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A two-tier form of the Bethe-Salpeter (BS) framework is employed for the evaluation of a few typ-
ical transition amplitudes involving strong and electromagnetic decays of qq hadrons with L )0.
The two-tier BS framework, whose rationale has been described in some recent publications, is
characterized by (i) a three-dimensional reduction of the BS equation under the null-plane ansatz to
make a first contact with mass spectral data and (ii) a reconstructed four-dimensional BS wave func-

tion to restore the virtual qq effects (higher Fock states) for the evaluation of hadronic transition
amplitudes through the lowest-order Feynman (quark-triangle) diagrams. The processes explicitly
considered are the pion form factor F„(k'), (cv, a, )~yvr, (p, fz)~tttr, (a„oi)~p~, and b, ~ cotr.

These illustrate the different types of coupling structures that are generally encountered in such a
composite-hadron mode1. The agreement with the data on almost all these amplitudes is excellent,
using the same basic constants (coo, Co, m„d) as employed recently for a successful description of the
mass spectra of qq and qqq hadrons, as we11 as of some pionic amplitudes.

I. INTRODUCTION

Any serious test of a dynamical theory, be it at the
atomic (QED) or nuclear (QHD) or hadronic (QCD) lev-

els of compositeness, must of neccessity include both
"on-shell" (mass spectra) and "off-shell" (transition am-

plitudes) predictions. Of these, only QED is well tested
on both fronts, while QHD (Ref. 1), by its very nature,
remains at a more or less empirical level of theory. In
contrast, QCD, which, by all consensus, is the candidate
theory of strong interactions, has not yet found adequate
observational confirmation in the nonperturbative regime
of confinement, if only because of the inadequacy of the
mathematical tools associated with its predictive powers
precisely in this regime. Mainly for this reason effective
models of confinement motivated by QCD ideas have
over the years acquired a degree of (pseudo)credibility
which, in all fairness, can endure only if they stand on the
legs of solid experimental support on diverse fronts. In
particular, any meaningful test of such models must come
not only from "on-shell" (hadron mass spectra) but from
a wide variety of successful "off-shell" (hadronic transi-
tion amplitudes) predictions as well. A good example of
such approaches is provided by the QCD sum rules,
parametrized by the coefficients of certain higher-twist
terms (vacuum expectations of qq and gg operators),
which have successfully predicted several transition am-
plitudes (off shell), but which have proved inadequate on
the mass-spectral (on-shell) front. Bag models, in con-
trast, exhibited just the opposite features (rich in on-shell,
but poor in off-shell predictions). On the other hand,
nonrelativistic models of linear qq confinement have
proved highly successful on heavy quarkonia, both with
respect to their mass spectra as well as on a limited class
of transition amplitudes involving their own species only.
All these models contain the germs of QCD in varying
degrees, and so do other effective models, and the overall
credibility of any of these must be judged by the depth

and range of its predictive powers on both on-shell and
off-shell counts, and the result of actual contact with the
data. This will presumably be the scenario until such
time as the results of all these models get subsumed
within the predictions of lattice gauge theory which is
supposed to "represent" the exact content of QCD, but
for (i) the lack of stability of its numerical predictions as a
function of the lattice parameter and (ii) the slow pace of
arrival of "key" results.

Yet another type of QCD-oriented effective
confinement theory, somewhat different in spirit rather
from the above, can be motivated through the Bethe-
Salpeter (BS) equation with an effective qq (or qq) kernel
based on vector confinement, as the input dynamics. It
is characterized by a two-tier approach, viz. , (i) a three-
dimensional reduction in the language of the null-plane
ansatz' (NPA) to provide contact with the mass spectral
data for qq and qqq hadrons (on-shell tests) in a unified
fashion and (ii) a reconstructed four-dimensional BS wave
function' to restore the virtual qq effects (higher Fock
states), at least perturbatively. The hadron-quark vertex
thus identified facilitates the evaluation of various ha-
dronic transition amplitudes through the lowest-order
Feynman diagrams for the off-shell tests of the theory
bearing on the detailed structure of the wave function.
This two-tier approach which was suggested some years
ago ' was subsequently refined on two accounts: (i)
mathematically, " a Lorentz-invariant generalization of
the (harmonic) kernel was designed to facilitate a three-
dimensional reduction of the BS equation having the
property of null-plane covariance; (ii) physically, ' an an-
satz of proportionality of the spring constant to cz, pro-
vided an explicit QCD motivation to the kernel. (For
other details, see Refs. 11 and 12.)

In the refined form the theory has the following basic
parameters: (i) a universal spring constant coo, common
to all flavors; (ii) a second constant Co to simulate the
correct zero-point energies (vacuum structure); and (iii)

38 1454 1988 The American Physical Society



38 HADRONIC TRANSITION AMPLITUDES UNDER NULL-PLANE. . . 1455

(i) pion form factor F„(k ) and (co,az)~mr,
(ii) (p, fz)~me, (a„az)~. p~, (1.2)

which among themselves cover fairly well the distinct
types of couplings usually encountered in such hadronic
transitions. All these are in good agreement with experi-
ments, thus lending some confidence in the internal struc-
ture of the BS dynamics. Apart from this test, these pro-
cesses have also provided us with an opportunity to bring
out in some detail the algebraic structure of the matrix
elements characteristic of the two-tier BS dynamics in the
null-plane language. In Sec. II, we first summarize the
main ingredients, viz. , the structure of the hadron-quark
vertex function as finally obtained after recent
refinements"' in the earlier formalism. ' Some termi-
nology is clarified regarding the different types of off-shell
extensions of the three-dimensional wave function under
the null-plane ansatz (NPA). The NPA normalizations of
the corresponding hadron-quark vertex functions are col-
lected in Appendixes A and B for L =0 and L ) 1

mesons, respectively. Section III outlines the applica-
tions of the NPA-BS dynamics to the electromagnetic
(EM) transition amplitudes h ~h'+y to illustrate the
structure of EM couplings (form factors and transition

the quark mass m for the flavor sector under study. In
addition a very small constant Ap (with negligible effect
for the uds sectors) interpolates smoothly from harmonic
to linear confinement as one goes from the lightest to the
heaviest quarkonia. With these inputs alone, the model
seems already to have passed the "on-shell" tests through
a successful set of predictions of the spectra of both the
qq hadrons (five flavors)' and the qqq baryons (ud
flavors), ' in excellent agreement with experiment. In re-
gard to off-shell tests, its predictions' of the ~~ll,
n ~yy, and y ~3m. coupling amplitudes in good accord
with the data, ' ' constitute some preliminary off-shell
tests at low energies, bearing on the structure of the
pion's wave function predicted by the BS dynamics. At
the other extreme on the energy scale, some applications
at higher energies (structure and fragmentation functions
of the pion) have also met with some success. ' '

Encouraged by these results, we have attempted in this
paper to systematically extend these off-shell tests of the
hadronic wave function to intermediate energies by con-
sidering two classes of hadronic transition amplitudes
h ~h'+ h" and h ~h'+ y (h =qq) starting with the ud
sector. Similar calculations had been performed earlier'
on the basis of the BS wave functions then available
within the instantaneous approximation, but whose non-
covariant nature has the disadvantage of not being exten-
sible to arbitrarily high energies. To overcome this prob-
lem, it had then been found necessary to introduce a "re-
normalization" of the hadron coupling' scale, thus
greatly reducing the predictive powers of the model. The
refined formalism" ' which is automatically a null-
plane-covariant is now able to dispense with this theoreti-
cal assumption' and is thus able to make a cleaner set of
predictions free from any extra parameter beyond the
three basic constants (cop Cp mq). Specifically we have
considered the following amplitudes:

form factors) of qq hadrons through the explicit examples
of (i) the pionic form factor F (k ) and (ii) the EM transi-
tion amplitudes co~my and a&~my for L =0 and 1

states, respectively. Section IV is taken up with the cor-
responding calculations of the strong break-up processes
h~h'+h" classified under three distinct heads in as-
cending order of algebraic complexity. Sections V and
VI summarize our main conclusions especially the practi-
cal significance of these results in relation to other con-
temporary models.

