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A nonperturbative algebraic approach, which deals with long-distance physics in earnest but also
maintains a close contact with quark-line diagrams, has previously been applied to the derivation of
the

~

EI
~

= —,
' rule in the K~2m decays. Reasonable estimates of the rates of D ~trK and PK de-

cays in terms of the rate of Kz ~mm decay have also been obtained, to the approximation in which

excited state contributions to the on-mass-shell intermediate states are being neglected for the mo-

ment. In this paper, we examine our unified approach to the D~m.K, KK, and mm. and K~n.m de-

cays further, now including the four-quark [QQ][QQ) meson contribution to the on-mass-shell in-

termediate states. We find that the result provides us with a solution to the well-known puzzle in

the observed rates of various Cabibbo-suppressed decays of the D meson, particularly
I (D ~K+K )/I (D ~m. +m. )=3.6, which has never been solved in a systematic manner. In ad-

dition, it gives us a significantly improved prediction on I (D ~vrK) in comparison with

r(K,'-~~).

I. INTRODUCTION AND SUMMARY

The Do~pK decay proceeds only through the so-
called W-exchange diagram' in the naive quark model
and was expected to be severely suppressed due to the
color suppression (in addition to the helicity suppres-
sion) in the perturbative @CD approach, if we use the ap-
proximation called factorization (or vacuum insertion).
However, according to recent experiments, the decay
has turned out to have a sizable rate [B(D~$K ),„v,—1%).

In Cabibbo-suppressed decays, the D ~K K decay,
which can also take place only through the W-exchange
diagram, seems to be suppressed in comparison with the
D ~K+K decay. One may understand the suppres-
sion through the cancellation of its amplitudes, which is
expected if SUI(3) symmetry works. However, if SUI(3)
works so well in the nonleptonic decays of D meson,
how can we understand the observed large ratio (instead
of =1) of the decay rates I (D ~K+K )I
I (D ~tr+n )=3.6? This is the well-known puzzle in
the Cabibbo-suppressed decays of D meson, which has
not been solved to our knowledge in a systematic
manner.

The purpose of this paper is to present a possible solu-
tion to this puzzle from the same algebraic nonperturba-
tive approach which has been already used by us to give a
unified description of other nonleptonic decays,
K ~2tr, D ~trK, D ~/K, etc.

The method used can be viewed partly as a resurrec-
tion of the old current algebra, replacing the problemati-
cal soft-meson approximation by the much milder hard-
meson extrapolation executed in the infinite-momentum
frame (IMF). In the amplitudes thus obtained, only the
asymptotic on-mass-shell two-particle hadronic matrix
elements of the effective weak Hamiltonian H are found
to play a role. Therefore, the problem reduces essentially
to the study of these three-point functions.

These asymptotic matrix elements are then argued to
be severely constrained in our theoretical framework of
"constraint algebras involving the generators of underly-
ing symmetries of QCD plus asymptotic flavor symme-
try. "

The origin of the famous approximate b,I
~

= —,
' rule

in the K ~2~ decays and hyperon nonleptonic decays is
then found to be attributable to the fact that the asymp-
totic on-mass-shell two-particle ground-state-hadron ma-
trix elements of H„, are severely constrained to satisfy the
strict

~

EI = —,
' rule. Similarly, other two-particle had-

ron matrix elements of H„are also constrained severely.
The constraints thus obtained are also found to maintain
a close correspondence to the quark-line diagrams.

In this paper we demonstrate further, though not yet
completely, that a unified approach to the processes,
K~nm. , D~mK, D~KK, and urn [especially the ratio
I (D ~KK)/I (D ~nm)), etc. , is ind. e. ed possible and
that the presence of exotic resonances is strongly favored
in this connection.

In Sec. II we present a brief summary of the previous
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result, ' i.e., the extrapolated amplitudes for the nonlep-
tonic weak decays and also the constraints upon the
asymptotic matrix elements of H already obtained,
which will be used in this paper. In Sec. III, we derive
the asymptotic constraints upon the diagonal ground-
state-meson two-particle matrix elements of the weak
Hamiltonian H =H( —,0) (with hC = —1 and b,S=0),
which are responsible for the Cabibbo-suppressed decays
of D mesons. In Sec. IV, we study the asymptotic con-
straints imposed upon the nondiagonal matrix elements
of various effective weak Hamiltonians, i.e., 0
=H(0, —) with DC=0 and hS= —1, H( —,—) with
i((C= —1 and bS = —1, and H( —,0) with bC= —1 and
AS=0, which now are taken between the [QQ][QQ] and

IQQIt o meson states. In Sec. V, we demonstrate that
an improved unified explanation of the Ks~n+m. a.nd
D ~m. +K decays is possible, if we also add the hither-
to neglected [QQ][QQ] meson contribution to our previ-
ous estimate. In Sec. VI, it is shown that the puzzle in
the Cabibbo-suppressed decays of D meson can now be
explained by the same effect of the [QQ][QQ] meson
contribution. In the final section, a short summary is
given.

II. FORMALISM AND THE LIST OF
CONSTRAINTS UPON THE ASYMPTOTIC MATRIX

ELEMENTS OF H ALREADY OBTAINED AND
TO BE USED

A. Decay amplitude in the new hard-pseudoscalar-meson

extrapolation

We first give an approximate expression of the ampli-
tude of the weak three-pseudoscalar-meson process such
as K, -~+~-:p

P, (P() P2(P2 }+P3(q), (2.1)

1 P2 3 — ETC( 1 P2 3 ™S(Pl 2 3

The equal-time-commutator (ETC) part

(2.2)

which is symmetrized with respect to the final two
pseudoscalar-mesons. By taking a limit q~O in the
infinite-momentum frame (IMF), we obtain the extrapo-
lated amplitude for the decay, Eq. (2.1), as (for details, see
Refs. 7 and 10)

~ETC(P1 P2P3}=—1 I(2fp ) '&P3
I [~p»."]

I
P1 &+(2fp } '&P2

I [Vp,»."]
I
P1 & I (2.3)

[where H~ (H ) is the parity-conserving (-violating) weak Hamiltonian] now has to be evaluated in the IMF, enabling
us conveniently to use asymptotic flavor symmetry which is compatible with the Gell-Mann —Okubo (GMO) mass split-
tings (including the mixings we desire to retain) of hadrons.

The surviving surface term can also be expressed in terms of the two-particle on-mass-shell asymptotic hadron matrix
elements of H and the axial-vector charges:

~S(P1 P2P3 ) = 1 t'[(2fp ) tl T +(2fp } q~ T(I 1
q —+P, p&

—+ oo P P .3

=i(2fp )
' g[(m3 —m()l(m„—m()]&P3

( Ap [n &&n
(
H

(
P(&

n

+g[(m3 —m, )l(mt m3)]&P3 —}H
i
l &&l

~
Ap

~
P, &

I

+i(2fp )
' g[(mz —m()l(m„—m()]&P2 [ Ap (

n &&n
( H„(P, &

n

+&[(m2 m1)t'(m(' m2}l&P2
I

H
I
l &&i

I ~p, IP1&
I'

(2.4)

Here

T„"'=tJd'x &Pk(P2)
~

T[~„"'(x),H. (0)]
l
P1(P1}&e

B. Constraints upon the asymptotic ground-state-meson
matrix elements of H (0, —) and H ( —,—) which do satisfy

the
~
hI

~

= —,
' rule and its charm counterpart

Constraints upon the asymptotic two-particle ground-
state-meson matrix elements of H =H(0, —), i.e., the
asymptotic

~

EI
~

=—,
' rule, which are listed below, have

been obtained from the constraint algebras, Eqs. (3.la)
and (3.1b}. Additional asymptotic constraints have also
been derived from simpler algebras, Eq. (3.9}.Constraints
on the asymptotic matrix elements of H ( —,—) in broken
SUf(4) have also been obtained ' using the same method
called level realization of asymptotic flavor symmetry in
these chiral algebras involving the axial-vector charges

Here we list only the results which will be used in
HPV(Pc)] [ V HPc(PV}] (2.5)

(j =2, k =3, and j =3, k =2). A„(~'(x} denotes the
axial-vector current which transforms as PJ, and fpl
denotes the decay constant of the PS meson P;. The sum-
mation g is extended over all the possible on mass shell--
single-particle hadron states. In Eq. (2.3) we have already
used the well-known commutation relation (in the
infinite-8'-boson-mass limit),
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this paper. The p~~ limit should always be under-
stood.

