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Search for diquark clustering in baryons
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In the framework of the nonrelativistic quark model, we examine to what extent baryons consist
of a quark bound to a localized cluster of two quarks simulating a diquark. %'e consider ground
states and orbital excitations for various flavor combinations. A striking clustering shows up some-
times especially for the leading Regge trajectory of the nucleon and single-flavored baryons or for
the ground state of baryons bearing two heavy flavors. This is, ho~ever, far from being a general
pattern and there are clear differences between the three-quark description of baryons and the
quark-diquark model.

I. INTRODUCTION

Diquarks are almost as old as quarks. The notion of
diquarks was already suggested by Gell-Mann in his
pioneering papers on quarks, ' and, since that time, there
has been every year an abundance of literature on di-
quarks. The concept of diquark is, however, discussed
from rather different points of view and some clarification
is needed before presenting our contribution.

In some theories of fundamental structures, the di-
quark emerges from the very beginning as necessary for
the internal consistency. This is the case, for instance, in
the so-called topological bootstrap, see Nicolescu and
Poenaru. In such extreme approaches, the baryons are
described as quark-antiquark bound states and the di-
quarks are either postulated as fundamental constituents
on the same footing as quarks or built out of two quarks
by ad hoc short-range forces.

In a more empirical approach, one does not postulate
such new forces, but one assumes for simplicity that the
baryon wave function consists of a quark orbiting around
a set of two quarks whose clustering is due to the "ordi-
nary" interquark potential only. For instance, in Ref. 3,
the baryon binding energy is estimated in two steps: first
by computing the mass of a cluster D out of two quarks
and then by solving the two-body (D q) problem. A -good
fit was obtained, but no comparison was attempted with
the exact solution of the original three-body problem.

Our study is closer in spirit to the point of view adopt-
ed by Basdevant and Boukraa and Martin. In Ref. 4, a
semirelativistic calculation of low-lying baryons was first
done, using an extension of the hyperspherical forrnal-
ism. Then a comparison was shown with the two-step
calculation, where the diquark D is built out of two
quarks and the baryon computed as a q-D system, gen-
erally in rather good agreement with the three-body bind-
ing energy. In Ref. 5, a semiclassical calculation shows
that with a two- or three-body linear confinement, associ-
ated with nonrelativistic or relativistic kinematics, the
states of high angular momentum lying on the leading
Regge trajectory consist of a quark well separated from
the two others, which form a localized cluster. This ex-
plains why meson and baryon Regge trajectories have the

same slope.
The aim of the present paper is to study systematically

this dynamical clustering inside baryons. First, we com-
pare the mass spectrum obtained from the whole three-
body Hamiltonian to an approximate calculation where
the baryon is made of a quark and a diquark. %e also ex-
arnine carefully the distribution of the interquark dis-
tances inside baryon wave functions obtained from an ac-
curate three-body calculation. The nonrelativistic proto-
type presented here allows one to discuss the various fac-
tors which can act in favor of or against the formation of
diquarks.

(i} Asymmetry of the system. In a (QQq} baryon with
double charm or beauty, the two heavy quarks experience
less kinetic energy than the light one, and tend to stay
close to each other.

(ii) Angular momentum effect. One may be afraid that,
if a baryon has a high spin, each pair of quarks should
carry part of the angular momentum and, due to centrifu-
gal repulsion, cannot form a diquark. The result of Ref.
5 suggests, however, that one quark takes care of the
whole angular momentum whereas the two others form a
diquark.

(iii) Spin effect. The quark-quark potential contains a
spin-spin component which is short ranged and favors
the formation of a diquark with spin 0.

(iv) Pauli principle. Such a spin-0 diquark is forbidden
for identical quarks which should arrange themselves in a
spin-triplet state for which the chromomagnetic forces
are repulsive.

Each of these effects will be analyzed in detail. The
asymmetry is studied by considering various Aavor com-
binations (q, q2q, )=(qqq), (qqQ), or (qQQ) of light and
heavy quarks, for which we examine all possible (q;q ) di-
quarks. In each case, the role of the angular momentum
L is analyzed by considering states with L =0 and 8.
Spin effects are exhibited by switching on and off the
spin-dependent term of the potential. Comparing the
(uuq) with the (udq) cases illustrates the constraints due
to the Pauli principle.

