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A gauge-co variant regularization method is introduced to evaluate current-current and
current-electric-field commutator anomalies in chiral gauge theories in two- and four-dimensional

spacetime within the Hamiltonian formalism. The results are consistent with those obtained by the
Bjorken-Johnson-Low method. Provided that the electric fields commute with each other, a covari-
ant expression is found for the commutator anomaly of the Gauss-law operator. The regularized
current is shown to have the covariant anomaly in its divergence due to its noncommutativity with

the electric field.

I. INTRODUCTION

During the past several years, the mathematical struc-
ture of chiral anomalies has been unveiled. ' Among
others, Faddeev's suggestion that gauge symmetry is
realized as a projective representation in chiral gauge
theories raised hope that chiral gauge theories might be
consistently quantized. Much effort has been made along
this line. ' Faddeev's suggestion is based on the coho-
mological argument, and he conjectured that a nontrivial
two-cocycle appears as an extra term in the commutator
of the Gauss-law operator in chiral gauge theories. From
now on we call this term Faddeev's commutator anoma-
ly. This commutator anomaly was confirmed by Jo and
by Kobayashi and Sugamoto and one of us (K.S.)
through the Bjorken-Johnson-Low (BJL) method, which
derives the equal-time commutator from the time-
ordered product of operators. Meanwhile Jo evaluated
the commutator anomaly of the Gauss-law operator by
the generalized point-splitting method proposed by Fad-
deev and Shatashvili. It belongs to the fixed-time
method. He obtained a result in 1+ 3 dimensions which
is not consistent with the one obtained by the BJL
method, and he concluded that the BJL method is, at
least so far, the only way to verify Faddeev's conjecture.

On the other hand, some people gave formal argu-
ments in the Hamiltonian formalism to connect
Faddeev's commutator anomaly with the Berry phase of
the fermionic vacuum. ' '" In 1+ 3 dimensions only the
work by Niemi and Semenoff' evaluates the commutator
anomaly within the Hamiltonian formalism and they
claim that their result coincides with Faddeev s conjec-
ture. However, their argument is not suScient, at least,
for the following reason: They evaluated only the
lowest-order term, the linear term with respect to the
gauge field, supposing that higher-order terms, the quad-
ratic and cubic terms with respect to the gauge field, are
cohomologically trivial. However, it is known that there
exists the cohomologically nontrivial expression consist-

ing of quadratic and cubic terms. ' Therefore, without
explicit calculations, we cannot exclude the possibility of
the appearance of such cohomologically nontrivial terms.
Furthermore, it seems diScult to compute these terms in
their formalism.

Towards the settlement of this problem, we proposed a
new fixed-time regularization method which respects the
gauge symmetry as far as possible, and evaluated the
commutator anomalies explicitly within the Hamiltonian
formalism. '

The advantage of our regularization method is to en-
able us to avoid the ambiguities in the point-splitting
method, which come from the procedure of averaging
over the relative coordinate of point-split fields. If we
take the commutator of two point-split currents, the
canonical term to be separated from the anomalous terms
cannot be uniquely identified due to the independent
averaging of two currents. In our method any averaging
procedure is avoided and once the currents are regular-
ized, the product of any number of currents is also well
defined. Furthermore, we can separate the canonical
term uniquely from the anomalous terms in the commu-
tator.

Our results on the current-current and the
current —electric-field commutator anomalies derived in a
fixed-time approach are consistent with those obtained by
the BJL method (a spacetitne approach). As for the com-
mutator anomaly among the electric fields, we have not
yet derived it from first principles. Therefore, the task to
confirm Faddeev's commutator anomaly within the Ham-
iltonian formalism is left for future study.

In this paper we explain the details of the calculations
to obtain the final expressions given in a previous paper. '

In Sec. II we present a gauge-covariant regularization
method, and give formal expressions of the current-
current and the current —electric-field commutator
anomalies. It is shown that they transform covariantly
under the gauge transformation. In Sec. III the commu-
tator anomalies are perturbatively evaluated and the re-
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suits of computation are compared with those obtained
by the BJL method. In Sec. IV the chiral anomaly of the
current divergence is derived from the commutator
anomalies obtained in the previous section. The commu-
tator anomaly of the Gauss-law operator is presented in
our covariant regularization scheme, where the electric
fields are assumed to commute with each other. With the
same assumption, the time derivative of the Gauss-law
operator is related to the chiral anomaly. Section V is de-
voted to conclusions and discussion.

