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We apply a recently proposed graphical perturbative calculational scheme to a two-dimensional

supersymmetric model. Elsewhere, we reported the results of a second-order calculation of the
ground-state energy density E in this model with the result that E =0. Here, we calculate the
boson-fermion mass ratio R to second order in this new perturbation theory. As in the previous cal-
culation, there is a detailed cancellation between classes of graphs which leads to the unbroken su-

persymmetric result R =1.

A new artijicial perturbative technique which may be
used to solve quantum field theories has been proposed in
a series of recent papers. ' This technique involves re-
placing an interaction term such as gp with g($2)'+s,
where 5 is to be regarded as a small perturbation parame-
ter. We believe that the resulting series in 5 has a finite
radius of convergence. Because we are not forcing a
physical parameter to play the role of an expansion pa-
rameter, we are able to uncover nontrivial dependence on
coupling constants and masses. In Refs. 1 and 2 we de-
scribed how the 5 series may be computed by a well-
defined graphical method. The Green's functions com-
puted in this manner are dramatically less divergent than
the corresponding weak-coupling Green's functions.

In Ref. 3 we applied this technique to the two-
dimensional supersymmetric Lagrangian

2(y2)1+6

2 =Zo+L (2a)

We showed that this model possesses unbroken super-
symmetry invariance by computing the ground-state en-
ergy density through second order in powers of 5; the re-
sult of a beautifully nontrivial cancellation between
infinite classes of graphs was E =0. Here we wish to de-
scribe a closely related calculation, that of the ratio R of
boson to fermion masses in this model. This calculation
is of some interest because now the graphs carry momen-
tum, and wave function as well as mass renormalization
is present.

It is illustrative to carry out the calculation to order 6
first. To do this, we introduce the provisional Lagrang-
ian

We note that the interaction terms in X are proportional
to 5 so that the corresponding Green's functions G(a)
may be calculated in order 5 using conventional weak-
coupling Feynman rules. We obtain the Green's function
corresponding to the original Lagrangian (1) by the rule

G-d., s =Go+ G(t )
t)a a=0

(3)

25
G 2' (a) = — (2I) I (a+ —')(1+2a+2a ),

v 7r

where I is the logarithmically divergent integral

1 d p
(2n. ) p +g

The boson mass is then obtained from the recipe in (3):

mb g+g 5[/(———,')+ln(2I)]+O(5 ) .

(4)

(6)

The two diagrams contributing to the fermion mass are
shown in Fig. 2(b); the second contributes to G f(a),

G' (a)= (2I) f'(a+ —,'),
2&Fr

(7a)

while the first gives

G,'f=gn .

Equation (3) then gives the fermion mass

(7b)

Here Go is the Green's function calculated from the
order-5 term in Xo.

The Feynman rules corresponding to (2) are given in
Fig. 1. The two diagrams which contribute to the boson
mass are shown in Fig. 2(a) and give

,'(ay)'+ 'yells+ ,'g'-y' ,'g(—1+5)A-, ——

25(y2)1+a i g5(y2)ayq

(2b)

(2c)

mf ——g+ [g( —,')+ln(2I)]+O(5 ) .

The boson and fermion masses, (6) and (8), are identical
through order 6.
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FIG. 1. Feynman rules for the Lagrangian X in (2). These
rules determine the Green's functions to order 6.

The order-5 calculation is considerably more complex.
We use the second-order provisional Lagrangian X=SO
+X &, where Xo is still given by (2b), but now

2(5+52)(y2)l+a+ ] 2(52 5)(y2)l+P

FIG. 2. Diagrams contributing to the (a) boson and (b) fer-
mion two-point function to order 6.

——,'g(25+ 35')(P') it/+-, 'g(25+ 5')(P')~gf .

The corresponding Feynman rules are given in Fig. 3.
The Euclidean-space boson and fermion propagators are

~ll

/

I

2t. t -t- " lines ——g (6 I-6 )(2c + 2)!