(i) The asymptotic
I
EI

I
= —,

' rule and its charm coun-

terpart:

(m+
I
H(0, —}

I

K+ )+v'2(m
I
H(0, —)

I
K ) =0,

(2.6)

&~+ IH(o, —)
I

K'+)

+ v2(n IH(0, —)
I

K* )=0, etc. , (2.7)

(K'
I
H( —,—)

I
D')+(n+

I
H( —,—)

I
F+)=0,

III. DERIVATION OF ASYMPTOTIC
CONSTRAINTS UPON THE T%'0-PARTICLE
ON-MASS-SHELL GROUND-STATE-MESON

MATRIX ELEMENTS OF H =H( —,0)

In Sec. II, we have listed the constraint sum rules ob-
tained for the matrix elements of H =H(0, —) and
H( —,—) taken between the ground-state-meson states
with infinite momenta. They explicitly display the
asymptotic

I

b,I
I

= —,
' rule and its charm counterpart.

They were derived from the level realization of the
commutation relations,

&K'OIH( —,—) ID*'&

+(n+
I
H( —,—)

I
F+)=0, etc.

(2.8)

(2.9)

and

[[H, A +], A ]=[[H„,V ~],v ]

[[H A -] A +]=[[H V.-] V„+I

(3.1a)

(3.1b)

(ii) The SU(6)- and SU(8)-like asymptotic constraints:

(n+I H(.0, —)
I

K'+) =(p+
I
H(0, —)

I

K+), etc. ,

for the charm-conserving but strangeness-changing Ham-
iltonian H =H(0, —), and also from the realization of

(2.10)

(K IH( —,—)ID* )=(K' IH( —,—)ID ), etc. ,

(2.1 1)

and

[[H„,A +], A ]=[[H,V ~], V ]

[[H., A ], A, ,]=[[H., V ], V, ,]

(3.2a)

(3.2b)

ko ——+&1 2/(m
I

A
I p )—:+v 1/2H, (2.14)

where ko denotes the fraction of the ground-state-meson
contribution to the complete set of single-particle inter-
mediate states inserted in the left-hand side (LHS) of the
single commutator, Eq. (2.5), when it is sandwiched be-
tween various appropriate ground-state-meson states. ko
is found to be universal. This result certainly supports
the idea of level realization.

(iii) Asymptotic SUf(4) parametrization of the two-
particle on-mass-shell ground-state-meson matrix ele-
ments of weak Hamiltonian:

(K
I
H( —,—)

I

D")=c toe~c2(nIH(0, —)
I
K. )

cote, (~+
I
H(o, —) I K+),

(2.15}

and

( n+I H(0, .—)
I

K+ ) =+ ( n+
I
H(0, —)

I

K'+ ), (2.12)

(K IH( —,—}ID )=+(K IH( —,—)ID' ), (2.13)

&~' IH. ID') —&z(~'IH. ID') =o, (3.3a)

&~' IH ID'& —~2&) 'IH. ID*'&~=0=0

&p+ IH~ ID'+&~=0 —v'2&p IH ID* )z 0
——0, (3.4a)

(3.3b)

for the charm- and strangeness-changing (Cabibbo-
favored) Hamiltonian H =H( —,—), respectively.

This time we are interested in deriving corresponding
asymptotic constraints on the charm-changing but
strangeness-conserving (the first Cabibbo-suppressed)
Hamiltonian H =H( —,0), by using exactly the same
method as discussed in Sec. II B. %'e first investigate the
constraints upon the diagonal on-mass-shell ground-
state-meson matrix elements of H =H( —,0),
& IQQl. lH. I [QQl. &

Inserting Eqs. (3.1a) and (3.1b) between appropriate
sets of [QQ ]0 states with infinite momenta; (1) (m+

I
and

I
D+); (2) (n

I
and

I

D ); (3) (K+
I

and
I
F+); (4)

(rtI and ID ); (5) (g'I and ID ); (6) (p+
I

and
I

D'+ ); (7) (p I

and
I

D* ); (8) (K'+
I

and
I

F*+);
(9) (P I

and
I

D' ); and (10) (co
I

and
I

D' ) (with heli-
city A, =O), and applying the same procedure as the above
we can again obtain asymptotic constraints:

(a+I H( —,—')
I
F+) =cot0c(m. +

I
H(0, —)

I
K+), etc

(2.16)

They are obtained from the realization of the following
constraint algebra (see Appendix A) using asymptotic
SUf (4):

(p+
I
H ID'+)g 0

—&2(nIH
I
D ) =0. .

It also follows from Eqs. (3.3a) —(3.4b) that

& +IH. ID &=«+IH„ID +), ,

(3.4b)

(3.5)

[H( —,—), V 0] =cotOcH(0, —) . (2.17)
For the case of H =H, we obtain in a similar way

Here 6, denotes the Cabibbo angle, and all the above ma-
trix elements of weak Hamiltonian are evaluated in the
IMF.

&p+ IH. ID+) —v'2(p'IH. ID'&=o,

&
~+

I H. I

D*+
&
—v'2&)

(3.6a)

(3.6b)
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&m+ ~a ~D"+)—&2(m ~H ~D* )=0,
(p+ [H. f

D+) —VZ(~'[H. )D")=0,
(3.7a)

(3.7b)

corresponding to Eqs. (3.3a)—(3.4b).
(3.6a) —(3.7b) we also obtain

(n+ ~H ~D*+)=(p+ ~H jD+) .

From Eqs.

(3.8)

[A,H ]=[V,H ] (H =HPc+HPv) . (3.9)

The same procedure as the one used to obtain the con-
straints, Eqs. (2.12) and (2.13), leads us to

&~'Ia. ID'&=&p'ia. iD'+&.=0

=+(~+
~

H„(D'+)
=+(p+

(
a.

(

D+ ),
(K+ ~a. ~F+)=(K'+[a. ]F'+), ,

=+«+
I
a. I

F'+
&

=+(K'+ [H. [F+),

(3.10a)

(3.10b)

ao ——+v 1/2H, (3.1 1)

where ao denotes again the fraction of the ground-state
contribution and is found to be universal, i.e., ao is equal
to ko obtained in Eq. (2.14). This is an elegant result,
though expected.

Similar realization of other commutators, Eq. (3.9)
with a =@,K+, K, K, and K, leads only to the con-
straints which have already been obtained above.