II. HADRON-QUARK (Hqq) VERTEX
FUNCTION

In this section the main steps of the BS model, after the
inclusion of certain refinements in the mathematical for-
mulation and physical input parameters, are outlined.
The BS kernel based on the vector confinement' pro-
vides a common confining framework for both qq and qqq
systems it was first adapted to give a Lorentz-invariant
generalization of a three-dimensional (3D) harmonic os-
cillator (HO) in the form"

a3
V(q —k) =3nco lim — (m +q )am' P (2.1)

[This differs from the more conventional 4D HO form
C3 5 (q).] The complete BS equation for a qq system,
viz. ,

( ~m+ir"'p& )(m~ ir' —'p )2%(q)

2m
-4

( 2 ~1 ~22)f r„'"r„"'V(q —k)~(q'» (2.2)

is further subjected to three-dimensional reduction in the
NPA using null-plane variables (q~, q+, q ) by integrat-
ing out over the q variables as' '"

P(q) = f —,'dq 4(q) (2.3)

M
A3 ——A+

P+
(2.5)

where M is the composite hadron mass in the four-
mornentum P„. This form preserves "null-plane covari-
ance" in the sense that the net number of + indices in the
numerator and denominator is "conserved" on both
sides. This constitutes the necessary mathematical
refinement" over the earlier formulation. ' At the physi-
cal level, an explicit QCD motivation for the confining
term was introduced through the a, -proportionality an-
satz:"

after a prior Gordon reduction, a step which is now
better justified under NPA than under the earlier instan-
taneous approximation, since the component p, of any
four-momentum p,„ is, in the light-cone formalism,
defined as

p, =&2k/p, +, ~21——(mqz+p, Zi) (2.4)

corresponding to the on-shell condition p;„+m =0. In
this formalism, the third component A 3 of a three-vector
A (= A~, A3) reads as"
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(2.6}

where

a, (Q )= ln
12m Q

33 —2
A =250 MeV (2.7)

D+(q)PL(q) =co D(q)gl (q), (2.8)

where

M
D+(q)=2P+ m +qz+

+

M
4

(2.9)

for a hadron with pj =0, is the NPA denominator func-

tion defined by

2&l

(q)
—dq /h&Az, 5& z

——m +p& z
+

(2.10)

and D(q) is a quadratic differential operator defined in
Ref. 11. The corresponding three-dimensional wave
functions for L )0 states have the standard HO forms"

M q+
Po(q) =exp — qj+ for L =0

2P2 P2
(2.11)

and"

2L
pL

——nLp q; q &', , No(q) o L»

and coo is the new "universal spring constant, " same for
all flavor sectors. A second refinement was the replace-
ment of the HO term as r ~r Co—/coo to simulate the
correct zero-point energies for the different flavor sectors
at the cost of a second universal constant Co. A third
refinement was introduced for effecting a smooth transi-
tion from harmonic to linear confinement, during the
passage from the lightest to the heaviest quarkonia at the
cost of a small constant Ao (=0.0283) (Ref. 12), but this
aspect does not figure in this paper which is concerned
only with the light ud sectors with equal quark masses
(m

~
——m2 ——m~). The NPA reduced three-dimensional BS

equation for PL (q) has the form (p", 2
= ,'P"+q—")(Ref. 11)

baryons' under a common framework without further
individual assumptions.

Having thus rooted the three-dimensional form of the
BS dynamics in hadron individual spectroscopy (on-shell
tests) the next step is to reconstruct the four-dimensional
BS amplitude 4, essentially through an inversion of Eq.
(2.3) (Refs. 10 and 11):

+(Pl P2 } ~F(P1)~(q)~F( P2 }

I (q) =X„' 'I,D+ (q)PL (q)/(2m. i) .

(2.15)

(2.16)

This has the consequence of incorporating the virtual qq
effects (higher Fock states) on different types of hadronic
transition amplitudes perturbatively through the lowest-
order Feynman diagrams. ' (For further arguments justi-
fying the two-tier approach, see Refs. 14 and 18.) In Eq.
(2.16} the constant Dirac matrix I; corresponds to qq
states in question (e.g. , y, for pseudoscalar, iy e for vec-
tor mesons, etc. ), and Nh

' which should be proportional
to P+' in accordance with the demands of NPA covari-
ance, " represents the standard BS normalizer (via
current conservation). For an on-shell pseudoscalar
meson P with the wave function Po, Eq. (2.11), the BS
normalizer is given in Ref. 11, whereas the calculation of
Nh

' for L =0 V mesons, and all types of L & 1 mesons
are outlined in Appendixes A and 8, respectively, using
the three-dimensional wave functions (2.11) and (2.12).

Further examination of the structure of the three-
dimensional wave function, Eq. (2.11), indicates that the
pseudoscalar particles (m, k, . . . ) do not conform to the
conditions under which the general structure (2.11) was
derived, viz. , the condition D+ =0, termed "on shell" for
the hadron in question. " Such conditions are fairly well
satisfied for the (vector) mesons (p, co, . . . ) as may be seen
from the results of V~e+e decays derived in Appen-
dix A. The same presumably applies to L-excited had-
rons, but not readily for vr, k, etc. , qq states of L =0, so
that some relaxation of the "on-she11" condition for the
pseudoscalar hadrons may be necessary in practice. This
defect can be remedied in two ways.

(a) When the hadron (P) and one of the two quarks (p2)
are "free" (on shell), ' ' the four-momentum (p&) of the
nonfree quark can be eliminated in favor of pz and P, so
that

p =coo(mqMa, /y )'

2coo
yz

Mm

4Co
mq cxs

The HO parameter p is given by'

(2.12)

(2.13)

thus defining a "—,'-off-shell" wave function

P =exp
p+2

4p' »+

M q+ —e+ e = —(-,' P+ —P ~+ )(-,'P —»- )pz
(2.17}

coo ——158 MeV, Co ——0.296, m =270 MeV, (2.14)

Using the input parameters of the three basic constant of
the model. 1 1 Pz+

4p2 2 P+
M —2m

pz+
(2.18)

the three-dimensional BS equation shows good mass spec-
tral predictions for qq, qQ, QQ mesons' and (qqq}

and a similar function with p&
—pz. The corresponding

normalizer for ~ works out as' '
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N' '-=(2~) '-"(~P')-"N P-'

in terms of a "reduced" normalizer N given by

(2.19) M q

P+

2 2
&q+

coj =m +q~ (2.21)
P i+F2+

=m (1.448) . (2.20)

This type of wave function (and norm) has been found to
be a~ppropriate for high-energy processes involving struc-
ture' and fragmentation' functions. Still another kind
of o8'-shell extension is provided by the replacement'

(2N ) 2=(qrP2) f dq~ f x dx(mq+xq~+x M )$0—oo 0

/=exp[ ——,'P (q~+x m )l(1—x )], x=2q+/P+ .