The paper is organized as follows. The models and the
relevant observables are defined in Sec. II. The nucleon
system (qqq) is analyzed in detail in Sec. III, while the
asymmetric configurations (qqQ) and (qQQ) are con-

38 1519 1988 The American Physical Society



1520 S. FLECK, B. SILVESTRE-BRAC, AND J. M. RICHARD 38

sidered in Secs. IV and V. Our conclusions are drawn in

the last section. Part of this work was already present-
ed ' and additional details will be provided elsewhere.

II. THE MODELS

A. The potentials

which is supported by lattice calculations and which was
extensively used for hadron spectroscopy.

The second one is the power-law potential

V' = —'( A +Br(, ),
which has been proposed by Martin" for mesons and ex-
tended with some success to baryon spectroscopy. '

These potentials have to be supplemented by a
hyperfine interaction of Breit-Fermi type:

Co; crJ
V,"=— 5(r, ) .

2 mmI J
(3)

If one treats the spin interactions nonperturbatively, it
is necessary to smear out the contact term (3), to avoid
any collapse. One could use, for instance, the Yukawa
form

We choose a simple constituent-quark picture of
baryons, ignoring relativistic corrections, although they
are certainly important for light quarks, especially to get
a linear Regge behavior out of a linearly rising potential.
Hopefully, the qualitative conclusions, concerning the
presence or absence of clustering are not affected by the
nonrelativistic approximation.

In the following, we shall adopt two different two-body
potentials, which are representative of the various models
commonly used in the literature. The first one is the fa-
miliar "Coulomb-plus-linear" ' potential:

1 aV' =—— +br" +dJ 2 v
IJ

B. The quark-diquark approximation

For a given flavor configuration (q&q2q3), we assume a
priori a diquark structure and approximate the exact
three-body problem corresponding to the Harniltonian

3 p.H=g m, + ++V(r; )
i=1 i, i&j

by two successive two-body problems. First, a diquark is
built out of the quarks q2 and q3, in s wave and color 3.
If q2 =q3, the diquark is forced to be in a spin 0 =1 state
as required by the Pauli principle, while nonidentical
quarks give rise to a o =0 diquark which is more favored
energetically. More precisely, the diquark mass mD is

computed as the ground state of the two-body Hamiltoni-
an:

Pz P3
H23 M2 +m3+ + + V(r23)

2m 2 2m 3

(6)

purely linear potential is of particular interest to study
the leading Regge trajectory and test the semiclassical re-
sult of Martin. We adopt in that case the linear part of
the potential of Bhaduri, Cohler, and Nogami and force
the rest of the potential to vanishing values. For the po-
tential (2), we adopt the parameters of Ref. 12: namely,

P=0. 1, A = —8.337 GeV, 8=6.9923 GeV'+a,

m =0.300 GeV, m, =0.600 GeV,

m, =1.895 GeV, mb ——5.255 GeV .

In the investigations presented in the next sections,
both potentials have been used with, in general, very
similar results. This is why we will display only the den-
sity distributions corresponding to the Coulomb-plus-
linear potential.

C&(0j eVss
IJ 2 m; mj p'i.

(4)

The diquark is now considered as a pointlike object
and the approximate baryon mass is obtained from the
Hamiltonian

In the above formulas, m, denotes the constituent-
quark mass. The —,

' factor in front of the potentials is

reminiscent from the rule V =—' V which is often used
qq

to relate the quark potentials inside rnesons and
baryons. '

We use the potential corresponding to (1) + (4) as pro-
posed by Bhaduri, Cohler, and Nogami' with the param-
eters

a =0.5203, b =0.1857 GeV2, d = —0.9135 GeV,

A=0.4341 GeV, C =0.0981 GeV

m =0.337 GeV, m, =0.600 GeV,

m, =1.870 GeV, mb ——5.259 GeV .