All the constraints obtained for the asymptotic two-
particle on-mass-shell ground-state-meson matrix ele-
ments of various weak Hamiltonian, H(0, —), H( —,—),
and H( —,0), do maintain a close correspondence to the
quark-line diagrams. Asymptotic

~

EI
~

= —,
' rule and its

charm counterparts obtained can be associated with ex-
actly the same type of quark-line diagrams. "

Equations (3.3a), (3.4a), (3.6a}, and (3.7a} correspond pre-
cisely to the asymptotic

~

b,I
~

= —,
' rule and its charm

counterpart, Eqs. (2.6)—(2.9) mentioned in Sec. II, while
Eqs. (3.5) and (3.8) to the SU(6)- [or SU(8)-] like relations,
Eqs. (2.10) and (2.11).

They suggest the existence of approximate selection
rule corresponding to the

~

b,I
~

= —,
' rule in the K~2tr

decays for the present processes. In fact, as will be seen
later the suppression of the D+ ~tr+rr decay is predict
ed in the present approach.

Next, we also investigate the levelwise realizations of
the single commutators:

IV. ASYMPTOTIC CONSTRAINTS UPON THE
NONDIAGONAL TWO-PARTICLE

ON-MASS-SHELL
MATRIX ELEMENTS OF H =H (0, —),

H( —,—), AND H( —,0)

[[H, A, ], A p]=[[H, V ], Vp] . (4.1)

However, in the case when higher excited states are in-
volved, we have to find a correct prescription.

Therefore, as for the derivation of the constraints on
the nondiagonal asymptotic two-particle on-mass-shell
matrix elements of H which will be used in Secs. V and
VI, we choose to derive them from the realization of sin-
gle commutators, Eq. (3.9), since a unique prescription is
already at our disposal.

As an excited state, one may, first, consider the orbital-
ly excited QQ meson, f QQ j L, L & 1. However, the two-
particle on-mass-sheil matrix elements of H,

In order to calcolate the excited-state contribution to
the surface term Mz in the extrapolated amplitude given
in Sec. II, we do need information on the nondiagonal
asymptotic two-particle matrix elements of H„, for exam-

ple, (L'
~

H
~

L ) (L =0, L'= l, 2, . . . , or exotic states,
etc.}. However, the matrix elements involving orbitally
excited states (L'=1,2, . . . ) will not be important as will
be shown later. In this section we study the constraints
on the asymptotic nondiagonal matrix elements of H 's

H (0, —), H ( —,—), and H ( —,0), taken between the
f QQ j p and [QQ][QQ ] states. They can, in fact, be relat-
ed to each other by using the asymptotic SUf (3) and
SUf(4} rotations through the commutators Eqs. (A6e)
and (A7d) in the Appendix. Moreover, we find below
that they can be expressed in the simple form (diagonal
matrix element of H ) X k, . Here k, denotes the fraction
expressing the fractional contribution of the four-quark
[QQ][QQ] states to the realization of the single commu-
tator, Eq. (3.9) with H =H(0, —), H ( —,—), and
H ( —,0), when it is inserted between the appropriate
f QQjo meson states. The values of k, will be shown to
be universal [see Eq. (4.45)], i.e., flavor independent, in
support of the idea of level realization. This result is also
consistent with the fact that these constraints can also be
reproduced by the corresponding spectator-type dia-
grams, which describe the [QQ][QQ] meson contribu-
tion, if they satisfy certain simple relations given by Eq.
(4.46).

In Secs. II and III the constraints on the diagonal
asymptotic matrix elements of H have already been ob-
tained from the realization of the double commutators

(fQQjt [H ) fQQjo) and (fQQj [ 0H)fQQjt ) with L)1, (4.2)

are proportional to the value of the wave function of
f QQ j L meson at the origin, %t (0), which vanishes in the
nonrelativistic limit if L&0, so that they are expected "
to be small.

However, the presence of spectator diagrams depicted
by Fig. 1 implies in the present formalism the presence of
the contributions of f QQQQ j mesons. In fact, recent ex-

I

periments' and theoretical analysis' provide some evi-
dences for the existence of four-quark mesons. If these
f QQQQ j exotics exist, they are certainly entitled to con-
tribute to the on-mass-shell hadron intermediate states,
as will be discussed in this section.

Four-quark f QQQQ j meson can be classified into four
classes: (i) [QQ][QQ]; (ii) (QQ)(QQ); (iii) (QQ)[QQ]; and
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(iv) [QQ](QQ), where the two quarks (or antiquarks) in

( ) and [ ] are symmetric and antisymmetric, respectively,
with respect to the exchange of their flavors. The first

two can have J =0++ and may contribute significantly
to the on-mass-shell intermediate states in Eq. (2.4).
However, in this paper we investigate the contribution of
only the [QQ][QQ] mesons and neglect that of the

(QQ)(QQ) meson for the time being, without affecting the
result seriously (see Sec. VII).

According to Jaffe's analysis, ' [QQ][QQ] mesons with
J =0++ are classified into two classes with different
combinations of color degrees of freedom and the ob-
served scalar mesons were actually identified with the
metnbers of the lighter [QQ][QQ] multiplet. However,
they have large recoupling coefficients to two PS mesons
and are expected to be too unstable, ' in general, except
for the 5 and S* which lie just below the KK threshold.
However, there is an argument by Peaslee and
Schnitzer' (from the study of spin effects) that favors the

I QQ I
assignment for the 5 and S'. In the present alge-

braic approach, the 5 and S* can also be accommodated
as the members of the I QQ I r, meson multiplet which
mixes with a glueball. ' Therefore, it is not certain
whether the lighter [QQ][QQ] mesons of J =0++ can
exist as resonances.

On the other hand, a new resonance' at 1.48 GeV has
been found recently in the pn annihilations into n (p p ).
It can be interpreted' as an I =0 component of heavier

[QQ][QQ] meson multiplet without an s quark.
For this reason, we pick up only the heavier

[QQ][QQ ] meson multiplet, i.e., an ideally mixed
20"151=36 multiplet. We list the ideally mixed 36-
piet of [QQ][QQ] mesons in Table I.

Now, we study asymptotic constraints on the nondiag-
onal matrix elements:

( bi) (bz)

(c, )

FIG. 1. The spectator diagrams: (a, ) S„(a&)S2, (b~) S~, (b2)

S&, (c&) SI, (c2) S&, (di) Sl, and (dz) S&. The quark in (a) and (b)
and the antiquark in (c) and (d) are decaying, while the anti-
quark in (a) and (b) and the quark in (c) and (d) are the specta-
tors.

& [QQ][QQ] I
H

I I QQ jo& and & [QQ Io IH. I [QQ][QQ] & (4.3)

by extending the prescription used in Secs. II and III to the [QQ][QQ] contribution.
In the case of H =H(0, —), we insert, for example, Eq. (3.9) with a=sr+, between (n+

I

and
I
K ) with infinite

momenta and extract [QQ][QQ] meson contribution to the intermediate states on the LHS:

= —
I

&~+ IH(o, —)
I

z'&+v'2&~'IH(0, —) IIc') I, (4.4)

where the ellipsis denotes contributions of the ground state and other excited states (other than the [QQ][QQ] mesons
under consideration) such as (QQ)(QQ ) mesons, radially excited I QQ ) states, etc.

