y&}/2]q and the meson matrix
M is related to the pion and a scalar isosinglet cr by

QCD based on the "instanton liquid" model has been
given ' as has a connection with the Nambu —Jona-
Lasinio model in the large-N limit.

In this model one solves for the quark wave functions
(using the Dirac equation) in the self-consistently deter-
mined (classical) meson field. An ansatz for the meson
fields which rejects their intrinsic properties is the static
hedgehog form

m;, =x;m(r), a, =cr(r}, (2.3)

with n.(0)=0 to keep n;, w.ell defined at the origin. In the
nonlinear limit this is restricted to the Skyrme form:

n(r) = v sin8(r), a (r) = u cos8(r), (2.4)

where 8(0)= n~, —n(winding number) =0,+1,. . . .
With the hedgehog ansatz for the meson fields the La-
grangian (2.1) has an additional symmetry under simul-
taneous rotations in space and isospin space. The result-
ing solutions for the quark fields are not eigenstates of J
and I but of a grand spin K=—I+J. This is rectified by a
collective quantization as in the Skyrme model. The ap-
propriate ansatz for a quark spinor with positive parity
and E =0 has the form

q, =

iF(r)
r
G(r)

r

1X= (aiP2 —aP, ),
2

(2.5}

FF' ———gGcr —gFm=eG,
r

(2 6)

with the normalization 4n fu"dr(F +6 )=1. g is a
functional of rr(r) and cr(r). The total energy contains
also a piece E [m.,a] due to the meson fields

E„,[n, o ]=No[mr, o.)+E [m, a],
where

~&2 0 &2 2~2E [n, a]=4m f r dr.
0 2 2 r2

l

(2.7)

+c(cr +n. —u ) (2.8)

and e may be expressed as

e[m. ,o ]=4m f dr[go(F G)—
0

2FG(gn+ I l—r)+GF' FG') . —
(2 9)

Note that N in (2.7) is the occupancy number for the or-
bital of energy e. Finally the total energy must be mini-
mized with respect to vr and o.:

5 E„,(vr, o )= E„,(rr, o )=0 .
5

(2.10)

where a, and P, are two-component spin and isospin
wave functions, respectively. The Dirac equation with
energy eigenvalue e obtained from (2.1) is

G—G' ——+gF0 —gG~=eF,
r
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For the meson energy in Eq. (2.8) to be finite we must im-

pose the boundary conditions Et t N ——gU +9+RU (2.12)

m(~ }=0, o(ao }=v . (2.1 1)
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FIG. 1. Plot of the normalized valence energy level e/gv
(rapidly falling) as a function of the normalized size gvR of the
meson cloud with a linear ansatz. Some other levels are also
shown. These were obtained by direct numerical integration of
the differential equation and agree well qualitatively with those
shown in Fig. 2 of Ref. 8 found by a different method.

The Lagrangian (2.1) with the linear realization of the
meson fields represents, of course, a renormalizable
theory. However there is no need for an effective chiral
Lagrangian to be renormalizable. We should mention
here that Soni and others have shown that including
all the "Dirac sea" levels in the energy estimate (2.7) (the
"Casimir effect") leads to an unstable vacuum state for
the Lagrangian (2.1). This arises from meson-cloud
configurations of very small size and may thus be con-
ceivably related to the lack of asymptotic freedom of
(2.1). In any event, it is not clear that one should push an
effective Lagrangian to such high energies and the prob-
lem may be cured with a reasonable large momentum
cutoff.

To get a feeling for the dynamics of the mean-field ap-
proximation let us first consider the nonlinear model.
Following Ref. 6 we make a rough calculation using (2.4)
with a meson cloud having a trial size R:
8(r)= n(1 r/—R),—r &R and 8(r)=0, r ~ R. The ener-

gy of the cloud is then, from a numerical integration,
E (R)=9nvR .If o.nly the cloud were present, this
would correspond to the situation in the Skyrme model
without the stabilizing "Skyrme term. " Then minimiza-
tion of E (R) would cause the meson cloud to collapse.
In the chiral quark model the baryon is stabilized because
the K =0 energy eigenvalue e descends rapidly from posi-
tive to negative energy (becoming asymptotic to the
"Dirac sea" orbital eigenvalues) as the trial meson cloud
size R increases. In the range of interest this dependence
is shown in Fig. 1 along with other K~ levels. Very
roughly the energy of the 0+ level is fitted by
e=n /R —gv so that the total energy in (2.7) then reads

Minimizing this with respect to R gives the cloud size
R = v'N /3v and the total energy

E„,(R) =6nvv'N Ng—v . (2.13)

The nucleon corresponds to three quarks (N =3) in the
K =0 orbital so the Yukawa coupling constant g is
around 7.5 (a more accurate variational calculation
reduces this to around 5}. We remark here that the solu-
tion for the minimum requires the quarks to be relativis-
tic. However it will be interesting to draw parallels be-
tween this model and the old nonrelativistic quark model
so let us consider the case when e=gU =m, the effective
mass of the quarks. A nonrelativistic reduction of the
Dirac equation yields an effective potential

V(r)=g [o(r) v]— (2.14)

which for the approximation above is
V = gv (cos—n r /R + 1 ) for r & R. Using the standard re-
sult for the appearance of a bound state in a square well

of depth Vo and width R, VOR y m. /2m one expects a
threshold around gvR =n /2 which is roughly the case in