A successful description of hadron spectroscopy has been
achieved with this potential or with some improved ver-
sions elaborated by Ono and Schoberl' or others. A

2 2
PD

H D ——m)+mD+ + +2V(r)D) .
2m ) 2mD

The potential energy 2V(r, D) is deduced from
V(r, 2)+ V(r») in the limit r, z

——r, 3 r~D It is eq—ual to.

the potential of a qq system. Spin- —,
' baryons are calculat-

ed in this approximation, with either angular rnomenturn
L =0 or L & 0. In the latter case, the angular momentum
is carried by the quark motion around the diquark. Simi-
lar calculations are also performed with the (q2q3) di-

quark replaced by (q, q2) or (q, q3).
Note that this approximation to the three-body prob-

lem might not be variational. Let us consider, indeed, the
case of a harmonic-oscillator potential V= —', r, with

m, =m and m2 ——m3 ——M. Introducing the usual Jacobi
coordinates p=r2 —r3 and A, =(r2+r3 —2r, )/&3 and the
reduced mass p given by p '=

—,'M '+ —', m ', results in

the Hamiltonian
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Px
+p +A,

p

2

0= g 1 f (k)dl, = 1 .
0

(12)

hose lowest elgenenergy is Eo 3M -1/2+ 3p-1/2
On the other hand, the quark-diquark approximation

gives a diquark mass mD ——2M+ 3&2/3M, and a baryon
energy ED =3&2/3M +3p ', where p ' =—', ( m

+mD '). Clearly FD & E0. First, the reduced mass p. has
been increased to p, resulting in a decrease of the kinetic
energy. Also, the potential energy p +A, has been de-
creased to —', p +A, by neglecting the diquark structure
(r,~=r, 3

—r]D). Nothing can be said when the potential
has negative powers as in the Coulomb case, or when spin
forces are present.

C. Scrutinizing the ~ave function

The quark-diquark approximation of the previous sec-
tion is tested only on its results for mass calculations, so
even a good agreement with exact three-body energies
would not prove that quarks do actually cluster. This is
why we also calculate without approximation the three-
quark wave function and look whether it contains any di-
quark structure. This calculation is achieved by expand-
ing the three-body wave function

~

0) on a harmonic-
oscillator basis:

o, n, l, m, k

Here P is the projector that forces particles 2 and 3 to
be coupled to a spin o. =0 or 1. Thus, the function f (A, )

represents the probability density to find the particles 2
and 3 coupled to spin 0. and particle 1 at a distance A,

from the center of mass of the pair (2,3). We also define
D as the value of A, which makes g f (A, ) maximum, i.e.,
the most probable distance between particle 1 and the
pair (2,3).

We similarly define a two-body density g (p), by
changing A, into p in the above formulas. The function

g (p) represents the probability density to find particles 2

and 3 coupled to spin cr and at a distance p from each
other. %e call R the value of p which maximizes

g g (p), i.e., the most probable separation distance be-

tween quarks 2 and 3. If the density distributions f (k)
and g (p) are peaked such that R &&D, this gives evi-

dence for a (qzq3) diquark, as illustrated in Fig. 1(a). On
the other hand, mean values such as A =D could reveal
either the absence of diquark, as in Fig. 1(b) or a (q~qz)
or (q, q3) clustering as in Fig. 1(c). To look for (q&q2) or
(q&q3) clustering with the actual choice (10) of Jacobi
coordinates, one should introduce the angular correlation
between A, and p and define the three-body densities:

(p, &, B)=I ~

P~'P(p;A. )
~ p dII A. sinBdp ~ (13)

Here C denotes the color-singlet wave function, which is
antisymmetric. For baryons with total spin S=—,', there
are two possibilities of spin coupling for the pair (2,3),
~ =0 or 1, and thus, two basic spin functions

) =
~

—,'( —,', —,') ), , &2. The spatial wave function is ex-
panded on harmonic-oscillator basis

~ P„&) for both rela-
tive Jacobi coordinates p and l(, given by

normalized to

f h'~'(p, A. , B)k. dk, dB=g (p)

and

'(p, g, B)=I P +(p;g)
~

A, dQ~sinBdg&~

normalized to

(13')

(14)

' 1/2
2m2m3

m2+m3
(r2 —r, ),

1/2
2m, (m2+m3)

mi+m2+m3
m 2r2+ m 3I 3 —r,

m2+m3

(10)

The two oscillators are coupled to a total angular
momentum L which is conserved here since tensor and
spin-orbit forces are neglected. This way of solving the
Schrodinger equation has been described elsewhere" in
more detail. The total number of quanta %=2n+1
+2m+k is varied to check the convergence of the
method. In practice, calculations performed in a basis
with %&8 turn out to be sufficiently accurate for our
purpose. This means that we include 70 basis states for
L =0 and 18 basis states for L =8. In the case of identi-
cal quarks, these numbers can be divided by two.