„1+y~+gy" ( —i)(a„+gAkt')y
2

(2. 1)

where D is the dimension of space (D =1 or 3). The
gauge field is treated not as an external field but as a
quantum field, and the Weyl gauge ( A o

——0) is taken. In
this gauge the electric field is the canonical momentum
conjugate to the gauge field, and they satisfy the follow-
ing canonical commutation relation:

[E,'(x), A, (y)) = igiJ5ab—5(x —y) . (2.2)

Latin indices from the middle of the alphabet, i, j, k, and
so on, are used to specify the space components, while
greek indices from the middle of the alphabet, A, , p, v,
and so on, stand for both the space and the time com-
ponents. We follow the convention of Bjorken and
Drell' for the y matrices and the antisymmetric tensor

&@vs:

II. CURRENT COMMUTATOR ANOMALIES
IN A GAUGE-COVARIANT REGULARIZATION

METHOD

%e study chiral gauge theories in two- and four-
dimensional spacetime, which are described by the fol-
lowing Hamiltonian:

T

gf J dD» I EaEra+ 1Payiia,
I 4 IJ

and denote an eigenvalue and the corresponding eigen-
function by E„and P„, respectively. If the fermion field
is expanded by this set of eigenfunctions as P= g„a„P„,
the operators u's satisfy the following canonical anticom-
rnutation relations:

Ia„,at ] =5„„. (2.4)

The fermion part of the Hamiltonian for a fixed gauge
field configuration is formally diagonalized as

~fermion X En n n (2.5}

a„ for a positive (negative) E„ is interpreted as an annihi-
lation (creation} operator of a dressed fermion in the pres-
ence of a background gauge field.

Since the product of two fermion fields at the same
point is not well defined, we regularize any bilinear opera-
tor g (x)O(x)g(x) as follows:

[1(| (x)O(x)g(x)]„

—( /2)E —(E/2)E= g a„P„(x)e "O(x)e P (x)a
n, m

(2.6)

where O(x) is an arbitrary matrix-valued differential
operator. The infinitesimal parameter e has a dimension
of (mass) and plays the role of ultraviolet cutoff. Then
the fermion part of the Hamiltonian is regularized as

—eE„2

termion X e En an an
n

(2.7)

First we calculate the commutator of the regularized
current defined by

—( e/2) E —( e/2)Ej„'(x)= g a„p„(x)e "t'yoy„e p (x)a
Tr( Ysyo'Y i ) = —2eo& ———2,
Tr(y y syioy y 2)=s4ieoi2s 4i . ——

(2.3a)

(2.3b}

n, m

(2.&)

t"s are anti-Hermitian generator matrices and satisfy
tr(t't )= —

—,'5,b, and [t', t ]=f,b, t'. Sometimes the fol-

lowing notation is used in order to simplify mathematical
expressions: Ak ——g Ak t', E& ——gEk t', and; =gF t'.

We take the Schrodinger picture and the representa-
tion where the gauge field is diagonalized. For each
configuration of the gauge field, we consider the eigenval-
ue problem of a Herrnitian operator

0 k 1+75H(A)= iy'y" — (a+ A)„,
2

with the help of the formula

g a'„A„.a, g a,'JJ«a„——g a'„[A,a]„.a
n, m n, m

(2.9)

[jo(x),j„(y)]=f,t„j „'(x)5(x —y)+S„' (x y),
with

(2.10)

On account of the regularization factors, the commutator
deviates from the canonical one as follows:

—(6/2) E4„' (x,y)= g a„P„(x)e "t' g e 'P&(x)Pt(y) 5(x —y) t yoy„e — P (y)a
n, m I

—(E/2)E—g a„P„(y)e "tbyoy g e
n, m

—eE —(6/2 )E
'Pi(y)P&(») —5(y —x) t'e P (x)a (2.11}
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Now we evaluate the expectation value of the operator 4„' on the Dirac vacuum in the presence of the background

gauge field,
~

0) „,which is defined by the conditions a„~ 0)„=0for all positive energies E„and a„~ 0)„=0for all

negative energies E„. In terms of the projection operator to the negative-energy eigenfunctions

