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Four-dimensional parafermionic string
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It is suggested how to formulate a consistent string theory in four spacetime dimensions, based on
parafermionic fields. A formula for the cosmological constant is given, together with some plausi-

bility arguments for the existence of a corresponding conformal field theory and string.
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Since the number (No) of zero modes should equal the
number of transverse dimensions, it is natural to identify

There has recently been considerable interest in four-
dimensional superstrings' which cannot be regarded as
compactifications of ten-dimensional superstrings. For
example, asymmetric orbifolds where the left movers and
right movers of a closed string are compactified
differently are of this type. Nevertheless, the underlying
theory still possesses all the degrees of freedom which
characterize a ten-dimensional superstring.

It is natural to ask whether there can exist a more truly
four-dimensional string. Here we offer some comments
and speculation on the possible properties of such a string
which would possess a smaller number of degrees of free-
dom than any of those described in Ref. 1.

The guiding principles for a consistent (closed) string
are those of Lorentz invariance, conformal invariance,
and modular invariance. Although our arguments are in-
complete, we shall attempt to satisfy all these necessary
(and possible sufficientl) criteria. As we shall see, the
construction will be related to the paraquantization and
parafermions which have been discussed elsewhere. Our
remarks will show how to obtain the correct number of
zero modes in such parafermionic theories.

Since the progenitor of all strings seems to be the bo-
sonic string we begin by considering the nonintegrally
moded bosonic operators of Ref. 4. Taking 0(g & 1 and
N„oscillators with mode numbers equal to integers plus

g one finds that, for absence of a Lorentz anomaly and
presence of a massless ground state (we shall throughout
count only the transverse modes in light-cone gauge),

d =26, 10, 6, and 4 with (2a), (2b), (2c), and (2d), respec-
tively. Bearing in mind the formula

(d —2) =8p (3)

for parafermionic strings we may attempt to identify (2b),
(2c), and (2d) with parafermions of order p =1, 2, and 4,
respectively.

If we compute the partition function for the nonin-
tegrally moded bosonic oscillators we find straightfor-
wardly the results
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where
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and where we have used the fact that
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As pointed out in Ref. 4, the partition function (4b) is a
familiar quantity: it is, within an overall factor, similar
to the partition function of the Ramond sector of the
ten-dimensional superstring.

In the case of the d =10 closed type-II superstring the
complete modular-invariant partition function is as fol-
lows. We note that
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and then modular invariance dictates that we must com-
bine to form [from 4(b) and the well-known properties of
61;(0

~

r) (i =2, 3,4) under SL(2,Z)], for the cosmological
constant formula
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(which happens to vanish), introducing the Neveu-
Schwarz sectors in the 83 and 84 pieces in Eq. (7).

What if we begin with the partition function (4d) and
naively parallel the step from (4b) to Eq. (7)? A modular
invariant choice for A4 is then

sheet is concerned, the Lorentz index may be regarded as
an internal coordinate.

For the d =6 case, the fermionization becomes para-
fermionization (of order p =2}, and is hence more in-

teresting. For the quarter-integer modes N, /4 —N3/4 4
one defines
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which does not vanish. This choice is almost unique; the
only nonuniqueness is that in the numerator
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) . We may thus surmise
that A4 of Eq. (8) is the cosmological constant formula of
some d =4 parafermionic string. This is our principal
claim to which we now wish to add some supporting evi-
dence.

Consider first the d =10 case with ordinary (non-
para)fermions. Of the 24 modes (NO=8, N, /2 ——16) one
clearly employs all but N»2 ——8 to reconstruct the first
factor in (4b). For the remaining four complex g= —,

'

modes one may expand each according to
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From this, we now construct
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where we take X as complex and usual commutation rela-
tions for a and p. If we fermionize by in the Klein operators of Eq. (15). The parafermions are

then
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then one can check that
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The operators in Eq. (15) satisfy the algebra
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Note that we must use Z rather than Z on the right-

hand side of Eq. (10). Alternatively if we start with Z, we
must use Z' in the fermion, and hence use q

' rather
than q in the partition function.

In Eq. (10), when we add the Lorentz index on X and
+, it would appear at first sight that the fermions com-
mute for different values of the index; however, this can
be corrected by appropriately weighting the exponentials
of different linear combinations of the X's. This can be
similarly achieved in the other examples given below.
The point is that, as far as the two-dimensional world
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Note that the parafermions can only be of order p =2 in
d =6. Again the Z in Eq. (14), correlates with the ap-
pearance of q' in Eq. (4c).

The most interesting case is obviously d =4 where one
expands the transverse complex coordinate
(N&/s =N3/8 =Ns/s =N7/8 =2) as
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One easily checks from Eq. (22) and the corresponding
correlation function that
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We may then construct parafermions of order 4 as
(a= 1-4)

Indeed, the degrees of freedom in our four-dimensional
model may thus be regarded as parafermions of order 4,
because of the above algebra. In the partition functions
of Eqs. (4) they appear as in the normal (nonpara}fer-
mionic case, because the different commuting parafer-
mions satisfy different boundary conditions on the
worldsheet.

Although the fields we have discussed pertain only to
the first of the three terms in Eq. (8), the fields corre-
sponding to the second and third terms can be deduced
completely from the modular transformations which per-
mute the three terms; this will be discussed further else-
where.

To show that a four-dimensional string of the type we
are discussing is equally as consistent as the well-known
superstrings will probably require construction of the
two-dimensional field theory. Since we have taken ac-
count of the principal constraints for consistency, such as
the conformal invariance (and even modular invariance),
there is a good chance that such a conformal field theory
(and the corresponding string) exists and is consistent.
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