We define the one-body density f (A, ):

f (A. )=(4
~

P 6(&—k)
~

'P)

= J iP 4(p;A. )i dpi', ding

with the normalization

3
ti

1

FIG. 1. Various geometries for quark distributions. R
denotes the most probable interdistance between particles 2 and
3 while D is the most probable distance between particle 1 and
the center of mass of the pair (2,3). Case (1.a), R &&D. Case
(1.b), R =D, 0=~/2. Case (1.c), R =D, 0=0 or ~.



1522 S. FLECK, B. SILVESTRE-BRAC, AND J. M. RICHARD 38

jh' '(p, A, , H)p dp dH= f (A. ) e(wj mv:ee $~1/2

which are simply related by

Ah'~'(p, l, H)=ph' (p, A. , H) . (15)
0.7—

Here H denotes the angle between A, and p, and the in-

tegration measures have been chosen in order that h'~'

and h' ' are normalized as superficial densi. ties with polar
coordinates (p, H ) or (A, , H ). Up to some factors, the densi-

ty h is the square wave function after some trivial azi-
muthal symmetries have been removed or integrated out.
Slices of the distributions h (p, A, , H ) at fixed p or at fixed A,

provide sets of planar densities which allow one for a sys-

tematic hunting of diquark clustering.

0

III. THE PROTON TRAJECTORY (d@Q)

A. The ground state L =0

0,0
0.0 0.5 1.0

R23 (fm)

I I

1.5 Z, O

We first analyze the case of the proton. The quark-
diquark approximation described in Sec. IIB is applied
either for a vector diquark (uu), or a scalar diquark (ud)0.
The comparison of the energies is presented in Table I.
With central forces only, the diquarks (uu ), or (ud)c are
identical, and for the various types of potentials con-
sidered here, the quark-diquark approximation is rather
poor (15%), the approximate mass being lower than the
exact one. When spin forces are included, the scalar di-
quark (ud)0 is lighter and more closely clustered, but this
does not improve the quark-diquark approximation. Let
us remark that the Pauli principle is correctly taken into
account for a (uu )& diquark, whereas, in the case of a
(ud)o diquark, one neglects the antisymmetrization of the
two u's inside the proton. Indeed, in the standard three-
quark wave function of the proton, any (ud) pair is only —,

'

of the time in a spin-singlet state.
We now examine the proton wave function, defined

first as a d-(uu ) configuration, for which the Jacobi vari-
able p ~ r& —r, is the distance between the two u quarks.
The spin of the (uu) pair is o = l. The density distribu-
tions g (p) and f (/(, ), shown in Fig. 2, reach their maxi-
ma at similar values R =0.66 fm and D=0.50 fm, re-
spectively, so that no striking evidence for a (uu) diquark
is seen. In the upper part of Fig. 3, we plot slices of the

e(w) mv:ee ~1/2

0. 6-

05-
04-
03-
0

0 1-

00
0.0

I

0.5
I t

1.0 1.5
R|-j2S) (fm)

Z.O

FIG. 2. Two-body density g {R23) {at the upper part) and
one-body density f, (R, 23) (at the lower part) plotted vs the cor-
responding physical distances (in fm) for the proton system in

its ground state. The u and u quarks are coupled either to spin
0.=0 (dotted-dashed line), to spin o=1 (dotted line), or no
matter the spin (solid line).

TABLE I. Total mass (in GeV) for the proton (q, q2q, ) =(duu) system in its ground state obtained in

a full three-body calculation (exact) and with an approximation based on two types of diquarks (q2q3)
and (q, qz). Two central potentials [Martin (2) and Bhaduri, Cohler, and Nogami (I}]are tested and
spin e8'ects (4) are added in the potential of Bhaduri, Cohler, and Nogami. The mean-square radii (in

GeV ') are given also.