(x,y)= g P„(x)P„(y),
E &0

the vacuum expectation value of S'„' in the vanishing limit of e can be expressed as

—«„ b -«„b= lim Tr[e 'P (y, x)t'(e "—l)5(x —y)t yoy& e— 'P (x,y)t yoy&(e ' —1}5(x y)t—'],
e~O

(2.12)

H( A(t) =gH( A)g
—«„(A)

also transforms asthe operator e

—eb„( A ~) —eb,„(A )
e " =g(x)e "

g (x) .

(2.14)

(2.15)

Meanwhile Eq. (2.14) implies that H(Ae} and H(A)
have the same energy spectrum and the eigenfunction of
H ( A e) is obtained from that of H ( A ) by the gauge
transformation, that is,

where E=H and the subscript attached to it denotes its
argument.

Now we study the transformation property of 4' un-

der the gauge transformation Af =gA;g +g(};g . ForgP

later convenience, we introduce a functional S„defined
by

$„[A,u, v]= fdx dy u'(x)v "(y)eP„(x,y), (2.13)

where u'(x) and v (y) are arbitrary functions and
u =u't', v =v't'. Since the operator H(A) transforms
as

Therefore, the projection operator to the negative-energy
eigenfunctions of H ( A ) is equal to

y [g(x)4.(x)][g(y}4.(y)]'
E„&0

=g(x} g P„(x)P„(y) g (y)
E„&0

=g(x)P (x,y)gt(y) . (2.17)

Thus we know that 4„transforms gauge covariantly as

$„[A,u, v)=4„[A,genug, gtvg] . (2.18)

[E (x),j„(y)]=gV';„(x,y) (2.19)

Next we turn to the current —electric-field commutator.
Through the regularization, the current becomes depen-
dent on the gauge field and does not commute with the
electric field. The commutator anomaly is formally given

by

H ( A ')(g(( „)=E„(gP„) . (2.16) with

—(e ) b +75 — /
'T';„(x,y) = if (y) —. e 't yoyz e ' g(y),

5gA "(x)
(2.20)

—(e/2)A —(e/2)b,
where f (y)e ' is the Hermitian conjugate of e 'f(y) If we take t.he vacuum expectation value of '7' and

take the vanishing limit of e, we have

—(&/2)h —(&/2)h
'T;„(x,y)= lim lim T. r ( i)t yoy„—. (e '}P (y, z)e

E-o -v ' "
5gA "(x)

—(E/2(5 5 —(E/2)5

5 A "(x)
(2.21)

Like S„we define a functional Y;„by

5;„[A,u, v]= f dx dy u'(x)v (y)V „(x,y) . (2.22} F(A (y))=g(y)F(A(y))g (y) . (2.23)

—(e/2)b, —(e/2)b,
e ' and e ' by F( A (y) ), then F transforms as

Gauge covariance of 5;„can be read from Eqs. (2.15) and
(2.17) together with the following fact. If we represent

Let us consider m as an infinitesimal vector function,
and we denote m;=m t'. By substituting A;+g w;g
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(2.25)

Since w is an arbitrary vector function, Eq. (2.25) holds
for each vector component, that is,

f dx u'(x) = fdx(g ug)'(x)5F( A)

5A (x)

Thus, it is proved that

7;„[As,u, v]=V;„[A,g ug, g vg] .

(2.26)

(2.27)

III. COMPUTATION OF COMMUTATOR
ANOMALIES BY PKRTURBATIVE EXPANSION

Now we evaluate the commutator anomalies, whose
formal expressions are given in the preceding section, by
perturbative expansion. S„' and 7 „ involve a D-
dimensional 5 function, whose mass dimension is D.
Then, except for the factor of the 5 function, S& and 7';„
have mass dimensions D and D —1, respectively, and
these numbers are equal to the degree of divergence of 4
and 'T. If we expand the projection operator P and the
operator e ' with respect to the gauge Geld, the degree
of divergence is decreased by one for each factor of the
gauge field or for each factor of space derivative acting
on the gauge field. Since 7 has a factor of e and 4 in-
volves the factor of (e ' —1), only ultraviolet-divergent
integrals survive in the vanishing limit of e. Further-
more, ultraviolet-divergent parts are local functions of
the gauge field, and they are at most Dth order for 4 and
(D —1)th order for 7 with respect to the gauge field
and/or the space derivative acting on the gauge field.
Therefore, it is sufhcient to expand the projection opera-
tor and the operator e '

up to Dth order with respect to
the gauge field and/or the space derivative.