The associated normalizer N ' ' works out as

(2.22}

as originally envisaged, " without invoking the on-shell
hadron condition. The corresponding wave function,
termed "off shell" is given by'

' 1/2
1 1f dx(1 —x )[P (1—x )+m + —,'M2(1+x )]exp[ —m2x P (1—x2) '] . (2.23)

This is appropriate for certain low-energy pionic amplitudes. ' For the present calculation of certain hadronic decays,
the "half-off-shell" form (2.18) for the pion seems to be the right choice on kinematical grounds (see Secs. III and IV).

III. EM TRANSITION AMPLITUDES

n this section we shall illustrate the structure of the EM couplings of qq hadrons through the explicit examples of
the pionic form factor and the (ii) (a&, co)~qry transition amplitude. The calculational pattern follows the same formal
procedure as described earlier' for the BS normalizations, form factors, and EM transition amplitudes such as co~a.y.
Thus, the general structure of an EM amplitude 9'„which covers both situations (form factor and transition form fac-
tor) is of the form

P„(h~h'y)=(2qr) NI, 'Nh ' Trf d —q[iy„'Pg(p'„p2)(mq iy p2)'P„—(p, ,p~)+(1=2)], (3.1)

where h and h are the two hadrons involved in the initial and final states, and the second term corresponds to the pho-
ton (k„) interacting with the quark number 2 [Figs. 1(a) and 1(b)]. The necessary kinematics for Fig. 1(a) are

I 1+72& ~ I 1+12& P1 I 1 (3.2)

For the pionic form factor, h =h'=qr and k will be considered in the spacelike region (k &0) of the off-shell photon.
For the transition amplitude co~qry, h =co, h'=qr, and the photon is real (k =0). Finally the limit k„~0 (for h =h')
corresponds to the BS normalization of the hadron (h), whose calculations are summarized in Appendix A for the
different types of h (except for h =qr which was given already in Ref. 11) that are involved in this paper. For all of these
cases, the equal masses (m ) of the ud quarks ensure that the second term (1—2) in (3.1) gives an overall multiplicative
factor of 2 only.

A. Pion form factor

Inserting Eqs. (2.15) for 4 in (3.1), the form factor of the pion may be expressed entirely in terms of Fig. 1(a) as

(2qr) N'„'N' ~
——'e fd qjdq+ ,'dq (D+D'+P—P„,)(h~b, I62) 'Tr„(qrn'y),

~i,2=I],2+m ~i=I j +m2 2 & &2 2

2q =Pl P2~ 2q =P
&

—P2 ~

Tr„(qrqr'y)=Tr[y5(mq+iy p~)y (m5iqy p, )iy„(mq iy p, )]—,

(3.3)

(3.4)

(3.5}

(3.6}

which simplifies to

4[ ,'P„'6, + ,'P„A', —+2p,„+M2+—„—(M'„+—,'k')p, „],
(3.7)

I

half-off-shell structures (2.18), and the denominator func-
tions D+, D'+ are given by (2.9) for the momenta (p„p2)
and (p &,p2), respectively.

Before carrying out the integration in (3.3), it is first
necessary to project out the four-momenta p&„and p2„ in
the (only surviving) direction of P„:

p~P=2(p~i +p~l =
I »I" I

=
I
+ I

(3.8)

The functions P employed in (3.3) correspond to the

p2-P

P
(3.9)
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(k~ —k2 &0) (3.20)

h(P) —p2 = —p2 h (P )

h(P) p p'
1

=
1 ~ h(P)

(a)

FIG. 1. Electromagnetic transition amplitudes for h ~h'+y
via quark triangle. For notation see the text.

aF„(k')
Bk

which works out as

k =02
(3.21)

(R2 ) =—,'P f '(0)f x dx(m +x M )E(x,0}

It is easy to check that f (0) is proportional to N, as
expected. The quantity F (k ) may be identified as the
pion form factor, normalized to F„(0)= 1.

Now the form factor at low k is essentially governed
by the "pion radius" which is defined through

where
=(0.459 fm) (3.22)

(3.10)

Furthermore,

4p2 P= —2M —Ai —bi+23~ . (3.11)

= [2p2+;D'+;D+ ], (3.12)

1 1 1 1 =0. (3.13)

To carry out the integrations in (3.3), it is convenient to
convert q to the p2 variable' whose pole 52 ' is on
the opposite side to those of b,

~

' and (bI) ' (for small

enough values of k+). Some important results are"

D+D+ —'dp,

This value is rather small compared to the recent experi-
mental value ' of (0.6625+0.006}, suggesting that our qq
pion is a rather "tight" structure, perhaps not far re-
moved from the Goldstone pion field of the modern
chiral theories. While this features has helped us in pre-
dicting' certain low-energy pionic amplitudes in confor-
mity with the low-energy theorem and with experi-
ment, ' ' our description of the pion as a qq composite
has exacted a price through its prediction of a small ra-
dius which necessarily implies a more gentle fall in the
form factor at small k than observed, ' even without a
further need for an explicit display. We also record the
prediction of the closed form (3.15)—(3.18) for large k,
for which some data are also available. ' The results of
this comparison which are given in Fig. 2 over the ex-
tended range 0(k ( 10 GeV, reveals a much better

[ ]=(—,'D++ ,'D'++2p2+M—„)[1+—,'(M + —,'k )/P ].
Next, the integration over d q~ is carried out trivially,
after the substitution from (2.18), so that only the integra-
tion over dq+ ——dp2+ remains. Substituting p2+ ——xP+,
so that 0&x & 1, and using (2.19), we have, after some
simplifications,

7„=2eP„F (k ), F (k )=f (k2}jf(0),
where

(3.15)

Use of these results (3.9)—(3.13) in (3.3) via (3.7) gives

V„=4(2m)2NI„'NI .'e f d q~dq+P P [ ]P„
(3.14)

1.0.

o.9-,

o.8.

o.7

c 0.6

C
0.5

0.&

f(k )=f x dx D(x, k )E(x,k ),
0

D(x, k ) =mq +2xP +x (M + —,'k )

1E(x,k')=exp [—,'M +m' ——,'m x

——,'x(M + —,'k )]

(3.16)

(3.17)

(3.18)

0.3

0.2

0. 1

In deriving Eqs. (3.15)—(3.18), use has been made of the
following results which are valid in the Breit frame:

6

k

8 10 12

P,p ~ ——P +—,'k, k =k+ /P (3.19)
FIG. 2. Pion form factor F at large k: theory vs data (Ref.

21).
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overlap with the corresponding data. For further discus-
sion, see Sec. V.