Potential

Martin
Linear
Bhaduri

central
Central

+Q o

(( 2 ) )I/2

5.078
4.725

4.439

4.348

Exact
((i2 ))I/2

5.078
4.725

4.333

4.032

~exact

1.086
2.818

1.204

1.032

0.907
2.634

1.023

0.740

Diquark

(qlq2)q3

0.907
2.635

1.024

0.912



38 SEARCH FOR DIQUARK CLUSTERING IN BARYONS 1523

POT: BD L =O S =1/2

u(uD) POT: BD L=0 S =1~l/2 S»=O

FIG. 3. Three-body densities h'~'(R, A, , 8) (left-hand part) and h' '(p, D, 9) (right-hand part) calculated for the proton system L =0
with the potential of Bhaduri, Cohler, and Nogami. In the upper part the particles 2 and 3 are the u quarks, while in the lower part,
they are a u and a d quark. The cross at the center stands for the center of mass of the pair (2,3) and the scale measured from the bot-
tom left corner is 1 fm. The "fixed" particles are symbolized by a black circle, and their spin coupling by arrows. The various grey
slices represent the spatial probabilities of finding the remaining particles. The continuous lines separate regions with probabilities
differing by 0.1, from the white outside ( & 0.1) to the extreme dark inside ( & 0.9).

three-body densities hI~'(R, A. , 8) and h, '(p, D, 8) In.
each case, one of the relative distance p and A, has been
frozen to its most probable value. From this figure, there
is no indication for a (ud) or (uu) type of diquark.

This conclusion is confirmed in a complementary
analysis, where the proton is studied as a u(du)
configuration, with the Jacobi variable p attached to the
d-u relative motion. As seen in the lower part of Fig. 3,
where the hII" (R, A, , O) and ho"'(p, D, O) relative to a (ud)
diquark coupling are plotted, a11 interquark distances
have comparable mean values in the proton wave func-
tion resulting from our simple nonrelativistic model.

TABLE II. Same as in Table I for the proton (duu) system in

an L =8 orbital excited state. Only linear and the potential of
Bhaduri, Cohler, and Nogami are tested.

exact VI(e~e3)

quark. The results are presented in Table II for the linear

and the potential of Bhaduri, Cohler, and Nogami. With
central force only, the quark-diquark approximation is
good up to 4%, being slightly better for the potential of
Bhaduri, Cohler, and Nogami. When spin forces are
added, the approximation remains good in both cases but
the d(uu) case seems better.

B. The L =8 excited state

The d(uu), and u(ud)0 quark-diquark approximations
are now applied with the angular rnomenturn L =I&——8

carried by the relative motion of the quark and the di-

Linear
Bhaduri

central
Central

+cr.o

5.315

3.843

3.771

5.052

3.703

5.058

3.709

3.638
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Let us now look at the wave function. The one-
variable densities g (p) and f (A, ) do not give much in-

formation in the d(uu)i channel, since R =2.44 fm and
D =1.36 fm. As expected for an orbitally excited state,
the system has a large spatial extension, but no diquark is
seen so far. If we now turn to the u (ud) configuration,
the densities g (p) and f (A. ) reach their maximum at
8 =0.92 fm and D=2.28 fm, respectively, indicating a
(ud) diquark structure. This is confirmed clearly by the
various extracts of the three-body density h (p, A, , t) }

displayed in Fig. 4. This leads to two comments.
(i) Checking the validity of the quark-diquark approxi-

mation for the binding energy does not provide a very ac-
curate test of the diquark structure. In the present exam-
ple, it would favor d ( u u ), against u ( ud )o.

(ii) Why is the (ud)0 diquark favored in this specific cal-
culation? There are, in fact, two conflicting effects.

First, the (ud)o diquark is lighter than the (uu), , as a
consequence of the chromomagnetic potential (3,4), and
this favors the (ud )o-u configuration with respect to
(uu), -d. On the other hand, the (uu), -d binary system
has a larger reduced mass and thus, experiences less ki-
netic energy when I is increased. In the present calcula-
tion, the first effect is still slightly dominant for I =8, but
the state of (ud}&&-u structure is only 9S MeV below the
(uu), -d one. As I~co, the (uu)i-d state would be the
lowest one. In the real world, relativistic effects, spin-
orbit forces, coupling to decay channels, etc. , would
greatly influence the ordering of these states.