Fig. 1. Increasing the strength of the mesonic interaction
drives the quark valence level down sharply and for gUR

large enough the level joins the "Dirac sea." This ex-
treme case corresponds to the adiabatic limit in the
Skyrme model in which the topological winding number
of the meson cloud [8(~ ) —8(0)/n =1] is equal to the
baryon number of the Dirac sea. We also point out that
the existence of other valence levels shown in Fig. 1 sug-

gests that it may be possible to find bound states of
quarks and antiquarks with an appropriate pion cloud.
(Presumably such a cloud should have winding number
zero. )

The above picture is quite appealing but there is the
apparent conceptual difhculty that a quark is not
confined. Note that Eq. (2.13) with N =1 for a single
quark and g =7.5 from the fit for the nucleon, predicts a
mass for a quark in a meson cloud larger than its free
mass (gv } so we do not expect bound systems containing
one quark. The objection to having free quarks in the
model is reasonably answered by noting that we are in-
terested in computing the nucleon properties and
confinement may not play a big role unless we consider
very large orbital excitations (so the binding "string" gets
stretched). A hint of confinement and possible connec-
tion with glue fields will be discussed later in this section.

Let us now discuss the full self-consistent treatment of
the nonlinear model allowing 8(r) to go to its true mini-
mizing profile. This problem was first solved numerically
by Kahana, Ripka, and Soni and by Birse and Banerjee.
We will be interested in the general dependence of nu-
cleon properties on the parameters in the model rather
than doing a detailed fit with collective quantization.
Two quantities which characterize the nucleon and do
not to lowest order sensitively depend on the method of
collective quantization are its mass and its axial-vector
coupling g„.As previously mentioned, the static energy
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given by Eq. (2.7) is not the mass of an eigenstate of I or
J. To get the physical states, one must choose a method
of collective quantization which adds a rotational energy
to the system. In the Skyrme model the static energy is
fitted to E„,= —,'M ——,'M& ——0.867 GeV. However, in

the chiral quark model, some authors" have given a
reasonable argument that the energy in (2.7) already con-
tains some part of the quarks' rotational energy. They
suggest fitting E„,= —,'M~+ —,'M~=1.08 GeV to avoid
double counting. We will consider solutions with E„,in
this range. We can simply approximate g„by the
strength of the pion tail:

4m.
(2.15)

where B is given by the asymptotic behavior:

1r

n(r) — UB m„+-
f' —+ 00 T T

(2.16)

We will include in our calculations the standard pion
mass term:

Pl U

Tr(M +M —v 2U) .
2 2

In Fig. 2 we plot the quantity E„,vs g (solid line) for
the case X =3 valence quarks and winding number n =1.
Note that E„,decreases as g increases. The straight line
rising linearly from the origin in Fig. 2 is the mass of

three free quarks, 3gu. As pointed out by Soni'o there is a
maximum mass for a system of three quarks where these
two curves intersect at g=4.4. For g below this, the
lowest-energy state would be three free quarks and for g
above this critical value, the quarks with a meson cloud
would have lower energy. This does not have profound
effects on the picture for the nucleon since the nucleon
mass is safely below the upper bound of 1.25 GeV. How-
ever this same analysis can be applied to quite a different
problem. The model in (2.1) can also describe the Yu-
kawa sector for a heavy fourth-quark generation in the
minimal standard model with (necessarily, because of the
"p-parameter" bound) similar up- and down-quark
masses. This was shown ' to lead to an upper bound
on the quark mass of about 2 TeV as well as an interest-
ing phenomenology. In this paper, as a by-product, we
shall discuss the effect of the value of the Higgs-particle
mass on the above bound.

In Fig. 3 we display the variation of the axial-vector
coupling gz with the parameter g. Note that the values
of g„are a little too large, 1.55&g„&1.60, over the
range of interest while g„=1.23 experimentally. This is
reminiscent of the nonrelativistic quark model s predic-
tion of g„=—,

' which originated from the fact that the
quarks in (2.1) have an axial-vector coupling of one. It
has been known for a long time in the old-fashioned
treatment of baryons in the chiral Lagrangian that the
axial-vector coupling could be adjusted by adding suit-
able derivative terms. In the present context we may
add the term

(qL. 8UU qi. qa U $Uqa—) .
2

(2.17)

One sees, using Noether's theorem, that this modifies the
effective quark axial-vector coupling to 1+g so a value of
g = —0.25 would be needed to account for the measured
nucleon-axial-vector coupling. With a change of vari-
ables q„'= U' q„,qL

——U '
qL the Lagrangian (2.1) (in

the nonlinear limit) and (2.17) may be seen to be
equivalent to that discussed by Manohar and Georgi.
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FIG. 2. The self-consistently determined nucleon energy E
plotted against g for both the nonlinear {solid line) and linear
{dashed line) models. The pion mass term is included for both
cases and for the linear case the parameter c =20. The straight
line rising from the origin represents the mass of three free
quarks.

FIG. 3. The axial-vector coupling constant g „plotted
against the Yukawa strength g for both the nonlinear {solid line)
and linear {dotted line) models. As for Fig. 2 the pion mass
term is included and c =20.
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Those authors had the same motivation, but did not em-

ploy the present mean-field approach to the nucleon in
which the meson cloud plays a role. X' was neglected in

earlier papers treating the chiral quark model by the
mean-field approach although naive power-counting ar-
guments seem to suggest that it is on an equal footing
with the quark-pion interaction term in (2.1). In the pres-
ence of X' the following extra term should be added to
the energy in (2.9):

F, sin20—4mg dr — 0'+
0 2 T

G2
+2 sin20—0'+ 2FG sin 0+

and the equations of motion read

(2.18)

1 0' sin20 sin 06' = ———gu sin8 G+ (gu cos8 e)F—+g —+ F 6—
T 2 2T T

1 8' sin28 sin 8F'= —+gv sin8 F+(e+gv cos8}G—g G — F
T 2 2T T

(2.19)