The asymptotic
I

b, I
I

= —,
' rule already obtained, Eq. (2.6), implies that the RHS of Eq. (4.4) vanishes. Using the

SUf(3) parametrization for the asymptotic matrix elements of the axial-vector charges A + „obtained from the alge-

bras, [V, A&] =if & A (we are dealing with the ideally mixed 36-piet),

=2(~+
I
w,

I

z+) = —2(~'
I
w,

I

Ic')

(4.5)

and applying to Eq. (4.4) the ansatz of "level realization" (a straightforward extension of the procedure used in Sec. II
to the [QQ][QQ] meson contributions), we obtain
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TABLE I. Ideally mixed 20"$1561= 36 multiplet [QQ][QQ] mesons. Antiparticles involved in the
36-piet are dropped.

I=1
F r++ F+,F

S+,S,O, S;
S+ SOS-

I=—'
2

+ Do
0

a+,a'
Z+ ZO

I =0

F+

FO

8'

e.
O'c

sc

Estimated mass
(GeV)

3.15
2.95

3.15
1.60

1.45
1.80

(o
I
H(0, —)

I

K )+ (mr+
I
H(0, —)

I
a + ) =0,

when A &0 is assumed.
From the commutation relations, Eq. (3.9) with a =rr ', we also obtain

2 A (rr+
I
H(0, —}

I
k + ) =(c O)(77+

I
H(0, —}

I

K+ ),
2A l&2(o

I
H(0, —)

I
E ) —(n

I
H(0, —)

I
k ) l =(c,)(n+I H(0,. —) K+),

2A(m. IH(0, —)Ik )=(c )(m IH(0, —)IK ),

(4.6)

(4.7)

(4.8)

(4.9)

2A(&IH(0, —) E )=&2( c)(m. IH(0, —)IK ), (4.10)

where c o and c denote the fractions of the [QQ][QQ] meson contributions to the LHS of Eq. (3.9) with a=m and
n. , respectively. On the RHS of Eq. (4.9) we have used the asymptotic

I

EI
I

= —, rule, Eq. (2.6), which is used again to
solve the constraint equations, Eqs. (4.6)—(4.10).

The result is

( m+
I

H (0, —)
I

ir + ) = —&2( nH(0, —)
.

I

k ) = —(8
I
H(0, —)

I
K )

=(c o/2A )(mr+ IH(0, —)
I

E+), (4.1 1)

and, as we might expect,

C O=C
7T 'ir

(4.12)

Equation (4.11) shows that the matrix elements, Eq. (4.3) with H =H(0, —), also satisfy the asymptotic
I

b I
I

= —,
' rule.

We have gotten all the necessary constraints on the matrix elements of Eq. (4.3) with H =H(0, —) from the con-
straint algebras, Eq. (3.9) with a =n+, n, and n.

Other constraint algebras, Eq. (3.9) with a =K+, K, E, and E, are found to give no new constraints on these ma-
trix elements in the present case. However, these algebras could, in general, produce stronger constraints than the alge-
bras involving only A„'s, since the former involve Az's which are the generators of SUf(3)L )&SUf(3)z rather than
SU(2)L X SU(2)R.

Next we study the constraints upon the nondiagonal matrix elements, Eq. (4.3) with H =H( —,—) in the same way.
In the case of H =H( —,—), however, we cannot obtain a sufficient number of constraints on the matrix elements, Eq.
(4.3), from the algebras, Eq. (3.9) with a=a and rr alone. [Equation (3.9) with a=a+ is trivial in the case of
H =H( —,—).] Therefore, we also use additional constraint algebras involving Az s, Eq. (3.9) with a=E+ and K .
Then, we obtain the following set of constraint equations:

A [(~'IH( ——} ID')+(E'I H( ——) ID')1=«:)(E'IH( ——) ID')
—V2A(m+ IH( —,—)

I

J',+)=(c o)(~ IH( ——) I++)

2A(E'IH( —,—) ID')=(C )(E'IH( —,—) ID'),

2A(Pc IH( —,—)ID )=(C )(K IH( —,—)ID ),

(4.13)

(4.14)

(4.15)

(4.16)
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2A &@
~
H( —,—) ~PI &=v'2(C )&~+ ~H( —,—)

~

F+ &,

v'2AI&2&K'~H( —,—) ~D'& &—~+ ~H( , ——) ~FI+& &—~+ ~H( —,—) ~F+&I=0,

(4.17)

(4.18)

(4.19)

2A I&~O~H( —,—) ~D'&~&2&~O~H( —,—) )F', &I= (—C .)&Ko[H( —,—) [D'&, (4.20)

where C (a=a ',K ) denotes the fractions of the [QQ][QQ] meson contribution to the intermediate states on the
LHS of the constraint algebras, Eq. (3.9) with a =m ',K, respectively, when they are sandwiched between appropriate
states. [Equation (4.18) was obtained from Eq. (3.9) with a =K+.] We have used the result from the asymptotic SU(2}
rotation of the matrix elements of H ( —,—), Eq. (A8), given in Appendix A and also the asymptotic SUf (4) parametriz-
ation for the matrix elements of the axial-vector charges A „'s and A&'s obtained from the constraint algebras

[V, A i3]=if i3
A

&F I I
A —IF' &= —&D'I A — ID'&= v'2&F—I'

I A, + ID'&= —v'2&F '
I A, + ID'&= —&&'I A„+ I

~ &

= —&fi+] A, „~K'&=&Z&e,
~

A„~K-&=&2&a,
~ A,.~K'&= =2A. (4.21)

Although we can obtain extra constraint equations in addition to Eqs. (4.13}—(4.20) from the commutation relations
involving Eq. (3.9) with a=K and K, we dropped them since they involve the matrix elements of H =H( —,—)

which are irrelevant to the D ~mK decays in which we are interested. Corresponding to Eq. (4.11), we now get the fol-
lowing constraints on the matrix elements of Eq. (4.3) with H =H( ——) from Eqs. (4.13)—(4.20):

= —v 1/2&@. iH( —,—)[FI&=(C o/2A)&K iH( —,—)iD (4.22)

&~+ ~H( —,—) ~P+&=0, (4.23)

C„o=& =c 0. (4.24}

We now derive the asymptotic constraints on the nondiagonal matrix elements, Eq. (4.3) with H =H( —,0), in exact-
ly the same way as we carried out for the cases of H =H(0, —) and H( —,—) discussed above. We insert the con-
straint algebras, Eq. (3.9) with a =a.+—', K+—', and K, between all the appropriate pairs of external ground-state-meson
states with infinite momenta and then extract [QQ][QQ] meson contribution to the intermediate states on the LHS.
Using asymptotic SUf(4) parametrization of the matrix elements of the axial-vector charges A„s and Ax s given by
Eq. (4.21), we then obtain

AI&&/H( —,0)/D &/& +/H( —,0)/D+&I=0,
—2 A & ~+

)
H( —,0)

/

D +
& =(e.o) &

~+
/
H( —,o)

/

D+ &,

2A Iv'2&@ IH( —,0) ID'&+&~'IH( —,0)
I
D'&I =(e, )&~'IH( —,0) ID'&,

—2A I &k+
)
H( —,0)

(

F+
& ~v 2&K+

[
H( —,0)

)
P I+ & I =(e, )&K+

)
H( —,0)

)

F+ &,

2A &o
(
H( —,0)

(
D & =v'2(e )&m

(
H( —,0)

)
D

2A &m
~
H( —,0)

~

D &=(e )[&m.
~
H( —,0)