IV. THE Qqq systems

%e now study the influence of mass asymmetry by con-
sidering single-flavored A or X baryons with strangeness,

D(,UU ) POT: eD L=S S2, =1

\:
~:

~ ~

UI,UD) POT: BD L=8 S= S»= O

FIG. 4. Three-body densities for the proton system in an orbital I. = 8 excited state. Same comments as in Fig. 3.
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TABLE III. Same as in Table I for two types of Qqq system: the X=suu and the X, =cuu.

Potential

Martin

Linear

Bhaduri
central

Central

+
spin-spin

suu

cuu
suu

cuu
suu
cuu
suu
sud
cuu
cud

((r2 ))1/2

4.934
4.788
4.688
4.641
4.378
4.302
4.365
3 ~ 859
4.391
3.440

Exact
(( 2 ))I/2

4.481
3.983
4.362
3.963
4.057
3.642
3.838
3.863
3.608
3.790

~exact

1.268
2.452
2.983
4.146
1.354
2.496
1.264
1.186
2.493
2.327

1.321
2.152
2.772
3.887
1.141
2.225
0.952
1.037
2.155
2.136

Diquark
1,
'q

1 e'z ~V3

1.234
2.308
2.835
4.024
1.203
2.352
1.128
1.129
2.323
2.324

charm, or beauty. As in the previous case, the L =0 and
8 states are discussed separately.

A. The ground state L =0

In Table III are displayed the results for the two possi-
ble diquark approximations Q-(qq) and (Qq)-q using vari-
ous potentials. The Coulomb-plus-linear potential (1),
the pure linear and the power-law (2) ones gives roughly
the same conclusions. The quark-diquark approxima-

tions are antivariational, the Q-(qq) approximation corre-
sponds to 10—15% deviation from the exact three-body
energy while the (Qq)-q one is much better at around
4—6% deviation. So we note a clear correlation between
the diquark radius and the accuracy of the quark-diquark
approximation: as expected, the smaller (Qq) diquark
gives a better result than the (qq) one.

When spin effects are included, the difference between
the Q-(qq) and (Qq)-q approximations is enlarged and the
latter is clearly favored. Also the A baryons are much

S('UU) FOT:BD L~ S=l/2
R'3 = (i.68 FM

Sj'UU) FOT'.BD L~ S=l/2
R1-('=', 3)= ~).46 FM

&P
a;a;

U(US) FOT:BD L~ S=l/2
8"-:3 = 0 R'8 = (&.5C FM

U(US) FOT'.BD L~ S=l/2
8=a = 0 R1-j'-,3)= 0.5:- FM

FIG. 5. Three-body densities for the X system suu in its ground state. Same comments as i»ig. 3.
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better reproduced than the X one. In summary, the accu-
racy of the diquark approximation is around 12%, and
cannot be considered as extremely good for the case of a
(qq) diquark, while it is much better for the case of a (Qq)
diquark.

The wave function of the X(suu) is analyzed in Fig. 5,
using either the u -u or the u -s distance as the Jacobi vari-
able p. No diquark structure emerges. The size of the X
is similar to the proton one, and the interquark distances
have all the same average value of around 0.5 fm. No di-

quark structure was seen in other systems such as sdu,
Quu, or Qud, where Q is some heavy quark.

Linear

Bhaduri
central

Central
+

spin-spin

suu

cuu
SlC Ll

cuu
Suu

sud
cuu
cud

exact

5.213
6.077
3.735
4.592
3.754
3.667
4.609
4.531

4.868
5.582
3.554
4.340
3.569
3.502
4.348
4.318

~qle2~q3

5.235
6.361
3.841
4.887
3.783
3.785
4.859
4.862

TABLE IV. Same as in Table III for the systems in an L =8
orbital excited state.

8. The L =8 states

The quark-diquark approximation to the energy is
shown in Table IV, for both Q-(qq) and (Qq)-q cases. We
are in the embarassing situation where the approxima-
tions, although incompatible, seem both rather good
(around 5%). In fact, the exact spectrum contains
several nearly degenerate states, of Q-(qq) or of (Qq)-q
type, each of those being approximated by a particular
quark-diquark configuration.