—,'F (8'r )'= —,'F sin28+Ngv[ (F 6—)sin—8—2FG cos8]+gN (F 6) — 2FG — FF' —6—6'

The effect of X' on the full solution in the chiral quark
model is to raise Eto, and g„when g is positive and to
lower them when g is negative. Interestingly, if we
choose gv =370 MeV and g = —0.25 (as in the nonrela-
tivistic quark model) we find that E„,=966 MeV and

g„=1.3. Of course, it is possible to fine-tune these pa-
rameters. For example, if one now considers m„=0.14
GeV, the choices g =4.3 and g = —0. 16 fit the nucleon
values E«, ——1. 1 GeV and g„=1.2. It seems that the X'
term is quite useful for improving the experimental agree-
ment of the nonlinear inodel with quarks and pions.
Some of the effects of adding vector mesons and still
heavier particles might be simply modeled by adjusting g.

One of the most interesting of the heavier mesons to in-
clude is the scalar singlet already present in the linear
version of the model (2.1). We will discuss in the next
section how this particle may have a natural connection
with a gluonium-type field. Although the scalar singlets'
mass is around 1 GeV its broad width suggests that it
might be important even if the effective Lagrangian is
truncated to include only the very light particles. In this
model it is appropriate to use the ansatz (2.3) in the cal-
culation. Apart from g the only parameter is c, related to
the scalar-meson mass m by

without the g term. The energy eigenvalue of the Dirac
equation is —0. 15gv which has already "crossed over"
but is still quite far from the region near —gv where the
valence level may be considered part of the Dirac sea.
We show in Fig. 3 (dotted lines) the effect on g„ofvary-
ing the soliton mass by varying g in a relevent range. We
see that g„is not very sensitive to the mass in this range.
We also show in Fig. 2 (dotted lines) how the soliton mass
varies with the coupling constant g. It is somewhat 1ower
than the nonlinear case (solid line). The application of
the soliton mass versus g curve to finding the maximum
allowed heavy fourth-generation quark mass is discussed
in the Appendix.

Now we would like to emphasize some interesting con-
ceptual aspects of the linear model containing the scalar
field 0. The first thing to note is that the use of the an-
satz (2.3) rather than (2.4) no longer guarantees a "topo-

1.0—

m~ =Scv (2.20} » (GsV-')

A scalar mass around 1 GeV corresponds to c =14.4; the
results are not very sensitive to small variations of c. We
show in Fig. 4 a curve for the Dirac wave functions F(r)
and G(r) and the meson "profiles" rJ(r) and n(r) for the.
typical case g =6.41 and c =20.6 (corresponding to a o
mass about 1.2 GeV). The soliton mass is 0.88 GeV
which is about right for the nucleon mass when the
effects of collective quantization are included in the sim-
plest way suggested by the Skyrme model. Notice that
the axial-vector renormalization constant is g~ =1.50,
which is a small improvement over the nonlinear model

FIG. 4. For the linear model of (2.1) plus pion mass term, the
Dirac wave functions F(r), G(r), and the scalar- and
psendoscalar-meson profiles cr(r)/(o } and n(r)/(o ) are plot-
ted against r measured in units of GeV '. Here g =6.41 and
c =20.6.
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(a)

c~& 0

g=247

10

r

20 (GSV ')

-).0—

logical" number one for the meson cloud. The winding
number will be determined dynamically. From (2.4) we
see that a winding-number-one solution is characterized
by o (r) starting out negative at the origin and rising to its
positive vacuum value while ~(r) starts from zero at the
origin, goes through negative values, and then goes to
zero again at r = ~. A winding-number-zero solution is
characterized by a o(r) which remains positive. Which
winding number emerges depends on the strength of the
coupling constant g. This is illustrated in Figs. 5(a) and
5(b) where 0(r) and n(r) are plotted against r for various
values of g. We have chosen the parameter c to be 0.01.
As g decreases below about 4, we notice that the 0(r)
curve goes from crossing to not crossing, corresponding
to an adiabatic evolution of winding number from 1

to 0. At around g =2. 3, the uniform phase o (r)
=gu =const, m ( r }=0 is reached. It should be remarked
that since m. +o is not being constrained to be constant
the winding number is not required to be conserved. The
dynamics of the evolution of the cr(r) curve may be un-
derstood by referring to the expression for the quark en-

ergy in (2.9). We see that for large g, negative values of
o (r) in the region where the quark fields are nonzero can
lower the energy through the term go(r)(F —G ). (F
is larger than 6 in magnitude for a positive-energy
quark. ) For smaller values of g, the extra energy required
by the —,

'0' term for a(r) to depart from its asymptotic
value makes this possibility uncompetitive.

Note that the evolution of winding number was illus-
trated for a value of c which is rather low compared to
the expected value for strong interactions (although not
necessarily low for the application to the standard model
discussed in the Appendix). If c is larger, the transition

from winding number one to winding number zero as g
decreases no longer takes place smoothly in the bound
system. This may be understood from Fig. 6. The solid
line shows the critical g (for given c) where the winding-
number transition occurs [i.e., where 0 (0) becomes posi-
tive]. However, the dotted line shows the lowest g (for
given c}for which the bound-state energy is less than the
energy of a free system, 3gv. Clearly if c & co=1.4, as g
is decreased the winding-number-one solution becomes
energetically unstable and jumps to the unbound solution
(with a trivial 0 =U, n. =0, winding-number-zero back-
ground) before tT(0) can pass smoothly to positive values.