B. (co, a2) ~qyy amplitudes

Our next example concerns a "transition form factor, "
co~my with h =co, h'=m, with the emission of a real

photon (k =0), which implies either k+ ——0 or k =0.
The former (k+ ——0) is more in conformity with the
"form-factor" scenario (Breit-frame) of the last subsec-
tion and corresponds to the final hadron moving in the
same direction as the initial one (P'+ P——+). The corre-
sponding transition amplitude is expressed by

P(re yrr)=(2 )rrN' 'N' 'e Jd r)D+D'+P P ((r,k', 6r) 'Tr(mrry),

Tr(c(iqyy }=Tr[iy co(mq+iy p2')ys(mq i y p', )iy(mq —iy p, )]=4m—qPsy,

Psy = e12v2c2mi2e+2 Pp

(3.23)

(3.24)

(3.25)

The integration over the internal momenta follows identical lines to (3.6)-(3.14), only the calculation is simpler now.
The final result is

9'(co~my)=4'mqePsy(N N /PP ) J 2x dx 8(x)
0

)& exp
2M 1

( —,
' —x) +

2P ' 4P

2M
+2m' (M~+m /x)

4p2
(3.26)

where
—1

8 '(x)= +
2p2 4p2

(3.27)

which ensures Q P=0, for unequal-mass hadrons. Nu-
merically,

~ Q ~

is the two-body decay momentum listed
in the Particle Data Group (PDG) tables, ' and

Q = —Q /Q+, so that one finds

x =p2+ /P+ =p2+/P+

The integration yields

(3.28)
Q gQ = 2), yi= 1+

P+ 4Q'
(3.34)

P(cc2-+Try)=ePsy(2. 578)= Psy(0. 999) . (3.29)
M

The last equality shows a direct comparison with
Schwinger's vector-meson-dominance (VMD) form with
0.999~1.00. The width in turn is given by (Q=380
MeV)

2
Q

3

I
y
—— (2.578)

=0.887 MeV (cf. 0.852 MeV, Ref. 16) . (3.30)

(3.32)

r rr

M
(3.33)

The calculation of the a2~~y amplitude follows identi-
cal lines, except for the replacement in (3.25}:

co„~g„A„„,q„=q„+ P„, (3.31)
3/2 q P

as may be seen from Eq. (2.12) with L= 1. This factor
must new be included in the q integration. This is readily
achieved by noting that since only one qz factor is in-

volved, which is effectively a three-vector, only its q+
component will contribute. [See Appendix B, Eq. (B4)
and subsequent remarks for justification. ] In addition, q„
can be decoupled from the external kinematics through
the obvious replacement

The rest of the procedure is now identical to Sec. III B,
with the extra factor q+/P+ included in x integration
vide Eq. (3.26) and the invariant Ps replaced by

Psy vPsy =Q„A„qe„„2e+2P' (3.35)

The final result is

P( a 2 Try )=eP sy ( —2. 3600),

which corresponds to

I (a2 Try)= —,
' a

~ Q ~
( —2.3600)

=0.48 MeV (vs 0.297+0.066, Ref. 16),

which is in fair agreement with the data.

IV. HADRONIC TRANSITIONS (h ~h'+h")

Our next task is to illustrate the analytic structure of a
purely hadronic class of transition amplitudes
(h~h'+h "} as obtained from this formalism using
lowest-order Feynman (quark-triangle} diagrams. The
standard processes, which sample the main varieties of
hadronic coupling structures as qq composites are similar
to those considered at the initial stages' of this program
but with two major refinements"' (outlined in Sec. II)
incorporated, thus saving a vital parameter representing
the coupling-constant renormalization' (which now gets
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"determined" by the model}. As in Sec. III, we shall
present the results for three categories of hh 'h" couplings
in ascending order of algebraic complexity, but it is first
necessary to outline the main strategy for the integration
over the internal q variable (common to all cases) which
should ensure explicit Lorentz invariance of the resultant
coupling structure, especially in view of the possibility of
an unsymmetrical choice of the "+ "

components for the
outgoing hadron mornenta involving unequal masses.

A. General procedure

Figure 3(a) shows the quark triangle diagram for the
hadronic transition h ~h'+h", with masses (M, M', M")
and four-momenta (P, P', P"). We adopt the convention
that the "quark" line of the parent hadron has four-
momentum p,„and the "antiquark" line has four-
momentum p2„, each in the direction of its arrow. The
corresponding duality diagram ' is shown in Fig. 3(b)
which describes direction of four-mornenturn flow, and
justifies a relabeling of the quark internal momenta as

n(p )

b(P)

h(p)
//

P

FIG. 3. Quark triangle diagram for (a) h~h'+h"; corre-
sponding duality diagram (b).

p1+p2~ P p1+p2~ P p1 +p2

The internal four-momenta (q) are given by

(4.2}

2q =p[ —pz, 2q'=pI —p2, 2q"=p[' —pz' . (4.3)

This ensures the overall conservation P =P'+P" via the
connections

P1 P1~ P2 P1 P3 P2 P2 (4.1} The invariant matrix element for the transition is'p

V(h h'h")=(2m') &2/3 f d q Tr[I [, (q)S (p[)I i, ,(q')SF(p3)I [, (q")SF(—pz)], (4.4)

where the color and isospin factors for all the cases con-
sidered work out as &2/3 using the method of Ref. 10,
and the vertex functions I (q) are defined by Eq. (2.16).

The next step is the integration over —,dq which in-

volves the poles of the three SF propagators, viz. ,
43 y 4j Plq +p;, at the positions

2

(i =1,3,3),p& —=
p]+

(4.5)

where co] has the common value of (m~+qt ) by virtue of
the collinear nature of the decay process (qt=q[ =qj }.
Of these, the p, and p2 poles are necessarily on oppo-
site sides of the q plane, while the p3 pole is on the
same side as p1 or p2 accordingly, as the value of p", +
is &0 or &0 (i.e., pz+ is &Oor &0), respectively.

Thus, for p 1'+ & 0, there is only the 62 pole on one side
which makes it convenient to close the contour on its
side, taking p2' as the integration variable. Similarly for

p2+ &0, there is only the 61 pole on one side, whose in-

tegration is facilitated with p1 as the variable. There is
a simple geometrical interpretation of these two integra-
tion zones which is intimately associated with the direc-
tion of the mornenturn flow in the null-plane language:
In the rest frame of the parent hadron h, if the p1 quark
moves "forward, " then p, + »p2+ & 0. Such an inequali-

ty results from the p2 quark moving "backward, " which
implies that p2+ ——p2'+ has only a small positive value,
thus it is reasonable to suppose that the joining quark
p",+ adds a positive contribution to it (so as to ensure for
the resulting hadron h" a modest positive value P'+ & 0}.
Since, on the other hand, p, + ——p', + »p2'+, the hadron
h' would still have P'+ &p+, despite some loss of its

6, ~

ZONE [:P+) P, & ([i )p j ZONE Q: Pi Pip p O

FIG. 4. Positions of poles in the integration zones I and II.
For details, see text.

value due to the link momentum p2+ being negative in
this case (since P'+ ——pI++pz+). Thus, the momentum
flow p['+ &0 is associated with a "forward" h' and a
"backward" h" (P'+ &P'+). The opposite scenario holds
for p&+ & 0(P'+ & P'+). The two zones correspond pre-
cisely to the two integration zones noted above with only
the 52 pole or only the 61 pole contributions, respective-
ly. These two integration zones, which are complernenta-
ry, are schematically shown in Fig. 4.