We note a change with respect to the proton case, for

which the (du)-u state was slightly below the (uu)-d one.
Here the lowest state of the X type is found to be (uu)-s.
The (us) diquark is obviously more deeply bound than the
(uu), , but this is overcome by the fact that the (uu), -s sys-
tem, having a larger reduced mass, acquires more easily
orbital excitation than the (us)o-u one. This tendency is
even more pronounced for the cuu or buu cases. In Fig.
6 are shown the quark distribution densities for the

5|,'RD POT:ND L=e S=1/2
)"3 = 1 R"'.3 = 1.0~) FM

S(UU) POT:BD LM S~l/2
S~3 = 1 Rl-{2,3)= 2.12 FM

UCUR POT:IID L=e S~l/2
S="3 = 0 R"3 = '='. .='4 FM

UAJK POT:IID L I S~l/2
5'-'3 = 0 R1 —('.,3)= 1.5'-' FM

FIG. 6. Three-body densities for the X system suu in an orbital L =8 excited state. Same comments as in Fig. 3.
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U(BB) H)TED L=o S~l/2
S.-3 = i R-3 = (i. '--i) FM U(BB) FQTGAD L~O S&l/2

S"-3 = & Ri-j"=,3)= O.&5 FM

j

rc

a

I

(~fppr

BCUB) FQT35D L&0 S~l/2
S28 = 0 RQ3 = 0.46 FM IKUS) POTHEAD L~0 S~l/2

S23 = 0 R1-(2,3)= 0.20 FM

FIG. 7. Three-body densities for the ubb in its ground state. Same comments as in Fig. 3.

lowest X state. The four figures exhibit clearly a diquark
structure of type (uu)-s.

V. THE qQQ SYSTEMS

A. The ground state L =0

In Table V, the various quark-diquark approximations
are displayed. The quality of the results is the same for
the different types of potential. Clearly, the (QQ) ap-
proximation is much closer than the (qQ) one to the exact
result, and the bigger the ratio m& lm~, the better the ac-
curacy (7%%uo for uss, 1% for uec). When spin effects are
added, the quality deteriorates but, if the masses are

sufficiently heavy, the QQ diquark approximation gives
again very good results.

The three systems uss, ucc, and ubb were studied in
that case. When the mass ratio m&/m is not very large,
there is no marked diquark structure; however when this
ratio is increased, a QQ diquark structure becomes more
and more apparent. We illustrate this point on the ubb
system in Fig. 7. In at least two of the four figures, the
QQ diquark is clearly signed. The natural tendency of
the heavy particles to cluster each other is enforced by
the attractive Coulomb part of the potential, whereas the
repulsive spin effects are very weak, since they are pro-
portional to I&

Potential

Martin

Linear

Bhaduri
central

Central
+cr 0

(( 2 ))1/2 E,.„a,t
QCC

ASS

QCC

QSS

MCC

El SS

QSS

2.326
3.782
2.756
3.937
2.345
3.612
2.324
3.543

3.673
4.338
3 ~ 847
4.322
3.458
3.995
3.337
3.711

3.685
1.430
5.409
3.141
3.686
1.493
3.636
1.373

3.634
1.321
5.357
3.025
3.629
1.375
3.558
1.173

TABLE V. Same as in Table I for two types of qQQ system: the = uss and the ucc systems.

Exact(("„))'" qi(q~q3~

Diquark

3.396
1.234
5.237
2.969
3.424
1.311
3.397
1.239



1528 S. FLECK, B. SILVESTRE-BRAC, AND J. M. RICHARD 38

B. The L =8 states

The corresponding results are presented in Table VI.
The diquark approximation of type QQ does not work at
all ( —15% accuracy) and always gives a mass larger than
the exact one. On the other hand, the (qQ) diquark ap-
proximation is much better (-2% accuracy) and is al-

ways anti variational.
The examination of the wave function is very interest-

ing. We present here the uss system but the conclusions
are essentially the same for ucc. Figure 8 corresponds
neither to an isotropic configuration nor to a clear di-
quark structure. The state looks in fact like a QQ binary
system, with a diluted q cloud in between. One can easily
understand that one would never minimize the centrifu-
gal energy L(L+1)lpR with a (QQ)-q structure whose
reduced mass is very light. The angular momentum is al-

most entirely carried by the relative motion of the two
heavy quarks, i.e., l =8, whereas the light quark evolves
in a s-wave state (li ——0), around the center-of-mass of
two heavy quarks. One should probably need very high
L to have a (Qq) diquark showing up.