We see that the present model is reminiscent of the
old-fashioned quark model in a number of respects. In
the first place the quark wave functions are being deter-
mined as solutions of a Dirac equation. Furthermore the
axial-vector renormalization constant g~ tends to come
out roughly around the quark-model value —', . Now we

would like to point out an amusing similarity between the
usual quark-model confining potential and the effective
potential here, which is dynamically generated by the
meson cloud. In the nonrelativistic approximation our
effective potential is given by (2.14). This approximation
is clearly valid for small g where [see Fig. 5(a)] tr(r) does
not vary too much. For larger and more realistic g where

I
I

I
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I

I
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FIG. 5. Evolution of winding number for the linear model
with c =0.01. (a) shows o(r)/(cr ) for various values of g while
(b) shows vr(r)/(o ).

FIG. 6. Phase diagram for the linear model in the c-g plane.
The solid line separates phases of zero winding number on the
left from winding number one on the right. The dotted line
separates the bound state region on the right from the unbound
(free quark) region on the left.
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o(r) crosses the axis the model is intrinsically relativistic
but it seems reasonable to still consider (2.14) as our
effective potential for the purpose of comparing with the
quark-model approach. With a realistic fit corresponding
to the case shown in Fig. 4 we notice that the o(r) curve
is quite linear in the region where the quark wave func-
tions are peaking. The slope of the effective potential
curve dV/dr =g da/dr, depending on how much of the
region of nontrivial quark wave function one wishes to
cover, varies from about 0.2 to 0.3 GeV . In the string
model this should be equated to the string tension
1/2@a'. We thus find a' somewhere between 0.80 GeV
and 0.53 GeV . Qualitatively, this is quite comparable
to (though a little smaller than) the values a'=0. 9—1.0
found from experimental Regge trajectories. We have
found that fitting to a soliton mass 1.06 GeV improves
the agreement. Using the argument discussed at the be-
ginning of this section which [see (2.13)] gives the rough
size of the soliton to be R =1/(&3 u) we inay estimate
the slope d V/dr as 2&3 gu . Hence the predicted a' de-

pends on the Yukawa couphng and the pion decay con-
stant as a' = (2~3 mgF „)
III. THE CHIRAL QUARK MODEL WITH GLUONIUM

8„„=— Tr(F„F„)—:H .Pg
g

(3.1)

We will regard H as an order parameter field for describ-
ing gluon effects. As discussed in detail elsewhere we
may satisfy (1) in a theory of "pure" QCD without matter
by using the field H in the unique (up to two derivatives)
Lagrangian

We have seen that the chiral quark model has the intri-
guing aspect of generating something like a linear
confining potential for the quarks bound in a baryon. Of
course this is not complete confinement since the effective
potential does not continue rising after a certain value of
radius. Nevertheless it does represent what one would
normally takes as the confining potential in a nonrela-
tivistic quark-model treatment. This raises the puzzle
that since the potential is due to the meson cloud it
would appear to have no relation to gluon fields and to
QCD. However it is known that the breaking of chiral
symmetry in QCD is closely related to confinement so
the gluon fields must be playing an indirect role in the es-
tablishment of the meson cloud. It would seem desirable
to construct a simple model in which this indirect role
could be illustrated. We shall present such a model now,
based on a simple generalization of our earlier work' in
which a "zeroth-order" treatment of glue confinement
effects in the chiral Lagrangian framework was given us-
ing the trace-anomaly equation of QCD. We shall also
note an interesting consistency of this model with a re-
cent analysis of the isoscalar scalar mesons.

We mould like the energy-momentum tensor of our
efFective Lagrangian to obey the QCD scaling law (with
massless quarks)

where a is a dimensionless parameter and A, with mass
dimension 1 is a scale for QCD. This Lagrangian already
displays an aspect of confinement in that it leads to a neg-
ative vacuum energy density —A /4e. If rnatter is add-
ed, as in a modified Skyrme model, a bubble with higher
H-field energy density in the vicinity of the matter tends
to form, '

mocking up the bag model.
Notice that the first term of (3.2) is scale invariant and

does not contribute to the scale anomaly in (3.1). The
second term is the crucial one for this purpose. Actually,
in the presence of matter one may satisfy the scale-
anomaly equation with a more general set of terms. All
that is really needed is for the potential V (here construct-
ed out of the fields H, M, M ) to satisfy

H = —4V+4H +d Tr M +MBV BV t BV

BM
(3.3)

where d is an effective scaling dimension ' for the field M.
Furthermore the kinetic term for H is not necessarily
needed. Whether it appears is the dynamical question of
whether the trace of the energy-momentum tensor is
dominated at low energies mainly by a glueball field. If
the kinetic term does not appear H would get eliminated
by its equation of motion BV/BH =0 in terms of the
quarkonium scalar singlet p. Now, we have seen that the
quarkonium scalar field cr (equal to pcos0 with the
"hedgehog" ansatz) is responsible for the "linear poten-
tial. " The field p controls the overall strength so, by the
above, we have an explicit relation between the binding
and the glue. It should be remarked that an effective La-
grangian for the U(l) problem can be formulated in a
similar way. There the relevant glue "order parameter"
1s

V=c[Tr{MM ) RH' ] + ,'H ln——(3.4)

which satisfies (3.3). R is a dimensionless parameter
which is obtained from the stability condition
(BV/Bp) =0 to be R =(p) /(H)'~, a ratio of quar-
konium and gluonium condensates. With the value

A(H ) = =0.0135 GeV (3.5)

found by analysis of QCD sum rules, we have R =0.075.
The equation of motion for the field H results in

—3lg
2 ~„,.pTr~F„.F.p)

16m

and it is necessary that this gluonic field get eliminated in
terms of the quarkonium field i)'(960). Thus if we formu-
late the model without an H kinetic term there is an in-
teresting parallel structure between the trace and U(1)
anomaly effective Lagrangians. We shall first discuss this
approach in the chiral model with quarks.