First we carry out the Taylor expansion of the projec-
tion operator with respect to the gauge field. If we inter-
pret the eigenfunction of H as the wave function of some

into A; on both sides of Eq. (2.23), we obtain the relation

F( As(y)+w(y))=g(y)F( A(y)+g (y)w(y)g(y))g (y) .

(2.24)

If we expand this equation with respect to w, we get

f dx w (x) =fdx (g w, g)'(x)5F( A)

5A (x) „„g
xg y g (y).5F(A}

5A,'(x)

state
~
n, A ), that is, p„(x)= (x

~

n, A ), then the projec-
tion operator P can be rewritten as

P (x,y)= g (x
~

n, A)(n, A ~y)
E„(0

x fc n, A (n, A ~y)
dE 1

n n

(3.1}

where C is a contour surrounding the negative real axis
in the complex E plane. Next the operator H is divided
into the free part

1+y5
H0 ——y y 2

( —&&k )

and the interaction part

0 k 1+$5I'=y y ( —&Ak»
2

and 1/(E H) is—expanded with respect to V. The
zeroth-order term, denoted by P' ', is given by

p(o)( ) f d p 1
1

p yy'D 0 l+y
(2~)D 2 E, 2

—ip (x —y)~e t (3.2)

where E~ =
~ p ~

. The contraction of the D-momentum p
with a (D+1)-vector q is understood as p q =p'q;. The
higher-order terms up to the third order are explicitly ob-
tained in Appendix A.

Next we expand the operator e ' acting on a plane
wave e 'p' . Since 6 and P are chirality conserving,
only the chirality projection (1+y5)/2 in P is retained
and other projections (1+y~)/2 in 6 are suppressed in

the trace of Eq. (2.12). First we notice the identity

e e
—lp x

=exp e(B+—A)' — [y', y "]F; e— .
4

& jk

E= e '~ "exp —e( ip +8+—A )
~ — [y&, y

i )F i. —

=e ' "e'i' exp[2iep (8+A) —eA] . (3.3)

As will be explained later, p is counted as of order 1/&e.
The third factor of the last expression in Eq. (3.3), denot-
ed by F, is expanded in powers of &e up to third order as
follows:

ie 4ie
4 ' J[y', y ]Fkp. A — p (8+A)p (0+A)p. A .

3

F' '= —e(B+ A ) A ——[y1,y"]F,k 2e p.(3+ A )p A-
F' '= —i ep (8+ A')(B+ A) A ie (8+ A) p—A

p (8+A)[y', y ]Fk-lE k
J

(3.4a)

(3.4b)

(3.4c)
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Then the expanded projection operator and the expanded operator e ' are substituted into the formal expression of
4„' given by Eq. (2.12). We discuss evaluation of terms order by order of the projection operator. First we consider the
contributions from the zeroth-order projection operator. Further we take the zeroth order of the expansion of e as
an example. It is the c-number part of 4„' and is given by

dD dD, 1
o 1+@'P'[& ra(e' —1)e ' '" ~'r yoy (x—~y, a~b) . (3.5}

E, 0 p

If we change a variable from q to g=q —p, p decouples from x and y, and it can be regarded as a loop momentum. In
1 + 3 dimensions the above expression becomes