The sum of these two contributions ensures explicit
null-plane covariance for the entire amplitude (much like
s- and u-channel contributions to, say, electron-photon
scattering together ensure explicit gauge invariance for
the entire compton amplitude). Before discussing specific
applications, it is useful to express (4.4) in a format more
convenient for identifying individual decay modes. Thus
substituting from (2.16), and writing (I', I",I"') for the
constant Dirac matrices associated with (h, h', h"), re-
spectively, the transition amplitude may be written as
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V(h ~h'h") = —(PP'P") 'N„N„.N1;h"
2

g = 332'—rP 'P N N „Q

9 =f dx B„[(m2+B„}2+B„]exp[—F(x)],
0

(4.15)

(4.16)

X f d q[TR]
1 2 3

(4.6)
B —1 1p—2+ 1p—2 1 x =P 2'+ /P+ (4.17)

N( —)
( 2~ )

—3/2( qrp2)
—1/2P —lN (4.7)

where, for any hadron the reduced normalizer X& is
defined as F(x)=exp

2M

2

and the other symbols are

[TR]=—,'Tr[l'(mq iy—p1)I"(mq i y —p3)

XI"'(mq+iy p2)],

(DWF) =
P P' P"

f3,; =m +p; (i =1,2, 3) .

(4.8)

(4.9)

(4.10)

2

+ ( —' —x )(M —2m x '
) /4p2—

2 7I' q W 8p2

(4.18}

The value of g works out as 6.234, leading to a width
of

A 3 2
2 Q gpan'

p 3 M2 4~

Further, as explained for the pion form-factor calculation
in Sec. III, and again in Appendix A, [TR] must first be
expressed as much as possible in terms of the 6; func-
tions, before the q integrations are performed over the
two zones (I and II} noted above. We now consider the
individual cases in the above format.

B. p~q1qr, f2~en.
For the p~m~ case, I =iy e, and I"=I"'=y5, so

that

e„~g„T„„Q„T„„(const) (4.20)

under the kinematical conditions (4.12) for zone I. The
final form of the f2 ~qrm amplitude becomes

V(f2'.1r) —(Q„T„„Q„)gf„
where

=162 MeV (cf. 153 MeV, Ref. 16) . (4.19)

The case of the qrqr decay off2, an L = 1 tensor meson,
is similar to the above, except for the replacement

M
[TR]=e"q 6,3+M„— 32 —1 —2 2

gf 7&Pf P Nf N Qf (4.22)

+-,'e Q(b. , +h2+M2), (4.11)

where Q, defined through Eq. (3.33}, is now merely
(—,
'P' ——,'P"). In this equal-mass case (M'=M"=M„) for

two final hadrons, the two integration zones (I and II)
will give identical contributions, so that it is sufficient to
do only zone I and multiply the result by 2. Taking ac-
count of the kinematic conditions for zone I, viz. ,
P'+ =P+ »P'+ and (0&p2'+ &P'+ ) by virtue of the
definitions

P'+, P'+ =(M +Q2}' k
~ Q ~

(M /M &&1),
(4.12)

the factor e q in (4.11) is nearly equal to e Qin this case.,
and the result of q integration is just

(4.13)1, [TR] e Q

Next, for the remaining integrations, we must use the
"half-off-shell" pion wave functions, Eq. (2.18), with cor-
responding normalizers N' ', Eq. (2.19), while the p
wave function continues to be "on shell, " Eq. (2.10), and
its reduced normalizer N is given by Eq. (A9). Collect-
ing all necessary factors, the total amplitude (including
the effect of zone II) is expressible as'

C. a2 —+pm

This is a ease of unequal mass had-rons (M'&M")
which requires separate treatments for zones I and II
with appropriate changes in the definitions of P'+, P'+,
viz. ,

P' P" =(M'+g 2)'/2y
~ g ~

(M" +g )' + ~g~
(4.24)

where the upper (lower) signs correspond to zones I (II),
respectively. With the definitions I =i y.e, I"=i y.e ',
I"'=y5, we have simply

[TR]=m e„z e„e+3P' (4.25)

and 0f has the same algebraic structure as Qz Eq. (4.16).
2

The value of gf works out as 16.21 and the corre-

sponding decay width is given by

2g 5

f2~m ~ M2 g f2'.

=119.7 MeV (148+17 MeV, Ref. 16) . (4.23)

V(pen. )=2(e Q)g (4.14) where e„and e „' are the a2 and p polarization vectors, re-
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spectively. In particular, e„ is given by Eq. (3.31), where
the g„vector can be factored out as in Eq. (3.32), with

Pt
the same definition (3.33) for Q „,but now Eq. (3.34) is re-
placed by

V(azpm. ) =(18.434}P~v

leading to the width estimate

(4.31)

P'+, etc. , interchanged). The total contribution, which
comes almost entirely from zone II, works out as

Q q/Q'=—
2 P+

oM Q +—,o=Q+/P+
0

(4.26)

5

I, = (18 434}
20~

=69.8 MeV (cf. 77 MeV, Ref. 16) . (4.32)

N, N JV

0 gp'rr, „pl
P+ P'+

&r+ „&rr Psv
P'+ P'+

(4.27)

The integration over —,'dq is now much simpler, but one
must now take separate account of zones I and II.

The final result, after all other integrations, is expressi-
ble as a sum over the two zones as

This is a process involving unequal-mass hadrons
(M' & M") on the one hand, and a matrix element of the
VPP type (e.g. , perm) on the other hand. After substitut-
ing the respective Dirac matrices I =ysq B, I"=ry co,
I"'=y&, the trace part may be displayed succinctly as

»2
[TR]=(Bg) pr co —,'b, ~+ —,'63+

where P 5v is given by (3.35) and

Qr
——f dx x, B„exp[—F(x)],

D'+&+

P'+P+

-2 ) -2 1

(4.28)

(4.29)

~2

+P2 ~
CO

M

2

+» ~ ~~~+ ~~2+
M

(4.33)

2
'

2 &2F()Mq+M
1

( —,
' —x)(M —2m x ') . (4.30)

Similar formulas hold for Qrr (with the roles of P'+ and

I

From the definitions of p„pz,pr in Eq. (4.3), the follow-

ing results hold:

pz co=(P"—p, ) co, p3 co=p, co=q' co, (4.34)

Using the obvious result P' co=0, so that co.P=co P".
As in the a2~pm case, the unequal masses of the final
hadrons require separate pole integrations for zones I and
II, in accordance with the pattern of Fig. 4. The results
are

p&+ t
+(co q'), +

D'+ D+D'+

1
yd [TR] (B ~), ( p„) 1 1 Pr+ (,)

Pz+2 M'2 2

2~i h)A2A3 ' D+ D+ D+D+ D+ D+

=(B q) (ro P")—,
'

2p &+M

D,D',

(zone I),

{zone II),

(4.35)

(4.36)

where

M2+M»2 (4.37)

The factor (B g) and (co q') above may be broken up for
subsequent (qr, q+ ) integrations as

B.Q= —B P'= B+
P

g= —,'(Q P+/Q++M Q+/P+ ),
(4.39)

~+
co q =co& gz+

p+
M'

P+

(B q)=(Br.q~)+ M
P+ P+

(4.38)

(w Pl/) gP

P+

,'{M' P+P+ /P+ —M"P+ /P'+ )—,

9 Q=(co P")(M +M' . M" )/(2M )—
= (co.P")g",

(4.40}

(4.41)
The values of 8+ and co+ may be determined on the lines
of Eq. (4.26) from the respective relations where Q is given by Eq. (3.33). These results may be used
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to obtain the following connection between the transverse
components of 8 and co polarizations and the Lorentz-
invariant quantity (B.co):