The simplest model is obtained just by replacing the
potential term (last term) in (2.1) by

( i)„H {3.2)
A4, p'

H = exp 4cR —1+
e RH'" (3.6)
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This is shown in Fig. 7. We interpret this as a measure of
the bag energy density. It is confined within a region of
about 0.4 fm, and rises to a maximum of about 3.4X 10
GeV4. This may be compared with in increase of energy
density in the matter region of about 4.2X 10 GeV in
the bag model. ' However the energy density is sensitive
to the exact choice of (H ), which is not precisely deter-
mined. We point out that in the matter region, the H
field rises above its asymptotic value rather than, as for
the case' in a generalized Skyrme model without explicit
quarks, dropping below it. This feature may be under-
stood because the scalar field p [roughly 8'~H'~ by
(3.6)] governs the strength of the attractive "linear poten-
tial" and so, for sufficiently large g, it will be energetically
favorable to increase p(r) [and hence H(r)] at small r.

What can be said about the scalar meson, described by
the field p, in this model? The physics of eliminating H in
terms of p by (3.6) is the statement that the matrix ele-
ments of the operator Tr(F„„F„,) are dominated at low

energy by the singlet quarkonium state with the structure
(1/&2)(uu+dd) (in the two-flavor case) or
(1/&3)(uu+dd+ss) (in the three-flavor case). For sim-
plicity we will restrict our attention to the two-Aavor
case. It is useful to compare this situation with the analo-
gous effective Lagrangian for the U(1) problem. There,
in order for the rl (in the two-flavor case) to acquire a
mass, it is necessary that the pseudoscalar gluonium
operator G ccTr(F„,F„„)be eliminated in terms of rl.

104

GeV 0
10

(GeV 'j

FICx. 7. For the model given by (3.4) we show the quantity

D(,)
u'

+c(p2 ~H»2)

which we solve numerically to eliminate H in terms of p.
For simplicity the pion mass term is being neglected in
the present discussion. Using as input (3.5), c =21 (cor-
responding to a mass for the field p of 1.2 GeV) and

g =6.45 we find results which are, all in all, not very
different from the model (2.1) without the H field. What
may be interesting however, is to estimate the energy
density (above the nonperturbative background ) associ-
ated with the scalar fields, namely,

+c(p —gH1/2)2+ 1H ln +
&2 H (H)

2 4

This yields a neutral pseudoscalar-squared mass matrix
proportional to

r r

1 0 1 1

m 0 1
+B

1 1
(3.7)

in the uu, dd basis. Here B is a positive quantity, which
is related to the U(l) anomaly, and m „=0in the
current-algebra limit. The U(1) problem is that 8 van-
ishes by a current-algebra theorem. The existence of the
anomaly is a nonperturbative (e.g., instanton) effect
which solves the problem. In the quark-model approach
8&0 is often considered to be related to the two-gluon
annihilation diagram shown in Fig. 8. In the effective La-
grangian model the same effect is expressed by the elim-
ination of the gluonium field 6 in terms of rl. Note that
in the (uu —dd )/&2, (uu+dd )/&2 basis (3.7) becomes

m 0

0 m +28 (3.8)

which shows how the rl mass is boosted above that of the
pion. Now let us return to the present problem. We
denote the scalar isovector meson by 5 and the scalar iso-
scalar by e. The two-flavor mass squared matrix in the
basis analogous to (3.8) [i.e., (5,e)] is

m~ 0

0 m ~+28' (3.9)

(3.10)

m(e)=900 MeV . (3.11)

It is interesting that, unlike the case in the pseudoscalar

Here m &
is not close to zero and 8' should represent the

effect of the matter-glue "duality. " Specifically, we inter-
pret ms as (t) V/Bp ) while m, =m&+28' should be
obtained by computing ( d Vfp, H (p ) ]/d p ) which in-
cludes a contribution due to the elimination of the gluoni-
um field H. This calculation was carried out at the end of
Sec. II of Ref. 30; adapting that result to the two-flavor
case and allowing an arbitrary scaling dimension d for
the field p yields the formula

(";)
1+ 8(H)

Notice that the inverse coefficient 8(H)/d F in (3.10)
represents the maximum possible mass for the lightest
particle in the scalar channel. This holds even when
mixing with an additional scalar particle is included.
Now if we identify (t) V/t)p ) with the squared mass of
the 5(980) particle, use (H) from (3.5), and adopt the
canonical value d =1 we predict the e particle's mass to
be

a measure of the bag energy density. Here c =20, A=0.44
GeV, and E=0.89 GeV. The pion mass has been set to zero for
simplicity. FIG. 8. Quark "annihilation" graph.
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TABLE I. Comparison of the isovector and "nonstrange" isoscalar masses for the low-lying qq mul-

tiplets.

Orbital
state, L JPC

0—+

1

0++
1+—
1++
2++
3

Isoscalar mass-
isovector mass

(MeV)

g —m =411
co —p = 14+3

e(900)—5(975)= —75
H (1190)—B (1234)= —44+70

D ( 1283 ) —A
&

( 1275 ) =8+35
f (1274)—A, (1318)= —44+10
a)(1668)—g (1691)= —23+10

neutral channel, the (uu+dd)-type state is reduced in
mass from the (uu —dd )-type state; B' in (3.9) is predict-
ed to be negative, about —0.065 GeV . The isoscalar
particle e should have an extremely large width into two
pions; it is just like the old, relatively low-mass, and
wide scalar singlet greatly desired by nuclear theorists.