d~g . darb) m e (g (x —y} P e' (e" +&' —1) g 0 —g —(x~y) .
(2m ) (2m) ~

—
wE (3.6}

e( +)The integral over the loop momentum p is evaluated after Taylor expansion of e "~+~' with respect to the external
momentum g. If we change a variable from p to lr=&ep, the Jacobian gives an overall factor ( I/&e) and the integral
depends only on the dimensionless combination &eg. Thus, it is justified to count p as of order I/&e. The zeroth-
order terms in g are proportional to (1/&e), but they are canceled out after subtraction of the terms in which x and y
are interchanged. The first-order terms in g give the well-known Schwinger term, which is proportional to I /e and is
quadratically divergent in the vanishing limit of e. The second-order terms again compensate each other and the third-
order terms give an ultraviolet finite term proportional to the third derivative of the 5 function. Finally the expression
(3.6) is reduced to

g tr(t't ) a'5(x —y) — a'a ak5(x —y)
12~'e 20+

(3.7)

When we take the zeroth-order projection operator, we have to pick up terms of the expansion of e ' up to third or-
der in &e. Contributions from these higher-order terms are evaluated essentially in the same way. For the reader s
convenience, four basic integral formulas which we have used are listed in Appendix B, Eqs. (B1)—(B4).

Next, we consider the contribution from the first-order projection operator. This time we have to retain the terms of
the expansion of e '~

up to second order in v e. Again we take zeroth order as an example, which is given by

Tr 3D exp ep —ip y+iq x y y +
(2m )

1+7 0 E'P

Ak(p q)t'(e'" ——l )t yoy e '"'" ~' (x~y, a~—b) .
2 P (3.8)

With a change of integration variables from q and r to g=q —p and rl =r —p, p decouples from x and y. In 1 + 3 di-
mensions the expression (3.8) is transformed as

exp i x —ig. x —y tr A — t't e'~ e~~+"' —1

u'V +4)
gpk +(gkl gmp+gkm glp gkp glm + Ikmp)

p

(x+ y, a ~b) .—(3.9)

A method to evaluate these integrals is explained in Appendix B. Making use of the formulas (B5)—(B18), we arrive at
the following result for the integral (3.9):

g„„ tr( A "[r',t'])5(x —y) — tr(B,B'A "—B,B"A ')[r', r']5(x —y) — tr(28, 8'A "—BIB"A ')t t'5lx —y)12' e 242 60m.

+ tr[a'A k@5(x —y)+a, A 'ak5(x —y)+a" A 'a, 5(x —y)][t', t"
I60m.

, tr[6B'A "8,5(x —y)+8, A '8"5(x —y)+8"A 'B,5(x y)]r t'—
60n

+ tr[3A "B,B'5(x —y)+ A, B'8"5(x —y)][t', t ] ~g e'Jkotr[p, A Bk5(x —y)[r', r~J] . (3.10)
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Contributions from higher-order terms of the expansion of e ' are also computed by utilizing the formulas (B5)—(B18).
Evaluation of the contributions from the second-order and the third-order projection operators is carried out with

the help of the formulas (B19)—(B28). Collecting all contributions together, we obtain manifestly gauge-covariant ex-

pressions for S„as follows:

dx tr(uD, v) in 1+1 dimensions,2' (3.11a)

e'J" dx tr[F; ( uDk v +Dk vu )],
16m

IJ
(3.11b)

Z'= fax l i i ln2 i k 11i i 1n2 i ktr(uD'v)+ + + tr(uD'D Dkv)+ — — tr(uDkD'D v)
12~ e 90m 24m 360~ 12'

11i i ln2 k i
z + z tr(uDkD D'v)—

360~~ 24~~
1 7T

16~'

1/2

e'" tr(F~k[u, v]) in 1+3 dimensions, (3.11c)

where Dk stands for the covariant derivative in the adjoint representation, that is, Dkv =Bi,v+[Ak, v]. In 1+ 1 di-

mensions, j =j ' and hence S =4' due to the identity

, 1+@5r'y'
2

1+rs
2

Next, the anomaly of the current —electric-field commutator, whose formal expression is given by Eq. (2.21), is pertur-
batively evaluated. This time we retain the expansion of the projection operator up to (D —1)th order, while the expan-
sion of the operators e " ' and e '

up to Dth order. With much less labor, we obtain the following results:

7' = '7"= — dx tr(uv ) in 1+ 1 dimensions,2'
', e''"

distr

F,, u, U

16m

(3.12a)

(3.12b)

7J= f dx g'Jtr(uv)+ tr( —1 luD'D v —1luD D'v+4g' uD„D "v)
6~ e 360m.

