
PHYSICAL REVIEW D VOLUME 38, NUMBER 4

Self-dual fields and the Thirring model
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A recently proposed Lagrangian for self-dual fields is used to analyze the Thirring model as a su-
perposition of right- and left-moving fields. We show that the systematic construction of the Thir-
ring field, based on the current-algebra approach, follows from this Lagrangian and Dirac's theory
for constrained systems.

(x)= —
4 f dy j (y)e(y —x), (2)

which are constraints, since they do not contain the ve-
locities. They are second-class constraints, so that the
dynamics in the Hamiltonian formulation is best de-
scribed by means of Dirac's procedure (for details see
the works of Refs. 5 and 6).

The canonical Hamiltonian and momentum corre-
sponding to the Lagrangian (l) are

H= — dx j +j, P= — d~ j —j
and together with the Lorentz generator fdx[ %x(x)
—t P(x) ] form the Poincare algebra.

Using (2), Dirac's brackets can be computed in a

The quantization of a self-dual field (X=X') was re-
cently examined by Floreanini and Jackiw, who inter-
preted it as a charge-density soliton. They proposed a
singular (nonlocal) Lagrangian from which all the proper-
ties of the 7 field can be derived. The whole approach
can be thought of as a Lagrangian counterpart of a Ham-
iltonian program of formulating fermion fields in terms of
currents, previously proposed by Sugawara. In this pa-
per we will make this point clearer by applying the
aforementioned construction to the Thirring model. We
will also clarify other points such as the relation between
the "bosonization rules" and the "Mandelstam represen-
tation" of the fermion fields. In the past, the discovery of
the Lagrangian of the nonlinear 0. models and the explicit
construction of the energy-momentum tensor for free fer-
mion theories, realizing Sugawara's ideas, were some of
the achievements of this program.

Consider two boson fields j+ and j whose dynamics
are defined by the Lagrangian (the common time argu-
ment of all fields has been suppressed)

2=—,
' f dx dy[j+(x)e(x —y)B,j+(y)

—j (x)&(x —y)B,j (y)]

f dx[j+(x)+j (x)] .

The singular nature of this Lagrangian follows from the
expressions for the canonical conjugate momenta:

n+(x) =—' f dy j+(y)p(y —x),

straightforward way. In particular, we have

[j+(x),j+(0) j D =+5'(x),

In+(x), ~+(0) j D = + —,'e(x),

In+(x), m (0)jD ——0, [j+(x),j (0)jD ——0.
The Euler-Lagrange equations for j+ are

2~+(x ) = —j+ (x ) .

Thus, using the identity

2m+(x)=+ j+(x)

(5)

and having its time evolution governed by (3). Looking
at the equations of motion which follow (3) and (8),

B„p= i (a +ay—,j)+(u)g(u, v),

B„g=—i (a ay, )j (v)g(u, v),—

we see that two of them coincide with the ones usually
written for the Thirring model. The other two corre-
spond, in the quantized theory, to additional information
which must be given to construct the composite field

which follows from (2), we can rewrite (5) as (u =x
+t, v=t —x)

B„j =0, d„m=0, .

Bj =0, B~ =0.
Equations (3), (4), and (6) are the classical form of the

assumptions contained in the current-algebra approach of
Ref. 6. Indeed, canonical quantization is consistently
done by replacing Dirac's brackets by commutators and,
taking into account (7), introducing a Wick ordering in
the expressions (3) for H and P. It is remarkable that all
this structure, from which the Thirring field can be sys-
tematically constructed, is already embodied in the La-
grangian (I) and Dirac's recipe to quantize constrained
systems. The Thirring field is a charge-creating field P
satisfying the Dirac's brackets

I j+ (x),g(x') j D =i (a

+ay~~)g(x')5'

—'(x —x'),
(8)

[j+—(x),g(x') j D =i (a —ay~)g(x')5' +—'(x —x'),
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j=ftf by the point-splitting method. In fact, as we

have shown in Ref. 8, these two extra equations are, at
both classical and quantum level, just the integration con-
ditions of the problem.

By using (6), a solution to (9) can be written as

l
/=exp[2i(a +ay5)sr+(u)+2i (a —ay5)~ (U)] l

(10)

After quantization, the renormalized (i.e., Wick-ordered)
form of this relation will have both a dimension and a
Lorentz spin. It is the well-known bosonization rule.

Another useful representation for 1( is obtained by not-
ing that, due to (7), it is possible to write j„=t)„Q/&2
with P satisfying t) /=0. Therefore, replacing this on (2)
and (9), we get

1
t)'t=exp iaP—(x, t)+iays f dy P(y) . (11)

1

The quantum version of this equation, which differs from
(11) by just a Wick-ordering prescription to treat the ex-
ponentiated field, is the well-known Mandelstam bosoni-
zation form of the Thirring model.

The equivalence of the Thirring model to a free field

theory can be made still more transparent if we make a
change of variables

p+0'
V'2

(12)

In terms of these new variables the Hamiltonian and
Dirac's brackets become

and

H = —,
' J d x(p'+P' ) (13)

{$(x),p(0) I D =0,
IP(x), P(0) ID =i5(x),

f p(x),p(0) J D =0,
(14)

which is precisely the Hamiltonian description of an un-
constrained free field. At this point the Dirac brackets
can, of course, be replaced by ordinary Poisson brackets.
However, we must stress that the fermionic character
(the Lorentz spin) and a nonzero scaling dimension of the
Thirring field are purely quantum effects. They come as a
consequence of the multiplicative renormalization corre-
sponding to the Wick-ordering prescription, needed to
well define the composite field 1(.
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