(&,.@ )=(& ")+ (4.42)

(b, -+corr)=a(8 a})+b (& P")(& P')
(4.43)

The rest of the procedure is a straightforward but
lengthy application of the methods already outlined in
the preceding subsections. The final result after adding
the contributions of zones I and II (the latter being dom-
inant as in the a&pm case) may be expressed in the invari-
ant form

again expressible in the form (4.43) with

a ~a'=3. 223 348, b ~b'=0 67. 7 4366

leading to the decay width

I (a, pn)= ,' g—iV(a, p~) i 22
2 IQ I

pols 8aM

=173.6 MeV,

(4.48)

(4.49)

which is about 54.94% of the total a, width of -316
MeV (Ref. 16). For ease of reading, the results are col-
lected in Table I which also includes the masses predicted
in this model. '

V. DISCUSSION, SUMMARY, AND CONCLUSIONS

where

a = 1.681 168, b =5. 173 77 .

The unpolarized decay width is then given by

I'(bi~aim)= ,' g i
—9'(bi~aim)

i

2 IQ I

pals 8aM

(4.44)

=129.0 MeV (vs 136 MeV, Ref. 16) .

(4.45)

[TR]=m [ (e e')(5,—+S)+(e.P')(e' P")
—2(e P')(f q')],

S=(M' +M" —M )/2 .

(4.46)

(4.47)

Following an identical procedure to the b& ~~m case
for the pole integrations in zones I and II, and using Eq.
(4.38) to simplify (e '.q') together with Eqs. (4.39}—(4.41},
the final result for P(a, ~pm) (with zone II &&zone I) is

E. a& —+pm

Our last example of hadron couplings is the case of
a,pir with I'=iy ey5, I"=iy f', and I"'=ys, which
yield

In retrospect, we have evaluated some hadronic transi-
tion amplitudes of the types h~h'+y and h=h'+h"
designed as a first (intermediate energy) test of the second
stage of a two-tier BS formalism whose first stage, involv-

ing a three-dimensional (NPA) form of the BS equation,
was meant as a "low-energy" check (mass spectra of had-
rons}. This second stage has been characterized by a
reconstructed four-dimensional BS wave function ip, Eq.
(2.15), which provides the normalized qqH vertex func-
tion I (q), Eq. (2.16), in terms of the three-dimensional
wave function P and the denominator function D+. The
four-dimensional wave function ip carries with it the sig-
nature of the remaining BS degree of freedom character-
ized by virtual qq effects (higher Fock states). The basic
philosophy of this approach'0 has been one of gradual un-

folding of these effects so as to warrant a perturbative
treatment through lowest-order Feynman diagrams.
Now the good agreement of the spectral data' with the
three-dimensional BS-equation predictions for both qq
(Ref. 11) and qqq (Ref. 13) systems, unlike the predictions
of certain O(4)-type theories, had implied a relative in-
sensitivity of the mass spectra to the (virtual qq) degree of
freedom contained in the full four-dimensional BS frame-
work. Now these (perturbative) calculations of hadronic
transition amplitudes through quark triangle diagrams
should be regarded as a first systematic test of this hy-

TABLE I. Prediction of the decay widths (I ), using the experimental masses (Ref. 16) (in MeV), ex-
cept for the pion (for which the value 163 is used).

Particle
(Ref. 16)

Predicted
mass (Ref. 12)

Decay
mode

Partial decay width (I )

Theor. Expt. (Ref. 16)

m(140)
p(770)

co(783)

4(1020)
a2(1320)

A (1270)
b I (1235)
a, (1270)

915

915

1051
1352

1352
1182

po ~e+e
~77%

m —+e+e
~7Tr

(() ~e+e
a2 ~Ver

~P7Tf~~nvr.
b I ~CO%

al ~pm

6.025 keV
162 MeV

0.69 keV
0.887 MeV
1.11 keV
0.48 MeV

69.8 MeV
119.7 MeV
129.0 MeV
173.6 MeV

(6.9+0.3) keV
153 MeV

(0.66+0.4) keV
0.852 MeV

(1.31+0.06) keV
0.297 MeV

77 MeV
(148+17) MeV

136 MeV
dom. % of
316 MeV
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pothesis of gradual unfolding of the virtual qq effects
(termed "off-shell" effects in Sec. I), thus providing a
stepwise extension of this two-tier BS formalism, up the
energy scale, after the agreement with the mass-spectral
data had served as a "low-energy calibration" of the for-
malism.

Viewed in this overall perspective, the good agreement
of the results presented in Secs. III and IV with the data
seems, by and large, to bear out our two-tier BS strategy.
These processes have also provided the opportunity to
describe in some detail the integration procedure involv-

ing an interplay of the four-dimensional structure of the
matrix elements with the language of null-plane variables,
leading to explicit Lorentz-invariant structures at the
end. Further, the mathematical refinements affected"
over the initial formalism have dispensed with the need
for a "coupling-constant renormalization" which had to
be resorted to during the early applications to such ampli-
tudes' in the instantaneous approximation. In this
respect the present calculations are not only free from
any other parameters beyond the three basic constants
(coo, Co, m~) of the model, ' but conceptually more satis-
factory insofar as no "formal" restrictions on the energy
scale are involved.

As to the actual results, one of the items, viz. , the tight
shape of the pion (small radius) is a weak feature of the
model as applied to the pion which we do not yet fully
understand (see Ref. 12, the last paragraph), since the
unusually low mass of the pion makes it rather sensitive
to the approximations employed. Nevertheless, the small
value obtained for its radius, puts our qq pion somewhat
nearer to its description as an "elementary" field, charac-
teristic of the more familiar chiral theories. ' Some re-
cent results on certain "low-energy" EM couplings of the
pion as obtained in this model, ' in agreement with data
as well as chiral theory predictions, seem to support
this view. On the other hand, the present qq picture of
the pion at least allows in principle the calculation of its
form factor which has a natural conceptual basis only in
a composite description, while its dynamical significance
for an (effectively elementary) pion field, characteristic of
chiral models ' needs further clarification. As to the
actual fits to the data, the rather small radius found for
the pion has already implied (even without a formal plot)
disagreement with the observed form factor at low k, a
result for which we do not as yet have a remedy without
further assumptions. On the other hand, the sharp im-
provement in the fits to the data at higher k (Fig. 2)
seems to suggest that, our qq pion still works fairly well
on the global scale of a wider range of k, while lacking
precision of details (such as small-k regions). Similar re-
marks apply to pion's structure' and fragmentation'
functions which were also calculated in this model with a
fair amount of success.