~

D &
—v'2&m+~ H( —,0)

~

D+ &],
—2A [&k+

(
H( —,0) [

F+ &+ &K
(
H( —,0)

)
F z &]=(e )&K+

[
H( —,0)

)

F+ &,

&o, I H( —,0)
~

D'& —&5',
~

H( —,0)
~

D'& ~ &K+
~

H( —,0)
~

F I+ & ~ &K+
~

H( —,0)
~

F+
& =0,

&2A [v 2&5,+
(
H( —,0)

(

D+
& ~ &K+

[
H( ,0)

(
F I+ —&—&K+

[ H( —,0)
(
F + &]

=(e 0)[&m+
~
H( —,0)

~

D+ &
—&K+

~

H( —,0)
~

F+ &],

A [&5',
)
H( —,0)

(

D'& ~ & c",
(
H( —,0)

)
D'& ~ v'2& K'

[ H( —,0)
[
F ', &]=v'2(e, ) &

m+
[
H( —,0)

(

D+ &,

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)
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2A [&&,
~

H( —,0)
~

D'& —
& 5,'

~

H( —,0)
~

D'&]

=(e }[&~'[H( —,0)
~

D'&+ &&, ~
H( —,0)

~

D'& —&2&&,
~

H( —,0)
~

D'&],

—23[&5+
]
H( —,0)

(

D+
&
—&K

)
H( —,0)

(
F &]=(e )&n+

)
H( —,0)

[
D+ &,

2~[&a+ [H( —,0) [F+ &
—&2&~0[H( —,0) [D;&]=(e }[&Sr+ [H( —,0) [F+ &

—&2&~o
~

H( —,0) [Do&],

(4.35)

(4.36)

(4.37)

23[&8,
~

H( —,0}
~

D &+ &5,
~

H( —,0)
~

D &
v'2—&E

~

H( —,0)
~

F &]

= —(e-o)[& n. [H( —,0)
[
D &

—
& r}, [

H( —,0)
(
D &+&2& i}, (

H( —,0)
[
D &], (4 38)

—2M [&k+
[
H( —,0)

(

F+
&
—&ir+

[
H( —,0)

[
D + &]=(e-o)[&~+

~

H( —,0) D+
& &SC+—

~

H( —,0)
[

F+ &], (4.39)

where we have assumed the ideal g —g mixing for simplicity, since our final result is not affected by this assumption.
The above equations cannot be solved immediately. Therefore, we use the constraint on the diagonal matrix elements
obtained in Sec. III, Eq. (3.3a), and also the results on diagonal and nondiagonal matrix elements given in Appendix A
obtained from asymptotic SUf(3) rotations, Eqs. (A9), (A12), and (A18)—(A20). Then we obtain the solution as

&It'~H( —,0) ~P;&=v'2&a+ ~H( —,0) ~P;&=&X'~H( —,0) [P'&

= —2& m+
)
H( ,0)

[
—D+

& =2& n+
[
H( —,0}

(
8 +

& = —2&2& m
)
H( ,0}—(D

=2v'2& ir
J
H( —,0)

[ 5, & = 2& k+—
[
H( —,0)

(

F+
& =2& 5,+ [

H( —,0)
[
D+

&

=2&2&5,
f
H( —,0)

f
D & =2& o

f
H( —,0)

f
D & = —2v'2& o,

f

H( —,0)
f
D &

=(e o/A )&n.+
] H( —,0)

f

D+ &,

&E+
i
H( —,0)

i
F+ &=0,

ep ——e =ep ——e —p ——eK K K

(4.40)

(4.41)

(4.42)

Here we examine the relations among the three frac-
tions c p C p and e p. If we substitute the constraints
on the nondiagonal matrix elements of H =H (0, —) and
H( —,—), Eqs. (4.11) and (4.22), into the asymptotic

SUf (4) relation, Eq. (A21), then we find

c p=C p (4.43)

Substitution of the solutions, Eqs. (4.22) and (4.40), of the
constraint equations for the nondiagonal matrix elements
of H( —,—) and H( —,0) into Eq. (A14) and the use of
Eq. (Al 1) then lead to

(di) S, , and (d2) S2, shown in Fig. 1, when the diagrams
involving disconnected quark-antiquark pair creation (and
annihilation) are neglected. Then, paying attention to the
relative signs of the matrix elements of H( —,0) coming
from the Cabibbo mixing [see Eq. (A4c)], we find that we
can reproduce perfectly the relations among the nondiag-
onal matrix elements of H obtained in each of Eqs.
(4.11), (4.22), (4.23), (4.40), and (4.41), if we impose simple
relations among the above eight independent spectator
diagrams, i.e.,

(Si —S2)=(S,—S2)

e p=Co
7r

(4.44) and (4.46)

Therefore, all the fractional [QQ][QQ] contributions to
the intermediate states appearing on the LHS of all the
single commutators involving H are found to be equal
(i.e., universal),

k =c p=C p=e pC (4.45)

which implies that the fractions are Aavor indepen-
dent —a very reasonable and pretty result.

Here, we add a brief comment on the result obtained
above from a simple diagrammatical point of view. The
nondiagonal matrix elements of H =H (0, —),
H( —,—), and H( —,0), Eq. (4.3), can be associated with
appropriate combinations of eight independent spectator
d~~g~~~~, (a, ) Si (a2) S2 (bi) Sl (b2} S2 (cl} Sl '{c2}S2

(Si —S2)= —(S, —S2) .

Furthermore, we find that Eq. (4.46) itself is, in fact, also
satisfied by our asymptotic SUf (4) relations of the nondi-
agonal matrix elements of H =H( —,—), given by Eqs.
(A23) and (A24}.

V. ESTIMATE OF THE RATIO
OF THE DECAY RATES F(D ~++K )

RELATIVE TO I (K m+m )

In previous papers ' we have calculated the ratio of
the decay rates I (D ~m+K )/I (Es~~+n ) under
the simplifying approximation in which only the ground-
state-meson contribution to the surface term M& has been
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retained. This first approximation result was taken ' to
be reasonable in comparison with the old data which con-
tained large uncertainties. However, the recent more im-

proved data have produced the value of the ratio larger
by a factor of 3—4 than our previous estimate. ' In this
paper we now take into account the [QQ][QQ] meson

I

contribution as the next step.
We now substitute the asymptotic constraints on the

matrix elements of H given in Secs. III and IV into the
amplitude presented in Sec. II. The explicit expressions
of the amplitudes for the K~~~+m, D ~~+K and
m. K decays are then given by

M(Ks~n+n. )=.(i/2f )&2(n.+
~

H(0, —)
~

K+ }I 1 —[(mx —m )/(m, —m )]ko

+[2(mx —m )/(me —mx )+(mx —m „)/(me —m )]k, I,
(5.1)

M(D ~rr+K )=(i/2f )(K
~
H( —,—)

~

D ) t 1 (mD——m )l(m, —m )ko

—[(2mD —mx —m ) /(mD —m e )
2 2 2 2 2

—(mD —m )/(mF —m )]k, j, (5.2a)

M(D ~n K )=(i/2&2f )(K ~H( —,—) ~D )(I [(m—D m—x)/(m, mx)]—ko

—[(2mD mx —m—)l(mp —me)+(mD —mx)l(mD —mx-)2 2 2 2 2 2 2 2 2

—(mD —m „)/(m p
—m „)]k,I, (5.2b)

where we have assumed f =fx, since the above ampli-
tudes are not so sensitive to the ratio f /fx. We have

again used the same asymptotic SUf(4) parametrization
of the axial-vector charges. The above amplitudes, Eqs.
(5.1) and (5.2), involve the masses of [QQ][QQ] mesons
and also the uniuersal fraction k, of the [QQ][QQ]
meson contribution [see Eq. (4.45)] in the (asymptotic)
levelwise realization of the single commutators con-
sidered. The masses of [QQ][QQ] mesons and the value
of the fraction k, are still unknown.