Does the prediction (3.11) for the mass of an isoscalar-
scalar meson with flavor content (uu+dd)/&2 agree
with experiment? As is well known the experimental
analysis of the scalar mesons is fraught with uncertainty.
A brief summary from the present point of view is
presented in Sec. III of Ref. 30. The standard candidate
for the (u u +dd ) /+2 scalar state has been the e( 1300)

which, though rather broad, clearly differs substantially
from (3.11). More recently, however, a reanalysis of the
low-energy scalar isoscalars has been carried out by Au,
Morgan, and Pennington. These authors use new con-
straints coming from an experiment by the AFS Colla-
boration on the double-Pomeron-exchange reaction and
find the lowest-lying scalar to be consistent with a
(uu+dd)/&2 structure at the pole location (roughly
M —iI /2) in the complex energy plane (0.91—0.35i)
GeV. This is in nice agreement with (3.11) and qualita-
tively with the extremely large width predicted. They
also find a state e'(1430) at (1.43 —0.20i) GeV which may
be a radial recurrence of e(900) and, most spectacularly,
a narrow SU(3)-singlet glueball candidate s& (991) at
(0.991+0.021i) GeV. They confirm an ss-type state
sz(998) at 0.988 GeV. One way to formulate the present
model to include the glueball candidate s&(991) is to re-
place H by H, +H2 where (,H ) = (H, ) and to include
a kinetic term only for the H2 field (which gets identified
with s&). A similar decomposition G =GI+G2 was made
in the neutral pseudoscalar channel to study both the
g'(960) and the c(1440). Clearly a very detailed analysis,
including also SU(3)-symmetry breaking and the ss type
state, is beyond the scope of this paper. We just mention
that if one neglects mixing with the glueball candidate
state s, (991) the inclusion of the ss state generalizes (3.9)
in the standard way to

m~ 0 0

0 ms+2B' v'2B'

&2B' 2m, —ms2+B'

(3.12)

This is roughly consistent with our prediction for 8' if

m, is taken to be around 1 GeV rather than the usually
quoted 1.35 GeV. Of course, the unitarity and SU(3)-
violating corrections may play an important role. Let us
see how the "inverted spectrum" for the scalars predicted
by (3.10) fits into the empirical systematics of the quark-
model spectroscopy. In the limit of exact Okubo-
Zweig-Iizuka (OZI) rule (or leading I/X, behavior) the
(uu+dd ) and (uu —dd ) states are degenerate. Empiri-
cally we have Table I, neglecting strange-quark contam-
ination of the isoscalar states. With the interpretation of
e(900) as the correct scalar isoscalar it is seen that only
the 1++ mass splitting is likely to be not inverted among
the p-wave rnultiplets. The axial-vector mesons are clear-
ly a special case, however, since in the chiral-symmetric
framework their masses are related to those of the vec-
tors. Furthermore the precise mass to be assigned to the
A, is still not completely settled.

IV. ALTERNATIVES IN GLUING THE CHIRAL
QUARK MODEL

The model presented in Sec. III which mocks up the
QCD scale anomaly and fits nicely with the phenomeno-
logical picture of the scalar mesons put forth by Au,
Morgan, and Pennington is by no means a unique
prescription for incorporating both quarkonium and
gluonium scalars into the chiral quark model. Considera-
tions of scale symmetry alone do not supply enough con-
straints on a chiral-invariant model when there is more
than one scalar present. This was discussed for the soli-
ton model without quarks present. ' In that work the au-
thors tried to fit the G(1590) scalar-glueball candidate to
the field H and a quarkonium singlet around 1 GeV to
the field p. This option, in common with the picture dis-
cussed in Sec. III features large glueball-quarkonium mix-
ing. However this mixing is manifested as a mixing angle
rather than in the matter-glue "duality" sense.

Before discussing some general features of the two-
scalar case it should be remarked that a model rather
similar to the one discussed in Sec. III may be obtained
without deleting the H kinetic term but rather by freez-
ing out the heavy scalar by taking the limit [in (3.4)]
c~ ao. In a similar manner to the discussion of Sec. III
of Ref. 41, one will end up with the nonlinear Lagrang-
ian (here P=H'~ )
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F 2

—,'b—(B„P)— Tr(i3„UB„U)
8 y

2

—gin ——'qy Bq4
P P

—gu
( )

(qL Uq„+q„UqL)+X', (4. 1)

where b is a dimensionless constant and we have, for gen-
erality, included also the term 2 given in (2.17) which is
already scale invariant. It should be noted that the model
in (4.1) can also be obtained by requiring the nonlinear
model to satisfy the scale properties of QCD with one
scalar field assumed to dominate the trace of the energy-
momentum tensor. In (4.1) we have written 2 as if q had
the canonical scaling dimension of —,. Note that if this
were not the case (since q is an "effective" quark field we
do not know its scale dimension a priori), we could define
a new field q' as q 1(r where y is an appropriate power to
make the new field q' have the canonical scaling dimen-
sion. The scale-invariant quark kinetic term ——,'q8qf r

can be seen to be equal to —
—,'q'8q' giving again the same

form as (4.1). A similar result is obviously true for the
Yukawa term. The scale dimension of P is fixed to be one
by taking its fourth power to be equal to the scale anoma-
ly in (3.1). The model in (4.1) describes an effective in-
teraction for the light quarks, the pseudo-Goldstone bo-
sons (pions) and the pseudodilaton (glueball). The mass
of the glueball (2( lf ) /b) can be fitted with the paraineter
b and the nucleon parameters M and g„could be fitted
with g and g. The results of this model are, for the usual
value of A given in (3.5), rather similar to those for the
nonlinear model in Sec. II. There is not then a large
dependence on scalar mass. For example, taking X'=0,
we find that gz decreases from 1.8 to 1.6 as the scalar-
particle mass" increases from 0.9 GeV to 1.7 GeV. The
"bag" as measured by the percentage change in lf in the
region of the quarks is a rather shallow one. As in the
case without quarks, ' decreasing A can make the bag
deeper, at the expense of the nucleon properties.