The results on the other EM amplitudes (co, a2~ay) in
Sec. III, as well as several purely hadronic amplitudes
found in Sec. IV, must be regarded more from the
viewpoint of this two-tier formalism at the level of essen-
tial physics, then from more specific motivations. The
range of agreement with the data on a fairly representa-
tive list of hadronic transition amplitudes, especially

those involving L ex-cited hadrons, do warrant a general
degree of confidence in the conceptual framework of this
model on one hand, and the methodology of the calcula-
tional procedures (including normalization techniques) on
the other. In other words, these diverse hadronic ampli-
tudes may be regarded as very useful (intermediate-

energy) checkpoints (having earlier satisfied the "low-
energy" spectroscopic data) which inust first be
confirmed before the wider ramifications of the model can
be subjected to further tests. These ramifications lie in

the capacity of this model to make unambiguous predic-
tions on a truly wide range of transition amplitudes of
which the applications given in this paper form perhaps a
small sample. These include, among other things, unam-

biguous predictions on such theoretical quantities as the
leptonic decay constants of Qq mesons, involving very
unequal-mass kinematics (fD,fa) whose values can only

be inferred very indirectly through their non leptonic
modes whose dynamical mechanisms such as final-state
interaction or W annihilation have not yet reached a
consensus. On the other hand, such nonleptonic modes
are in principle accessible to the present model through
its formal capacity to "test" standard mechanisms such
as penguin diagrams for kaon decay ' or the W-

exchange diagram in DO,D, decays by considerably lim-

iting the "uncertainties" in the (strong) qqH vertex.
Some of these applications are under way.

VI. COMPARISON WITH OTHER MODELS

It should be of some interest to compare the scope of
this model which seeks to make up for its semiempirical
basis through an integrated view of a wide range of ha-
dronic phenomena from the lowest to the highest ener-
gies with those of some contemporary approaches in the
literature. First, while there have been several ap-
proaches" based on the null-plane language, most of
them seem to start at the "wave-function" level without
trying to connect this vital quantity to an underlying
dynamical equation (which holds the key to, among other
things, the prediction of inass spectra). In this respect,
the approach to which ours has the closest resemblance is
that of Brodsky and Lepage (BL) who had developed
the BS equation in the null-plane langauge through a
chain of equations connecting to higher Fock states
(much like the Tamm-Dancoff method of the 1950s).
However, their underlying dynamics represented by the
"QCD evolution" equation had suffered from the disad-
vantage of overemphasis (?) on the "hard-QCD" com-
ponent of strong interaction, with less attention to the
"soft-QCD" aspects which presumably play a crucial role
in the form-factor determinations. (A similar disagree-
ment with data on their m. ~2y amplitude determina-
tion was also ascribed to the same cause, as could be
traced to the structure of their null-plane wave function. )

The present approach escapes this problem, albeit at the
cost of theoretical depth. Indeed, the BL approach, had
it been experimentally successful, would have been a seri-
ous QCD-oriented candidate for a strong-interaction
theory. The present model, in contrast, seeks to bridge
the "transition region" between soft and hard QCD,



38 HADRONIC TRANSITION AMPLITUDES UNDER NULL-PLANE. . . 1465

through a "guess" for the confining BS kernel, consistent
with the disciplines of Lorentz and gauge invariance to
the extent to which these can be incorporated in an
effective (qq) interaction. As for other contemporary ap-
proaches, we have already given in Sec. I a comparison
with QCD sum-rule techniques which represents a
powerful inethod of extrapolation (based on operator
product expansions} from the "high-energy" to the "low-
energy" end. The price paid for such extrapolation seems
to lie in the loss of information incurred on the mass spec-
tral data as well as the wave functions for L-excited states
inherent in any QCD sum-rule program. Such tech-
niques, while providing valuable information on several
amplitudes involving L =0 mesons, have not proved
equally resilient for L-excited meson amplitudes (involv-
ing b„a2, etc.) which we have now predicted with con-
siderable success in this (less ambitious but more oriented
to applications) model.

Among other models proposed in recent times (apart
from the older "bag"-type models ) an interesting ap-
proach is the "Aux-tube" model with a high degree of
predictive power (including L-excited mesonic ampli-
tudes), but such models presumably stop short of dynami-
cal predictions of hadron mass spectra.

Finally, a word about lattice gauge theories (LGT's)
may be in order. Since, in principle, LGT uses the fullest
physical context of QCD, none of the models discussed
above (including of course the present one) can dare to
rank with it in terms of an absolute theoretical status,
were it not for the severe coinputational problems which
have so far failed to lend a fair degree of stability"' to its
unchallenged predictive powers. Nevertheless, recent
spectacular advances in computer technology have put
LGT's on the verge of a breakthrough (?) in terms of con-
crete QCD results for Qg mass spectra as well as cer-
tain pionic amplitudes. Once LGT gets a firm foothold
at the observational level it will automatically "put in
place" other QCD-oriented efforts of varying degrees of
theoretical sophistication. Even so, the latter would
probably retain their value as effective "bridges" between
a formal theory and various ad hoc data-based models.
The BS type approach described here, by virtue of its in-

tegrated emphasis, and considerable predictive power,
could still serve as a useful practical tool for a very
economical analysis (with very few parameters) of unex-
plored data, once its detailed working has been checked
against "known" data. These predictions lend a sort of
practical status to such models which may survive com-
parison with more fundamental theories, when it is
remembered that even modern methods of data analysis
entail several method dependent ass-umptions, especially
where strong interactions are concerned. With such a
perspective in view, several more applications of the
model are in progress.
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1. V mesons (I' =i y 0
For V mesons (p, co, P) Eq. (Al) reduces to

2iP„=(2m') (Nv ') fd qidq~ ,'dq [D—+Pi.(bibz)

)(Tr„(VVy)],

(A2)

where

Tr (VVy)=Tr[iy e(mz+iy p2)iy e(mq iy p—i)

&&iy„(m iy pi)] —. (A3)

After routine simplification, Eq. (Al) reduces to the form

+4p ipse piE p2+26'lp2 6E' (A4)

where the b, 's are defined in Eq. (3.4) of text. Further
simplification is achieved by projecting out (A4) in the
(only surviving) direction P„as in Eq. (3.9), noting that
e P =0, and doing the replacement

P„P
Epe~~ ( Epe~ ) = 5~„+P & P ~ 3 P~ M2

= —,
' Q„„(P) (A5)

to eliminate the four-vectors e„ from the other terms. At
this stage, we encounter terms like p, .P,p2-P which can
be further manipulated as

P, P=-,'S, ——,'S2 ——,'M, etc,2 {A6)

by using Eq. (3.11) of text. Substitution of these results in
(A4) will make it proportional to P„ times a scalar con-
taining terms up to 0(h ). Of these only the terms in-
dependent of 6's and those proportional to 6, only will
survive, vide Eqs. (3.12) and (3.13) of text. The b,z-pole
integration with surviving terms with the help of Eq.
(3.13) gives

APPENDIX A: BS NORMS FOR I.=0 STATES

The normalization constant Ni',
' for a qq hadron (h) is

defined by the following standard relation (via current
conservation) for equal quark masses

2iP„=(2m) Tr f d q[%'iy„%'(mq i—y p2}—,
'

+( ——,
' )%(m~+i y p, )+iy„],

(A 1)

where the four-dimensional BS amplitude 0 and its asso-
ciated quantities D+,Pt, bi z, etc. , are explained in Sec.
II. In the light of the discussion of the general case of
EM transition amplitudes in Sec. III, the normalization
calculation corresponds to the specific case h =h', k„=o,
implying p, =p', , P =P'. For the pseudoscalar qq

v
meson, the corresponding result was derived in Ref. 11.
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2iP„=(2'}'4i(NV' ')'P„fd'q, dq+P+—
2

2 2I 2+ 2 q ~2+ 2 2co~+ M 1 —
2 + m~ (A7)

where

P ( p2)tn (A8)

where $0 is the "on-shell" wave function, Eq. (2.10), for
L =0, assumed valid for all qq hadrons except the L =0
pseudoscalars (see Sec. II).