However, in the "levelwise" realization of single com-
mutators considered in the previous sections, the sum of
all the fractional contributions from each "level" which is
inserted between the factors A and H should sum up
to unity up to the overall sign, i.e.,

f.=o+ g fL +f[QQ)[QQ)
L&1

(5.3)

where the ellipsis denotes the contributions of the radial-
ly excited states and also the (QQ}(QQ ) meson states, etc.
According to our previous analyses, negative value of
f1 o [=ko in Eq. (2.14)] is favored, ' i.e.,
ko=v'1/2(m.

~

A
~ p ) = —0.7, when the positive

sign is chosen in Eqs. (2.12) and (2.13). Therefore, we

choose again negative values of ko in this paper. Di-
agrammatical analysis" (which is also consistent with
the result obtained by algebraic method) given in Sec. IV
says that the contribution of orbitally excited IQQI
meson states to the single commutators, Eq. (3.9), will be
small, i.e., gr»fL-0. Therefore, we expect that the
fractional contributions of exotic states and the radially

excited I. =0 states, etc. , amount to about 30%.
Thus we obtain an upper limit for —k„

—kc = f[QQ}[QQ] 1+(fL o+ ' '
) 0. 3 (5.4)

where we have used fL o( =ko ) = —0.7.
Masses of four-quark mesons have been calculated on

the basis of the bag model by Jaffe' and some of their
possible candidates are observed at the values not far
from the predicted ones mentioned in Sec. IV. Our am-
plitudes are sensitive to the masses m and m& as is seen

S

in Eq. (5.2} and will also be seen later, if their values lie
near mD. However, they are not so sensitive to the
masses of the [QQ][QQ] states involving charm quark(s).
Therefore we use the values of noncharm [QQ][QQ]
mesons [C(9') in Jaffe's notation' ] and estimate the
charm [QQ][QQ] meson masses crudely by using the
quark counting with m, —m„= 1.5 GeV and m, —m„
=0.2 GeV. In Table I we list the masses of [QQ][QQ]
mesons thus estimated.

We show in Table II the branching ratios
B(D ~@+K ) and B(D. ~rr K ), calculated by using
the above values of [QQ][QQ] meson masses, the possi-
ble and reasonable values of the fraction in the range
0 ~ —k, ~ 0.3 according to Eq. (5.4) arpd the observed life-

time, r(D ) =4.4X 10 ' sec, and the decay rate,
I (Kso~~+~ )-0.76g9&&10' sec ', as the input. It is
seen that our result can be greatly improved for reason-
aMe va, lues of k, compared with the previous one ob-
tained without including the effect of exotic states
(k, =0).
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TABLE II. Branching ratios for the two-body decays of D mesons calculated by taking into account the [QQ][QQ]-meson contri-
butions to the surface term. (k, =0 means no contribution from the [QQ][QQ] mesons. }

Decay

Do ~+K
D n. K
D' ~+~-
D ~K+K
D KK
D+ ~+~'
D+ ~K+K

ik, i
=00

1.5
1.2
0.10
0.053
0
0
0.13

Theory (%)
i
k, i

=0.10

3.4
2.6
0.17
0.46
0
0
1.1

/
k,

/

=0.20

6.1

4.8
0.27
1.3
0
0
3.0

Experiment (%)

4.2+0.4+0.3'
1.9+0.5+0.4
0. 14+0.04+0.03'
0.51+0.09+0.06'
(0.46 at 90% CL'
& 0.5'
1.01=0.32+0. 18'

'Given by Hitlin in Ref. 5.
Estimated from the value B(D ~m K )/B(D ~n.+K ) =0.45+0.08+0.05 given by Hitlin in Ref. 5. The values of errors are ten-

tative.
'Reference 20.

VI. CABIBBO-SUPPRESSED DECAYS
OF D MESONS: RESOLUTION OF THE PU&&LE

OF I (D E+E )/I (D m+m )

Substituting the constraints obtained for the matrix
elements of H =H( —,0), Eqs. (3.3a), (3.10a), (4.40}, and

I

(4.41}together with Eq. (A9}, into the general form of the
two-body decay amplitude, Eqs. (2.2}-(2.4}, and neglect-
ing the contributions of the radially excited [ QQ] and
also of the (QQ)(QQ) mesons, etc. , we write down explic-
itly the amplitudes for the Cabibbo-suppressed two-body
decays of D mesons, D ~n.+n. , D ~K+K
D ~K K, D+ ~7r+8, and D+ ~K+K, as

M(D ~rr+rr )= —(i/2f )(n+
(
H( —,0)

(
D+) [1 [(mn ——m„)/(m, —m )]ko

—[2(mt' —m „)/(mn —m e ) —(m~ —m )/(m& rn )]k, I
—(6.1)

M(D ~K+K )=(i/2'�)(n+
f

H( —,0) /D+) [1—[(mn mg )/—(m mx)]ko—

—[2(mn —mx )/(mn —me ) (m~ —mt'—)/(mp —mt')]k, ),
S

(6.2)

M(D ~K K )=0,
M(D+~rr+rr )=0,
M(D+ +K+K )=(i/2—f&)(rr+

~

H( —,0)
~

D+)
I 1 —[(mz —mt')/(m + —mt')]ko

(6.3)

(6.4)

(m& —mx )—[2/(mn —m s )—2/(m -0 —mt' ) + 1/(m - —ms ) ]k, ),
S

(6.5)

where we have assumed me ——ms (which has been pre-
S S

dieted by Jaffe' and can be derived also in the present
theoretical framework, if the 36-piet is ideally mixed) and
have used the result of asymptotic SUf(4) parametriza-
tion of the matrix elements of axial-vector charges A 's

and Az's.
Equation (6.3) does rellect the cancellation of the am-

plitudes for the D ~K K decay in the SUI(3)-
symmetry limit as was mentioned in Sec. I, although we
have used asymptotic SUf(3) symmetry [not exact SUf(3)
symmetry] only for the two-particle matrix elements of

I

H (and A 's). We emphasize that all our sum rules are
broken-flavor-symmetry sum rules, compatible with the
CAMO splittings of flavor multiplets and all the particles
involved are on mass shell.

Equation (6.4) corresponds precisely to the suppression
of the K+~rr+ndecay due to the.

~

b,I
~

=—,
' rule, valid

up to the present consideration of the ground-state-
meson and the exotic [QQ][QQ]-meson contributions to
~s.