1/2
1 m.

8~'
e'J" tr(uDkv) in 1+3 dimensions . (3.12c)

In order to compare our results with those obtained by the BJL method, we have to take into account the difference
of our current and the one used by the authors of Refs. 5—7 in the BJL analyses. As will be shown in the next section,
our current has the covariant anomaly' in its divergence and is called the covariant current, ' while the current used
by the authors of Refs. 5—7 has the consistent anomaly' and is called the consistent current. ' The difference of the
consistent current J' from our covariant current j' is known to be'

g ~ a Ja ~ a
p p p

etr(t'A') in 1+1 dimensions,
4~ ~'

48 P P x'APe,. tr[t'( A 'F e+F ~A ' —A 'A Ae)] in 1+3 dimensions .

(3.13a)

(3.13b)

Then the commutator anomaly for the consistent current is obtained as follows:

[J '(x),J (y)]=[j '(x),j (y)]=f,&j '(x)6(x —y)+4 ' (x,y)

=f,t„J '(x)5(x y)+N'"(x, y) f—,&, Aj '(x)6(x ——y),

[&"(x),J'"(y)]=[E"(x),j (y)+&j "(y)]=g&' '"(x,y) t [bj (y)] . —6

5A,'(x)

(3.14a)

(3.14b)

It is remarkable that these anomalies are in complete agreement with those obtained by the BJL method [Eqs. (1.3a),
(1.3b), (2.19a), and (2.19b) of Ref. 6] in both 1 + 1 and 1 + 3 dimensions.

As for the commutator anomalies among the electric fields, we are not able to derive them from first principles, but
we expect they are absent so far as we regularize the whole system gauge covariantly. In fact we cannot write down any
tensor with odd parity, gauge covariance, locality, and the antisymmetric property under simultaneous exchange of
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coordinates and indices. Recently, it was suggested by one of us (S.H. ) that the electric fields commute with each other
in the covariant regularization scheme, while they do not in the consistent regularization scheme. '

IV. CHIRAL ANOMALIES AND COMMUTATOR ANOMALIES OF THE GAUSS-LAW OPERATORS
IN THE COVARIANT REGULARIZATION SCHEME

In the Schrodinger picture, the time derivative of an operator is given by its commutator with the total Hamiltonian.
First, let us take the commutator of the charge density with the fermion part of the Hamiltonian. We transform it as
follows:

n, m

—(E/2)E —(e/2)E= g a„P„(x)e "t'(E E„)e— P (x)a +fl'(x)
n, m

= g at(j)t(x)e "(t'H Ht')e — P (x)a +'9'(x)
n, m

i (D—kj ")'(x)+Q'( )x (4.1)

with

—(E/2)E —eE —eE (p/2)E2'M'(x)= g atPt(x)e "t'[E (e —1) E„(e —"—l)]e P (x)a
n, m

(4.2)

Ef we take the vacuum expectation value of Q, it vanishes:

(6')„=o. (4.3)

In fact, its matrix elements between arbitrary states vanish in the limit of @=0,at least in 1 + 1 dimensions.
For example, let us consider the following two-point function:

G' (xy)=(Vl'(x)j (y)) „
=(Q'(x)) z (j o(y)) z+Tr[e «P (y, x)[t'H(e "—1) H(e "——1)t ]e "P+(x y)t I .

The first term vanishes. The second term is the connected part of G' (x,y), and its c-number part is read as

(4.4)

2 2
tr q exp —ep +ip y —x j — t'q e ' —1 —p e '~ —1 t' exp —eq +iq x —y 1+ t

(2n ) E

(4.5)

Changing a variable from q to (=q —p, we obtain

tr(t't )f - e'~'" «'f exp[ ep' e(—p+g—)]' p 0 [(p +g)(e —E(p+() 1) 'p (e —&P 1 )]lp+4 I

(4.6)