C. The Born-Oppenheimer approximation for qQQ

We have just seen that, while a q-(QQ) quark-diquark
approximation is acceptable for L =0, introducing angu-

U(SS) I'GAD L=S S=l/2
8="3 = 1 R'='8 = '.'='~) FM

TABLE VI. Same as in Table V for the systems in an L =8
orbital excited state.

Linear

Bhaduri
central

Central
+o'o.

Ass

El CC

llss

QCC

QSS

Eexact

5.211
6.854
3.728
5.340
3.694
5.326

9 &~92q3 ~

5.410
7.667
3.985
6.129
3.997
6.132

~eie2~q3

5.037
6.745
3.669
5.285
3.618
5.260

lar momentum tends to separate the two heavy quarks
without producing too much (qQ) clustering. In fact, the
dynamics of the (qQQ) baryons is not well described in
terms of diquarks. Instead, the Born-Oppenheimer
method gives extremely convincing results.

For a fixed QQ separation p, one solves the one-body
problem for the quark q, which is submitted to noncen-
tral forces. Relativistic variants are even allowed, using,
for instance, bag models. The binding energy eo(p) of the
quark, when added to the direct QQ interaction V2, (p),
gives an eff'ective two-body potential V&&(p), leading to a

very accurate approximation of the first QQq energies
and eigen-wave-functions. Higher states correspond to

U(SS) POTTED L=S S=l/2
S'='3 = 1 Ri-t='', 33= t).84 FM

%US) PTD L=S S 1/2
S-'8 = 0 R'-'8 = 1,'="- FM

St.'US) POTTED L=8 S=1/2
823 = 0 Rl -(~,3)= 1.85 FM

FIG. 8. Three-body densities for the = system uss in an orbital L = 8 excited state. Same comments as in Fig. 3.
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second or higher adiabatics e„(p),n &0. As in many

fields of physics, the Born-Oppenheimer method works
much better than one would a priori expect. This is illus-
trated in Table VII. More details will be given else-
where.

L=0 L=1 (L =0)*

TABLE VII. Comparison of the binding energies calculated
exactly or in the Born-Oppenheimer approximation for the (ccu)
system with the central potential (2).

VI. CONCLUSIONS
Born-Qppenheirner
Exact

3.6840
3.6848

3.9689
3.9712

4.1092
4.1096

In this paper we have performed some nonrelativistic
three-body calculations for various combinations of
quark flavors, to examine to which extent baryons can be
approximately described as a localized diquark surround-
ed by a quark. The comparison of the masses obtained in
the quark-diquark approximation with the exact three-
body calculation does not always provide unambiguous
indications. Sometimes, a q&-(q2q3) mass computed in
the quark-diquark approximation coincides accidentally
with the lowest (q, q2q3) system, whose structure is most-
ly (qtq2)-q3.

Our conclusions concerning the diquark clustering in
our simple nonrelativistic models are essentially based on
a systematic study of quark correlations in the three-body
wave function. There are only two cases where a diquark
structure emerges clearly.

(i) In qQQ baryons with low angular momentum. The
two Q quarks cluster under the combined effect of their
heaviness, the attractive Coulomb potential, and the M
suppression for the chromomagnetic repulsion.

(ii) In qqq or Qqq baryons with high angular momen-
tum. In that case the centrifugal force which separates a
single quark from a pair is the main ingredient. Howev-
er, this type of diquark results from a subtle balance be-
tween the asymmetry which favors a qq diquark, and the

spin-spin interaction allied to the Pauli principle, which
favors a qQ diquark.

For m&/m »1 a qq diquark will emerge, whereas forI& /m~ = 1 a Qq diquark occurs.
For other systems, either the quark density is rather

isotropic (low angular momentum qqq systems) or the re-
sulting structure is of a molecular type (qQQ with high
angular momentum). The arguments explaining diquark
formation are "classical" in essence (for this we agree
with Ref. 5); however, quantum effects cannot be ignored,
especially the Pauli principle which forbids some
configuration minimizing the classical Hamiltonian.
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