The situation is more complicated when two physical
scalar particles appear in the spectrum. Let us take p and
1( to be the two scalars and to have mass dimension one.
Then a general effective Lagrangian reflecting both chiral
and scale symmetry can be written as

q&q g~+i(qL U—qR+q—R U'qL )

F2

8
$2Tr(B„UB„U)

—
—,'(&)~)'——,'(B„1()'—V(p, it&, A)+&', (4.2)

(4.3)

The potential can be further constrained by fitting the

where equi and $2 are functions of p/(p) and 1f /( i)() ) hav-

ing scale dimensions 1 and 2, respectively, and V is a po-
tential obeying the scale-anomaly condition

scalar masses. We also have the constraint that ($2) =1
but no such constraint on (S, ). The energetics of bind-

ing the quarks in a background meson field would tend to
enhance 4, in the region near r =0 where the quark wave
function is large while the function $2 should be
suppressed where the pion kinetic energy is large. How
this manifests itself in the physical scalar states is clearly
model dependent. Still, it is comforting to know that the
qualitative nature of the nucleon is not too sensitive to
these details as we shall illustrate in the following discus-
sion.

Let us begin by first considering a model which is
motivated from the linear cr inodel. We take I,=p/(p)
and $2 ——(p/( p ) ) . Furthermore we assume that the
scale anomaly is dominated by P so that we can take, for
our potential,

r4
V=c(p —Rii'j ) + —,'ir'I ln (4 4)

This is essentially the model discussed in Ref. 30 to fit a
glueball candidate at 1.59 GeU and a scalar-quarkonium
state around 1 GeV. The parameter R ' is fixed to be
(p) l( f) =F e ' /v'2A and we take A=0.44 GeV
from (3.5). Then to fit the scalar masses we choose
c =24.4 and b =0.66. The resulting solution (taking
g =0 for simplicity) for the nucleon is again very similar
to the linear o model presented in Sec. II. The field 1(& de-
viates only slightly from its vacuum value. If one now
tries the same model with eV, =1()/(1()) and 4'2 ——p /(p)
one finds quite different solutions for 1( and p but the
same qualitative solution for the nucleon. Similarly if one
tries Si ——p/(p), eV2

——1() /(f) one again finds different
solutions for p and f with the same qualitative solution
for the nucleon. These last two cases seem to lower the
energy slightly due to the independence of 4', and $2 and
the energetics of enhancing Si and suppressing eV2 in the
region near r =0 as discussed earlier. Rough calculations
indicate that one can get a 10% improvement in the fit
for g„using two scalar fields in this way. The main point
is that the scalar degrees of freedom do not, for A given
by (2.5), have a substantial effect on the nucleon proper-
ties. As we discussed in Sec. III, however, the general
structure induced by the scalars seems to furnish a link
with the underlying QCD model, which may lead to a
deeper understanding of that theory.

Finally we remark on the possibility that Si or $2
might contain a singularity. For example, if
4, =(p /(p) )(1())/g there is a singularity as g tends to
zero. This causes an instability in our numerical program
due to indefinite negative-energy contribution near the
origin. Another possibility is S,=(p/(p) )/(1 —R '~ P/
p) which has a more controllable singularity at r~ ~
when R'~ it&=R' (lf)) =(p). This model was proposed
by a number of authors in a different context to mimic
QCD confinement. The effective quark mass in (4.2) is
gv4, and so would go to infinity as r ~ ~, thus confining
the quarks. We refer to Ref. 45 for the phenomenology
of this model. If (1,) is finite and there are no other
singularities the qualitative picture of the nucleon is un-
changed from the linear o. model.
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V. SUMMARY AND DISCUSSION

It may be helpful to summarize the main results of this
investigation. First, we have emphasized that the CQM
provides a tantalizing link of the effective chiral Lagrang-
ian approach to the ordinary quark-model approach.
This is manifested in its prediction of the well-known
axial-vector-current coupling gz. Rather than yielding a
value around 0.7 as in the Skyrme model, the CQM gives
a value closer to the quark-model value of —,'. Specifically,
as the soliton mass (which gets modified to the nucleon
mass in a somewhat model-dependent way by collective
quantization) varies from 880 to 1220 MeV, gz decreases
from 1.57 to 1.49 in the nonlinear CQM and from 1.50 to
1.45 in the linear version. From the standpoint of consid-
ering the CQM as an effective chiral Lagrangian there is
another derivative coupling quark-meson term which has
as much justification as the original one; we have also in-
vestigated the model with this term included and shown
that g~ may be easily "fine-tuned" to its experimental
value. In the ordinary quark model a binding potential
(usually taken to be linear in r) is added in an ad hoc
manner. We have pointed out that the CQM generates a
rather linear potential with around the usual slope in the
distance scale of interest. This is a collective effect of the
meson cloud. We have also shown how in the linear ver-
sion of the CQM the nontrivial winding number which is
a characteristic feature of the Skyrrne model, dynamically
arises as one increases the Yukawa coupling g. Whether
the change of winding number is a sudden or a smooth
process depends on the value of the parameter c in (2.1).