The integration is Gaussian for q~ but a truncated one
for x =q+ /P+, since ,'P—+ —(q+& ,'P+—. However, the
latter integration is seen to correspond to the error func-
tion erf(xo) where xp=M/p))1, which ensures that
even the x integration is almost fully Gaussian for all V
mesons. The final result may be expressed, analogously
to Eq. (2.18), in terms of a "reduced" normalizer Nv
through

I + ——0.69 keV (0.66+0.04),

I +
——l. 11 keV (1.31+0.06)

(Ref. 16), all in good agreement with data. This provides
a sort of a fortiori justification for the use of "on-shell"
wave functions.

2. BS norm for a& meson

The calculational technique and general procedure is
almost identical to the V-meson case, except for the
Dirac matrix I, =iy eys appropriate to the structure of
a

&
with polarization vector e„. This amounts to the re-

placement of Eq. (A3) by

Tr„(a,a&y)=Tr[iy eys(m +iy p2)iy, y e.
(~p )

'——2 2 2 ]/22
M 3

2mq 2 3 2 M
M

m, +-', p + X(m iy p—, )iy„(m iy p, —}],
(A15)

+ 2P7lq (A9)

As a simple check on our choice of the "on-shell" wave
function P for V rnesons, we record the decay coupling
constant gv for the process V~e+e which is defined
through'

Mv„
e e„=&3ee&Tr f d d +z(P, q)i y, (A10)

8v

where e& ——(—,', —,', —,', ) for V=p, P, co, respectively. After
necessary substitutions from Sec. II corresponding to the
"on-shell" function Po, Eq. (2.11), the right-hand side
works out as

4&3eeg f d q e [( —m +p, p2)

2p &

~ ep2 ~ e]Nq 'po . (A 1 1)

Further reduction is made with the help of Eqs. (A5) and
(A6) and after similar integrations to those encountered
for the Vmeson normalization, the final result is

which now works out on identical lines to the V case, and
in the same notation, as

4P„+ l—
2 M'

4m'

3 6 6 3

(A16)

(A17)

The reduced normalizer, defined through Eq. (A8), finally
works out as

N
—2

( p2)1/2 1+ t (m2+ 3p2+ ]M2)-=2 4m

M
L

After carrying out the integration over the b 2 pole, exact-
ly as before, the corresponding form of Eq. (A7) is

4m
(N,' ') =2(2m) f d q~dq+ —D+ 1+

2

+2p2+(M —4m ) $0
2l 2

=4&3e& 3(M +2mq)N& —erf
gv

' ' &~ &2P
(A12) —2m 2 (A18)

giving

g /4n =2.282

and

(A13)
APPENDIX B: BS NORMS FOR L ) 1 STATES

The L-excited qq states belong to four broad categories,
three for S =1 (p-like) and one for S =0 (m-like}. We
shall designate the p states as

T (J=L+1), A (J=L), S (J=L —1),
=6.052 keV (6.9+0.3) (A14}

(Ref. 16). The corresponding results again for "on-shell"
co and P mesons are

and the vr-like ones as 8 (J =L). Their three-
dimensional orbital wave functions which are given by
Eqs. (2.11) and (2.12) may be relativistically expressed
through the formal replacement
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q
.

q 8 . . . g g 8 . . . (P):—q 8
1 L 1 L ) 1 PL, - ''PI.

where

(B2)

1. T mesons(az, fz, etc.)

The factor I; of (2.16) in this case corresponds to the
replacement

q.P
~P qP M2

(B3}

Thus the q„vectors in (B2) are effectively three-
dimensional in content, but expressed in four-dimensional
form. In particular, the null-plane component g must
be read as"

q+M—/P+ = q3M—/P+ (B4)

r;=y, (q) 8 (B5)

For the S= 1 (p-like) meson types in (Bl), we follow the
broad procedure outlined in Ref. 20. The highest J state
T may be easily identified as the leading term (coefficient
unity) in the Clebsch-Gordan reduction:

e„@8~„.. .„=TJ„.. .„+(A, S terms) . (B6}
P)P2 PL PP j PL,

in accordance with Eq. (2.5), and does not have an in-

dependent "minus" component status unlike, e.g., the
other q variables which appear in the two SF functions
of Eq. (2.15), via p, z

——
—,'P+q. Equation (B2) is now al-

ready adequate for the 8 mesons of S=0 (qr-like) for
purposes of insertion in the four-dimensional BS ampli-
tude, Eqs. (2.15) and (2.16), through the identification

(B7)

We are now in a position to work out the BS normalizers
for T states, on lines identical to those of Appendix A,
except for the replacement e ~e„. This last has the
effect of replacing Eq. (A5) by

(e„e,) = aL8„„(P)+bL(q ) Ovqv

2J+1

(at , bt )='— ' [L+2;L],1 L!
2 2L +1!!

so that in Eq. (A4), one now finds, e.g. ,

(q 2)t.
(4pi e Jp2 e ) = [at (26i+4mq M)—

(B8)

(B9)

+br ( —2hi+4mq —M )]

(B10}

after dropping certain b; factors which will not contrib-
ute. The integrations may now be carried out exactly as
in Appendix A remembering that q„ is effectively a
three-dimensional vector, vide Eq. (B4). The final result
for the reduced norinalizer NJ, Eq. (A9) is

2

N = (nP)' m. P"=M m + „+ J+1
2J+1

4Jm 1 4m J
2J +1 M2 2J +1+ (Bl 1)

2. B~mesons (n-like)

In this case, I; is given by (B5},and the result is deriv-
able either, from Ref. 11, or simply from Appendix A,
with the replacement

t p E1'5(q ) '''8 (B12)

so that the only additional factor to be handled, over and
above the pion case, " is

2L —2L 2L
([(y) 8 ]') = ( '/P')' (813)L! (2L +1)!!

(p like) A (J =L) and S (J =L —1). For these cases, the
I, vectors are, respectively,

I;( A ) =y sa „gsq„q„A„.. .„
r, (s'}=i) qy„q„s„' . . .„

(B15}

(B16)

The calculational procedure is identical to the other cases
and the final results for the "reduced" BS normalizers,
Eq. (A9},are

J 1 2m
(J =L): N 2= ( P2)1/2 + '7

aJ M~ J
The final result (after necessary integration) for the re-
duced 8 normalizer (NL ):

Nsj = (harp ) [mq+,'M +(L+23)p ] (J=L)-2 2

X [-,'M' —2m,' —(2J+3)p'],

2J+3 2m2
(J —L 1) N 2 — ( P2)i~2

M J+1

(B17)

(B14)

3. Q gnd S mesons

Finally, for the sake of completeness we shall merely
record the BS norms for the lower-rank L-excited mesons

X[—', M —2m —(2J+5)P ] . (B18}

The S states which have J =0 for their lowest-order
realization (L =1) correspond to the "scalar" mesons
(fo, ao, etc.) (Ref. 16), while the A states, may be con-
sidered as an alternative description for the a& meson.
However, as in Ref. 10, we have preferred in this paper to
consider the simpler choice I y5y e for its Dirac I factor.
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