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Marginally bound self-similar collapsing Tolman spacetimes are examined, and the necessary

conditions for formation of naked strong-curvature shell-focusing singularities are found.

Recently, Ori and Piran' have studied the self-similar
spherical collapse of an adiabatic perfect fluid and have
shown that with a soft enough equation of state the col-
lapse can give rise to a naked shell-focusing singularity.
This is the first work which extends beyond dust, '

known fluid collapse histories which have naked singular
end states which are not instantaneous.

Newman has found that for a wide class of Tolman
spacetimes (spherical dust solutions) the shell-focusing
singularities are not strong-curvature singularities as
defined, for example, by Tipler, Clarke, and Ellis. How-
ever, Lake has shown that the shell-focusing singulari-
ties studied by Ori and Piran are strong-curvature singu-
larities. This is not what one might expect; the addition
of pressure in the spherical collapse of a perfect fluid

might well lead to a weaker singularity than in the pres-
sureless case.

We resolve this problem by considering the singularity
structure of self-similar spacetimes —specifically, the
marginally bound Tolman case here. (We have studied
all self-similar spherically symmetric spacetimes. Howev-
er, the case at hand provides a particularly clear and sim-

ple demonstration that this class of spacetimes gives ex-
amples of strong-curvature singularities. ) We find that
the form of the energy density used in Newman's work
excludes self-similar spacetimes, and show that self-
similar Tolman spacetimes admit strong-curvature singu-
larities.

Consider the self-similar Tolman metric (in standard
geometrical units) using comoving coordinates,

ds = dT + e dR +r —(d 8 + sin28 d ttt2 ),
where co and r—:r/T are functions of the self-similarity
variable y =R /T. Specifically, consider marginally
bound, self-similar Tolman spacetimes, ~here the equa-
tion for the areal radius is

r = ,'m [T——To(R)] (2)

Self-similarity demands that m =pR and To =KR, where

p and K are strictly positive constants. The range of
coordinates is 0 (R g ~ and —00 g T & KR.

To compare our formulation to that of Newman, con-
sider the function p [defined as p=e(R, O), where e(R, T)
describes the energy density at all times]. This is related
to the mass by

m =4m p(s)s ds,R

0
(3)

where, following Newman, we have chosen to scale R so
that r(T =O, R) =R. As a result

A shell-focusing singularity is the singular "point" at
R = T=O associated with radial null geodesics. The criti-
cal direction is the Cauchy horizon. We have shown else-
where that the Cauchy horizon of a spherically sym-
metric self-similar spacetime has y=const. Hence, along
the Cauchy horizon

1
e (6)

Then, with Eqs. (2), (5), and (6), with our choice of the
scale for R, we have

p
4vrR

and so p" & 0 (a prime denotes t)/BR) for all R. Newman
imposes the condition that for any T, e is an even smooth
function of R on the whole real line. This is not the case
here, and so he necessarily excludes self-similar models.

The metric coeScient g&„ is given by

e =r'.
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give

pR
r r'

D(y)
6n(1 Ky)(1 —3K—y)T T

(10)

(Note that e is singular at T =KR and T =3KR. ) It fol-
lows from (11) together with the Einstein equations and
the comoving condition that

2

A2R k~k~=8mD Tdr (12)

6(1 K—y) 2

y (1—3Ky) 9K2

Thus, along the Cauchy horizon the singularity is global-
ly naked if

K'& —,'( —", +5i/3) .

This agrees with Eardley and Smarr. [The inequality (8)
is obtained here by calculating the maximum value of p
in the range 0 & I/y &K (see below). Given K, for (M less
than this maximum, two solutions y=const exist. The
largest y gives the Cauchy horizon. ]

Following the work of Clarke and Krolak' we consid-
er the null geodesic along the Cauchy horizon, aSnely
parametrized by A, , with a four-tangent k, and terminat-
ing in the shell-focusing singularity at R =T =)(,=O.
The singularity is a strong-curvature singularity (as
defined by Tipler, Clarke, and Ellis ) if

lim A, R k k~~0.
~ o

For the present case the energy density at the singularity
[Eq. (4)] and the equation for the general energy density

4

(T —KR)
(14)

It is apparent that the Kretschmann scalar does not
diverge for R=O unless T=O also. Singularities also
occur at the crunch (T =KR) and when r'=0 (i.e., a
shell-crossing singularity) at T =3KR. Since K& 0, the
collapse is free of shell-crossing singularities down to the
crunch. Since T &KR along the Cauchy horizon it will

arise prior to the crunch. Likewise, a simple calculation
shows that the apparent horizon (r =2(MR) always occurs
after the Cauchy horizon. As a result the shell-focusing
singularity at R =T=0 is a globally naked strong-
curvature singularity. [The global nature can be em-

phasized, for example, by junction onto vacuum at some
fixed R &0 (Ref. 2).]

Shell focusing is a uniquely relativistic phenomenon in

the sense that it is characterized by a (coordinate) focus-
ing of null geodesics. The fact that the gravitational col-
lapse of dust can give rise to a naked strong-curvature
shell-focusing singularity is, as regards the cosmic censor-
ship hypothesis, at least a bit disturbing. Further, it is
now known that this situation is not limited to dust. '

The solution to this problem may lie in the "elastic"
boundary condition at R =0 (Ref. 11), but at present the
situation is not clear.

R = T=O in a strong-curvature singularity.
The central singularity must not exist in the initial con-

ditions of the spacetime. This will be shown here by con-
sidering the Kretschmann scalar:

R PygR 16

27(T KR—)

9 8

( T —3KR )
i ( T —KR )( T —3KR )

A, 'R pk k~=gnD5' . (13)

That is, the Cauchy horizon (y=const) terminates at

The null geodesic equations for the Cauchy horizon
(y=const) integrate explicitly to give T =A,s where
5=1/(1+4nD). As a result

Professor Piran has kindly informed us that he and A.
Ori have independently obtained the result on strength
discussed here. ' This work was supported by the Natu-
ral Sciences and Engineering Research Council of Cana-
da.
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It is worth noting that the condition r( T =O, R)=R is a choice
of scale for R, and not the choice of T=O as the initial slice.
The slice T=O is singular at R =0 [see, e.g., Eq. (14)]. For a

nonsingular initial slice any T&0 will do for the Tolman
model considered here.
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