Keeping only the ground-state-meson contribution to
the surface term, we obtain I'(D ~K+K )/
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I (D ~~+a )=0.50, where the 50% deviation from
unity [expected in the SUf(3)-symmetry limit] is due to
the ratio of the decay constants, fK /f = l.2, and the
phase-space difference. However, by substituting into
Eqs. (6.1), (6.2), and (6.5) the values of the [QQ][QQ]-
meson masses listed in Table I and the value of the frac-
tion k, of the [QQ][QQ]-meson contribution to the "lev-
elwise' realization of the single commutators involving
H =H( —,0) which have already been estimated and
used in the previous section, we obtain the results sho~n
in Table II, where we have used the observed lifetime,
r(D+)=10.3X10 ' sec, as well as r(D ),„z, and

1(Ks ~+ir ),„„iused in the previous s~~t~~~ as
put. From Table II, it is seen that our calculation repro-
duces the observed ratio of the decay rates
1 (D K+K )iI (D ~+~ )=3.6 fairly well for the
very reasonable value of k„—k, =0.1, together with the
reasonable predicted values of the rates of
I (D+ K+K ) I (D K+K ) and f'(D rr+m. ).

Therefore, the inclusion of the effect of [QQ][QQ]
mesons is important and helps to explain the D~mK,
KK, and mm and also K ~m~ decays in a consistent and a
unified manner.

VII. SUMMARY AND COMMENTS

We have demonstrated in Sec. VI a possible solution to
the well-known puzzle in the Cabibbo-suppressed decays
of D meson (which has never been solved in a systematic
manner) by evaluating systematically the contributions of
the ground-state }QQ}o and the exotic [QQ][QQ]
mesons to the surface term Ms of the amplitude. It indi-
cates that the contribution of four-quark meson states
could be sizable in the nonleptonic decays of D mesons,
while it is much less important in the K~2~ decays as
can be seen explicitly from Eq. (5.1). From this reason,
the unified description of KS~2~ and D ~~+K de-
cays, which has been calculated in previous papers '
without including the excited-state contributions, has
also been i mproUed significantly by the inclusion of
[QQ][QQ]-meson contribution as discussed in Sec. V.

We may add here a comment to the approximate selec-
tion rules found in Eqs. (6.3) and (6.4). They can, in fact,
be violated rather significantly by the inclusion of the
neglected contribution to Ms from (QQ)(QQ)-type exot-
ics, glueballs and, in general, less importantly radially ex-
cited } QQ] inesons.

Glueballs with J =0++, if they exist, may contribute
to the Cabibbo-suppressed decays of D mesons and the
magnitude of their interactions can be studied by future
observation of the D ~K K decay. This decay
proceeds only through the 8'-exchange diagram and its
amplitudes cancel each other in the SUf(3)-symmetry
limit as was mentioned in Sec. I. Indeed as seen in Eq.
(6.3), Mz of this decay receives no contribution from the
ground-state } QQ j meson and [QQ][QQ ] exotics. The
(QQ)(QQ)-type exotics also cannot take part in Ms as far
as the s channel is concerned. Their contribution to Mz
in the crossed channel will take the form [as seen from
Eq. (6.2)], (i I2f„)(sr+

~

H( —,0) }
D+ ) Xk, X(mass-

dependent factor). The first term is the expression of

ME~c and k, is the fraction of the (QQ)(QQ )-meson con-
tribution analogous to the k, of the [QQ][QQ] exotics
which is estimated to be

~
k,

~

~ 0. 1. The mass-

dependent factor is less than one. Therefore, the rnagni-
tude of the D ~K K amplitude will be less than —,

' of
that of the typical Cabibbo-suppressed decays as long as
the glueba11 contribution is neglected. Therefore, if
B(D ~K K ) ~ 10 is indicated by future experiment,
it may imply the presence of 0++ glueball. In fact, possi-
ble presence of 0~+ glueball was argued' by Teshima
and Oneda in the present algebraic approach from the
study of 0++ meson spectrum.

As to the D+~m. +m decay, the contribution of the
(QQ)(QQ) mesons to Ms could enhance the first forbid-
den amplitude, Eq. (6.4), significantly. Indeed the non-
strange (QQ)(QQ) mesons can take part in Ms in the s

channel and their masses are expected to be close to the
D-meson mass. Future observation of the D+~m+m.
rate is very important in assessing the size of the
(QQ)(QQ )-meson contribution to the Cabibbo-
suppressed decays of the D meson.

The direct contribution of radially excited states

} QQ j„,d to Ms is, in general, expected to be less impor-
tant than that of exotics. J QQ j „,, d have the same flavor
multiplet structure as j QQ jo. The axial-vector charges

( A, . . . ) connect the } QQ j o states to the j QQ j o and

[QQ}L, states with standard strength but with much
less strength to the j QQ j„,d. For example, p'~err cou-
pling strength is much weaker than p ~~~ coupling.
Therefore, barring the accidental mass degeneracy in the
mass-dependent factors in Eq. (2.4) which may cause
enhancement, the fraction of the radially excited meson
contribution to Ms will be small ( &0. 1) compared with
the ground-state-meson contribution k o }

=0.7.
However, the following effect is more important. In

asymptotic Aavor symmetry, the effect of symmetry
breaking manifests itself, besides the mass splittings,
through the mixings in the asymptotic limit. In this pa-
per the mixings with the radially excited states, i.e., the
leakage to the radially excited 0 + and 1 states
through the flavor charges [ Vx 's in SUf(3), Vii and VF in

SUf(4)] is not considered. The crude estimate of the
effect is as follows. From f+"(0) in the K~7re v decay,
the leakage through Vz's is certainly very small. From

f+ (0)=0.73+0.05 in the 8 ~Ke+v decay, the leakage
in the values of the asymptotic matrix elements of the
SUf(4) charges Vt& and VF through inter- (not intra) mul-

tiplet mixing is expected to be around 20—30%%uo. There-
fore, the neglect of the leakage may produce an overall
20—30% errors in the amplitudes when the D~~K and
K ~2m decays are compared.

From the present work it is clear that the old soft-PS-
meson extrapolation, which drops the contribution of the
surface term M& completely, is a too drastic extrapola-
tion. Our method utilizes much milder extrapolation and
the surviving surface term is found to be still manageable,
since it involves only the asymptotic on-mass-shel/ tmo-
particle hadron matrix elements of the effective weak
Hamiltonian and the well-known axial-vector charges.

The constraints upon these asymptotic matrix elements
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of H which we have derived have a close correspon-
dence to the quark-line diagrams as briefly mentioned in
Secs. III and IV. We may perhaps hope that our ap-
proach has achieved a kind of synthesis of current- and
constituent-quark physics, which is difficult in the pertu-
bative @CD approach. The interpretations of quark-line
diagrams are quite different between the two contrasting
approaches. We also stress that in the present formula-
tion, virtual particles are never involved. All the external
and the intermediate states used are physical (i.e., "in" or
"out") particles and the effect of long-distance physics
can, in principle, be fully accommodated. We do not
need to resort to the picture of final-state interaction.

H( —,—):H—(b,C= —1,6S= —1)

=(G/2&2)cos 8c(J J ),
H( —,0):H—(hC = —1,bS =0)

(A4b)

=(G /2&2)sin8ccos8C( J„—J„+J„J„).
(A4c)

Therefore, we can obtain commutation relations from
which we can derive SUf(N) (N=2, 3,4) rotations of the
on-mass-shell asymptotic matrix elements of H 's, by us-

ing asymptotic SUf(N):
I. SU&(2) commutation relations:
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[H( —,—), V +]=0,

[[H~, V +], V +]=0,
[H =H(0, —) and H( —,0)] .