1 d p ipx
(2lr) p +g

(10a)

2 3 -t- " 1111es ——g (6 —6)(~P + 2)'

(lob)
d2

Af(x ) = f e'P "=(ill g)b( )x. —
(2~) P —g

2A' bosoll lines -g{"6 + 36"-)(2~)!

There are 13 types of graphs which contribute to the
boson two-point function to second order in 5. (This
count does not include a,p interchanges. ) These graphs
are shown in Fig. 4. When all these graphs are calculat-
ed, we apply the differential operator

2P lioson lines —-'g(-6+ 6'-')( ~).

g6

D-1 a a 1 a'
2 Ba Bp 4 ()a2 gp2

and evaluate the result at a=P=O. The contribution of
each graph to G "(p ) is as follows:

FIG. 3. Feynman rules for the Lagrangian X in (9). These
rules determine the Green's functions to order 6 .
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2/2
g'5+ [f(—', )+ 1n2I],

(12a)

(12b)

—g5 —1+2gIf dx (12c)

Q2

12
Q2—g 5 [1+tP( —,')+ 1n2I]If d x, (12d)

Q2
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FIG. 4. Classes of graphs which contribute to the boson two-point function to order 5 .
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2 In+1+2g2 n +2 gn +2( )
—/p'xd 2
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The evaluation of this last diagram, which involves a fermion loop connecting the two vertices, made use of the identity
(a generalization of one given in Ref. 3)

Tr dxA" xAf xkf xe

2 2

goal

+2(x )
—IP'xd 2

(n +1)(n +2) (13)

There are five classes of diagrams that contribute to the fermion two-point function. There are shown in Fig. 5, and
result in the following contributions to G 'I(p):

g6,
52

[P(—')+ ln2I —2]+ t [f(—,')+ ln2I —2][g(—,
' )+ ln2I+ 2]+f'( —', )+4I,

' If — "d'x — [21((—')+21n2I —1]If '"'d'x
4 I 2 lr(l+ —,') I ' 2

(14a)

(14b)

g 352 g2(x)
[g( —,')+ ln2I —2]If d x, (14c)

g 5 &n ~ (I —1)! b, '(x)4, , Ir(t+ ,')-
4 I, lI (I + —,

' } " I I+' 4 (~ I(2I +1)I (I + —,
' } I2I+'

(14d)

(14e)

Let us now write

6"(p)= A (p')p'+&(p')

and similarly

O'I(p') =a(p')I(+ b(p'),

(lsa)

(15b)

(a)

where the explicit p2 and gf factors appear in (121) and
(14e), respectively. Then, the mass squared of the boson
is given by the zero of

p2+, =p'+g' B(p')+—g'A(p'),2 g' —~(P'} 2

1 —A(p )

because, from (121), A (p ) =0(52). Similarly, the fer-
mion mass squared is given by the zero of

(c}
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The comparison of boson and fermion mass operators is
now very simple. The contribution to (17}involving

21+ 1 —lp xd2
I21+ 1

from (14e) is seen to be precisely the same as the similar
contribution to (16) of (12i), (12j), (12k), and (121). Like-
wise, the contribution to (17) involving
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FIG. 5. Classes of graphs which contribute to the fermion
two-point function to order O'. Note that graph {a) contributes
through G 0' in {3).
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from (14c) and (14d) is identical to the corresponding
contribution to (16) from (12d), (12e), (12f}, (12g}, and
(12h). The contributions to (17) involving

x
I

Thus we have established the supersymmetric result

mf ——m&

through order 5 .

(18)

(19)

from (14c) and (14d) are the same as those from (12c),
(12d}, (12e), (12fl, (12g), and (12h) to (16). Finally, the
remaining numerical contributions from (14a) and (14b)
are just the same as those arising from (12a), (12b), (12c),
(12h), and (121) when we recognize the identity
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