The product of factors coming from two projection operators

p+4
lp+41

cuts off the ultraviolet region, and the integration over p does not yield any ultraviolet divergences. Then we can take
the vanishing limit of e in the integrand, and the integrand vanishes due to the factor (e '~ —1) or (e "~+~' —1).
Even if the complete expression of the operator e & is used, the situation is not changed. Meanwhile if we take the
higher-order projection operator, it involves a factor cutting off the ultraviolet region in itself. For example, the first-
order projection operator can be rewritten as
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P(i)(x y) f Pdp d I p(p+ ) 1+F5
(2~)' 2( lp I+ lp+41) lp I lp+4I

1 — exp[ip (x —y) —i']A, ( —g)1

dp dg 1

(2~)' 4(
I p I+ I p+4 I

)

p+0
lp+41

p+0
I p+kl

1+@)
exp[ip (x y—) i—jy] A, ( —g)

2
(4.7)

Roughly speaking, the zeroth-order positive-energy projection operator corresponds to free propagation forward in
time of a particle, while the negative one corresponds to free propagation backward in time of a particle. In order for a
particle to come back to the time when it started, at least once it has to go forward in time and once backward in time.
Thus, higher-order projection operators always involve such a factor as

p+0
Ip+0 I

P +'9
fp+n I

with p a loop momentum and with g and rt external momenta. Therefore, we can safely take the limit of a=0 in the in-
tegrand, and the integrand vanishes due to the factor (e ' —1). Thus, the connected part of G is known to vanish
when e goes to zero.

This proof can be generalized for n point functions, involving M and arbitrary (n —1) fermion bilinear operators.
Any fermion loop with more than two vertices necessarily involves at least one positive-energy projection operator and
one negative-energy projection operator and their product cuts off the ultraviolet region. Then the loop integral is ul-
traviolet finite and the vanishing limit of e can be taken inside the integral. If G is inserted into that loop, the factor
(e —1) of '9 kills such a loop. Thus it is proved that the connected n point function involving 'M vanishes in the lim-
it of e=O.

The argument developed here also applies to the case of 4 and 7', since the proof given above is not based on the de-
tails of Q but on the fact Q involves a factor (e ' —1). 4 involves the same factor and 7 has a factor of e instead.

In 1 + 3 dimensions, the structure of the projection operator is much more complicated, and we have not yet proved

that any connected n point function involving eV or T or Q vanishes in the limit of @=0.
In the Weyl gauge, the anomaly of the current divergence arises from noncommutativity of the charge density with

the electric field. With the aid of Eqs. (3.12a) and (3.12b), we obtain the chiral anomaly as follows:

j '(x)= i [j '(x—),&]=—(Dkj")'(x)+A'(x), (4.8)

with

A'(x)= —f dyl j '(x),E' (y)E;(y)}=—~ fdy{7" '(y, x),E;"(y)l

tr(t 'E '
) in 1+ 1 dimensions, (4.9a)

1

162 ~~ Jk
e' ~" tr(t'[E, F ]) in 1+3 dimensions . (4.9b)

These anomalies are gauge covariant and their normalizations including signs agree with those obtained by the path-
integral method. '

Next we examine the commutators among the Gauss-law operators defined by

G'(x) =O'E,'(x)+gf, „,A ' (x)E (x)+igj '(x) . (4.10)

The commutator of G' with the current is found from Eqs. (3.1 la)—(3.12c) as follows:

f dx dy u'(x)U (y)[[G'(x),j„(y)] igf, t„j„'(x)Qx —y)—j
= —g g 5;„[A,D'u, u]+igS„[A,u, u]
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0 in 1+1 dimensions,

0 for p=0 in 1+3 dimensions,

(4.11a)

(4.11b)

g f dx
2

tr(uDJU)+ tr( —uDJD»D "u+2uD»D D "u —uD "D»D U) for p=j in 1+3 dimensions .
12m e 24m.