II. SUf(3) commutation relations:

(A5a)

(A5b)

APPENDIX A: ASYMPTOTIC
SU/(N) (N =2, 3,4) ROTATION FOR THE MATRIX

ELEMENTS OF H

where the charm-conserving and -changing currents are
defined by

and

J„(bC =0)=cos8CJ„+sin8c J& (A2a)

J„(bC = 1)—:—sin8, J„+cos8CJ„ (A2b)

respectively, in the Glashow-Iliopoulos-Maiani scheme. '
Here, 8|- is the Cabibbo angle and we have used, for sim-

p1icity, the following abbreviations:

J„=u y„(1+y5)d,

J„=u y„(1+ys)s,

J„=cy„(1+y, )d,
JF+ =cy„(1+@5)s .

(A3a)

(A3b)

(A3c)

(A3d)

The H(0, —), H( —,—), and H( —,0} can then be ex-

pressed as

H(0, —):H(b C =0,ES= ——1)

= (G /2&2)sin8ccos8c( J„" J„—J„J„),
(A4a)

In the weak-boson mass m~~00 limit, the effective
weak Hamiltonian H responsible for the nonleptonic de-
cays can be written in the form of the products of left-
handed currents in the standard model

H„=( G2/&2)[[J„(b C=O)+ J„(DC=1)]

X[J„(DC=0)+J„(EC=1)]+H. c. ),
(A 1)

[H(0, —), V-o]=0, (A6a)

[[H, V ], V ]=[[H,V ], V ],
[H =H(0, —)+[H(0, —)] t,
[[H( —,—), V o], V~o) =2H( —,—},
[[H( —,0), V-o], V 0]=2H( —,0),

[H( —,0), V-0]=2 tan8cH( —,—) .

III. SUf(4) commutation relations:

[H( —,—), V ]=0,
[[H( —,—), V o], V—o]=2H( —,—),
[[H„,V ], V ]=[[H,V ], V ],
((H =H( —,—)+[H( —,—)]t),
[H( —,—), Vno]=cot8cH (0, —) .

(A6b)

(A6c}

(A6d)

(A6e)

(A7a)

(A7b)

(A7c)

(A7d)

1. Asymptotic SU&(2) relation

We, first, investigate asymptotic SU&(2) relations of the
nondiagonal matrix elements, Eq. (4.3) with H
=H( —,—). Insertion of Eq. (A5a) between the states
& m+

~

and
~

F q & with infinite momenta leads to

We have no other useful SU&(2) relations of the nondi-
agonal matrix elements of Eq. (4.3) with H =H( —,—)

We now examine asymptotic SUf(N) (N =2, 3,4) rota-
tions for the on-mass-shell matrix elements of H which
are used in the text.
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2. Asymptotic SUf (3) relations

In order to get asymptotic SUf(3) relations of the
ground-state-meson matrix elements of H =H( —,0), we
insert Eq. (A6d) between the states & sr+

I
and

I

D+(D*+)& with infinite momenta. Using the SUf(4)
parametrization of the vector charges V 0 and V—0, we

have

& sr+
I
H( —,0)

I

D+(D*+)&

+ &
K+

I
H( —,0)

I

F+(F*+) & =0 . (A9)

Sandwiching Eq. (A6e) between (a) &sr+
I

and IF+ &

and (b) & K
I

and
I

D & with infinite momenta, we are
led to

and

&n.+
I
H( —,0)

I

D+
&
—&K+

I
H( —,0)

I

F+
& = —2 tan&& &

a+
I
H( —,—}

I

F+
& (A 1oa)

&I/2I& Ia( —,0) ID'& &rI,—I
H( —,0) ID'&+' 2&i),

I
a( —,0) ID'&I=2t () &K'I a( —,—) ID'&, (Alob)

where we again used SUf(4) Clebsch-Gordan coefficients only in the asymptotic limit. With the help of Eq. (A9) and
the charm counterpart of the asymptotic

I

b I
I

= —,
' rule, Eq. (2.8) in the text, we obtain, from Eq. (Aloa),

& sr+
I
H( —,0)

I

D+
& =tan6c&K

I
H( —,—)

I
D

Substituting Eq. (Al 1) into Eq. (Alob) and using Eq. (3.3a) of the text, we obtain

~'2&K'Ia( —.0) IF' &= —~2&~'Ia( —o) ID'&=&~'Ia( —o) ID'&+&BOIH( —o) ID'&

—&2& i), I
H( —,0)

I
D & .

(Al 1)

(A12)

Next, we study asymptotic SUf(3) relations for the nondiagonal matrix elements of Eq. (4.3) with H =H( —,0).
Here we show typical asymptotic SUf(3) relations which are used in the text. We insert the commutation relation, Eq.
(A6e), between the states &m+

I

and
I

F+ & and use Eq. (4.23). Then we have

&2& K+
I
H( —,0)

I
F +

&
—

& n. +
I
H( —,O)

I
D +

&
—

& ir+
I
H( —,0)

I
D +

& =0 .

Insertion of Eq. (A6e) between &m+
I

and
I

Fj+ & leads to

&~+ Ia( —,o) ID+& —&~+ Ia( —,o)ID+ &+& 2&K+ Ia( —,o)IF &I+=2&2t aen, &~ I+a( —,—)IFI+& .

(A13)

(A14)

Inserting the commutation relation, Eq. (A6d), for example, between &)r+ ~ and
I

F+&, &K+
I

and
I
F+&, and

&
K+

I
and

I
F ~+ &, and using the asymptotic SUf(4) parametrization for the matrix elements of vector charges V 0 and

V+0, we obtain

& |r+
I
H( —,0)

I

F+ &+ &
5+

I
H( —,0)

I

D+ & =0

&2&K'
I
a( —o) IF &+ &~'

I
a( —» ID ' &+ &

~'
I
a( —o) ID,' & =o

t 2&K+ I« —,o) IF, &+&~ Ia( —,»ID+& —&~+ Ia( —,o) ID,+&=o.

(A15)

(A16)

Substitution of Eq. (A13} into Eq. (A16) leads to a useful result

&K+
I
H( —,o)

I

F +
& =o .

From Eqs. (A16), (A17), and (A18), we obtain

(A18)

and

«+
I
a( —o}

I

F + &+ &2& ~+
I
a( —,o)

I
D +

& =o

&
~+

I
H( —,0)

I
D +

& + & sr+
I
H( —,0)

I
D,+ & =0 .

(A19)

(A20)

3. Asymptotic SUf (4) relations

In order to obtain asymptotic SUf (4) relations among the nondiagonal matrix elements, Eq. (4.3) with
H =H( —,—) and H(0, —) in the text we insert commutation relation, Eq. (A7d), between the states &m. +

I
and

I

k+ &. The result is

&
m+

I
H( —,—)

I
F +

&
—

& sr+
I
H( —,—)

I

F i+ & =v'2 cot8c & a+I H (0, —)
I

k'+
& . . (A21)
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Substituting Eq. (4.23) into the LHS of Eq. (A21) we get &IC
i
H( —,—)

~

D &=&Pc'~ H( —,—)
i
D & (A23)

+
i
H( —,—) i

F",'
&

&2—cotec&tr+
~

H(0, —)
~

ir" +
& . (A22)

and

&|r+ iH( —,—} ~F+&=0, (A24)

Insertions of the commutation relation, Eq. (A7c), be-
tween the pairs of external states &k

i
and

~

D+
& and

and
~

F +
& lead us to

respectively, which are compatible with the result from
the level realization of single commutator given in the
text [see Eqs. (4.22) and (4.23)).
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