The addition of gluonium-type fields in such a way as
to mock up the "trace anomaly" equation of QCD was
also investigated. As in similar models without quarks
present this procedure was seen to display an aspect of
bag confinement in the sense of producing a depressed
gluonic energy density (a "nonperturbative vacuum")
outside of the matter region. In the present context the
addition of gluonium-type fields shows how the "linear
potential" generated as a collective effect of
quarkonium-type mesons could be ultimately due to the
glue fields, as one expects. This comes about because of
the mixing of the gluonium and quarkonium fields re-
quired by the trace-anomaly constraint. What this means
for the spectrum of the scalar-isoscalar mesons is model
dependent. As discussed in detail elsewhere the trace-
anomaly constraint is not sufficiently strong to complete-
ly predict the masses and mixing angle if more than one
scalar isoscalar is assumed to be present. Thus, guidance
from experiment is required. Unfortunately the experi-
mental situation in this channel is notoriously complicat-
ed. If one accepts the suggestion that the two lowest-
lying scalar isoscalars are a glueball-type state in the 1.5-
GeV region [e.g., G (1590)]and a broad quarkonium state
slightly lower in mass, one can accommodate these
mesons in the present framework and obtain a slightly
improved fit for g„(seeSec. IV). On the other hand, a
recent reanalysis of the experimental data suggests that
the lowest scalar isoscalar may in fact be a broad
(uu+dd ) state at 900 MeV. This may be naturally ac-
commodated by postulating a "matter-glue duality" as

previously seen to be required for the g' meson in a very
analogous model. This approach leads to the formula
(3.10) which relates the quarkonium isoscalar mass to
that of the isovector-scalar meson [5(980)] in good agree-
ment with the new analysis of experiments. This corre-
sponds to an "inverted spectrum" in the sense that the
isoscalar lies lo~er than the isovector. We point out that
the inverted spectrum seems to be more the rule than the
exception for the p-wave qq multiplets.

In addition we have shown that, in the speculative ap-
plication of this approach to the standard model, the
finite mass (as opposed to infinite in the nonlinear version
of the model) of the Higgs meson has an important effect
in lowering the maximum possible quark mass.

We hope to have convinced the reader that the CQM
possesses a number of fascinating features and can fur-
thermore fit the nucleon mass and axial-vector coupling
in a simple way. Thus it would seem to merit further in-
vestigation both of its phenomenological predictions and
its relation to QCD. Here we have mainly taken an
operational point of view in which the model is to be
the tree level with neglect of quarks in the baryon-
number zero sector and at the Dirac equation level in the
nonzero baryon-number sector. This sidesteps a number
of well-known conceptual problems (Casimir energy, in-
stability in the ultraviolet region, double counting )

which would be present if one considered the Lagrangian
to be a fundamental rather than an effective one. Never-
theless it is important to further clarify the justification
for our operational point of view. The phenomenological
success of this model suggests that that would not be an
empty exercise.
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APPENDIX

It was pointed out that the Lagrangian (2. 1) might
also be relevant for describing a new very-heavy-quark
generation in the standard model. While parity-violating
effects are of course present, the "p parameter bound"
suggests that the up and down members of this heavy
generation should be similar in mass. This leads to a
suppression of the parity-violating Yukawa terms. The
only differences for this new application are (i) the "pion"
mass term is not present, (ii) v is about 246 GeV rather
than 93 MeV. (iii) In addition to studying the color-
singlet "nucleon" we are also interested in finding the
quark mass. This corresponds to choosing N =1 in (2.7).

It was found that the maximum allowed quark mass
was around 2 TeV. If one uses the same collective quant-
ization as suggested by the Skyrme model one finds that
extra rotational energy boosts this value by about 20%%uo.

However if one uses the collective quantization scheme of
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the chiral quark model given in Ref. 11 one finds the
mass bound not to be shifted at all. A different treat-
ment of the Skyrme collective quantization and in-
clusion of some Casimir energy effects gives about a 10%
higher result. Both of these calculations assumed the
c~ oo, or essentially the nonlinear limit of (2.1). Here we
would like to point out that the effect of a finite value of c
is nontrivial for this purpose. Note that the Higgs-boson
mass in the standard model is given by (2.20) so, for ex-
ample, c =4.13)(10,10, and 1 correspond, respec-
tively, to Higgs-boson masses of 14 GeV, 70 GeV, and
700 GeV. In Fig. 9 we show, for the N =1 situation suit-
able for discussing a heavy quark, the dependence of
quark mass on the Yukawa coupling constant g for vari-
ous values of c. We also show the straight line Ef f gU

corresponding to the uniform Higgs phase. We see that
there is a rather non-negligible dependence of the max-
imum allowed quark mass on c. For example, decreasing
the Higgs-boson mass from infinity to 70 GeV decreases
the bound from 2 TeV to 1.3 TeV.

The N =3 sector was also considered in Ref. 25 as a
strongly bound color-singlet state of three fourth-
generation quarks and it was found to have a mass upper
bound of 3 TeV in the infinitely heavy-Higgs-boson limit.
For a Higgs-boson mass of 50 GeV this bound is lowered
to around 2.3 TeV. Our calculations indicate that for a
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FIG. 9. Dependence of a hypothetical extremely large quark
mass on the Yukawa coupling constant for various values of c.

finite Higgs-boson mass one should actually start seeing
some strong Higgs binding effects in the fourth-
generation quarks with Yukawa couplings as small as
g=3.5. This would correspond to the situation where
the quarks themselves are in the ordinary phase with Yu-
kawa mass around 850 GeV.
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