(4.11c)

Thus, the charge density has a canonical commutator with O'. As for the commutator among the electric fields, we as-

sume that they vanish in the covariant regularization scheme. Then the commutator anomaly for the Gauss-law opera-
tor takes the following form in the covariant regularization scheme:

x y u' x U y 6' x,G y —ig,bG' x x —y

=f dx dy u'(x)U (y)[[G'(x), (D'E, ) (y)] i'gf, b, (D E )'(x)5(x —y)]

dx yu'x U y igj 'x, D'F y =ig 0 ADUu

= —g'$ a[A, U, u]=g $0[3,u, v], (4.12)

where use has been made of Eqs. (4.11a) and (4.11b).
Finally we examine the time derivative of the Gauss-

law operator 6' by taking its commutator with the Ham-
iltonian. In 1+ 3 dimensions as well as in 1+ 1 dimen-
sions, we have proved that

[( "
k } (X}«rmion]= g( "Jk } (X) ' (4.13}

=ig [(D"j» )'(x)+j '(x)]=igA'(x) . (4.14)

This relation was first noticed by Fujikawa' and has been
investigated more closely by one of us (S.H. ) (Ref. 18).

V. CONCLUSIONS AND DISCUSSION

We succeeded in evaluating the current-current and
the current —electric-field commutator anomalies by mak-

ing use of a new covariant regularization method in 1 + 3
dimensions as well as in 1+ 1 dimensions. The commu-
tator anomalies take covariant forms since our currents
are regularized gauge covariantly. The chiral anomaly of
the current divergence was derived by taking the commu-
tator of the charge density with the total Hamiltonian.
The anomalous contribution from the commutator
among the currents is canceled by the one from the com-
mutator of the charge density with the kinetic term of the
fermion. Thus, the commutator of the charge density
with the fermion part of the Hamiltonian gives only the

Provided that the electric fields commute with each oth-
er, we obtain the relation

G '(x }= i [G'(—x),&]

k ) (x) ~«~»i&»]

canonical term, the covariant divergence of the space
components of the current. The chiral anomaly arises
solely from noncommutativity of the charge density with
the electric field. The resultant expressions have right
signs and normalizations of the covariant anomaly in
both 1 + 1 and 1 + 3 dimensions.

Our results on commutator anomalies of the covariant
current are translated into those of the consistent
current, which are in agreement with those obtained by
the BJL method so far as the charge density is concerned.
As for the commutator anomalies among the electric
fields, we do not know their origin, but it is reasonable to
assume they vanish in the covariant regularization
scheme from dimensional and symmetry consideration.
On this assumption, the commutator anomaly of the
Gauss-law operator is related to the current commutator
anomaly, and time derivative of the Gauss-law operator
is identified with the chiral anomaly.

In order to verify Faddeev's commutator anomaly, we
have to establish a translation rule between the electric
fields in the covariant regularization scheme and those in
the consistent regularization scheme.

Finally two comments are in order. First we evaluated
the vacuum expectation values of eV and T. As explained
in Sec. IV, arbitrary matrix elements of S and 7 are
equal to the vacuum expectation values of S' and T in the
vanishing limit of e in 1 + 1 dimensions, that is,

where the ellipses mean a product of arbitrary operators.
Therefore, as operator equations, we can replace 4 and Y
by their vacuum expectation values 4 and T in the right-
hand side of Eqs. (2.10) and (2.19) at least in 1 + 1 dimen-
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sions. In 1+ 3 dimensions, we are not convinced of this
point. For a finite e, Eqs. (2.10) and (2.19) are well-
defined operator equations, and the Jacobi identity holds
for three currents and/or electric fields. However, if we
replace 4' and 5' by their vacuum expectation values, the
Jacobi identity is no longer satisfied. This fact suggests
that it might not be allowed to replace ()' and T by their
vacuum expectation values in Eqs. (2.10) and (2.19) as
operator equations in 1+ 3 dimensions. This problem is
now under investigation.

The other comment is on reliability of the fixed-time
method. Almost 2 decades ago, the Schwinger term'" of
the current commutator was evaluated by several
methods. ' In the Abelian case our result for the
Schwinger term eP is reduced to the c-number expression
(3.7) with tr(t't") replaced by unity. The coefficient of
the third derivative term 1/(20ir ) is different from that
obtained by the BJL method: 1/(12m. ). We do not con-
sider this discrepancy to be serious, since the Schwinger
term itself has no physical meaning or is not an observ-
able quantity. In the non-Abelian case, our result for S'
does not agree with that obtained by the BJL method ei-

ther, even if we take into account the difference of the co-
variant current and the consistent current. Again ()" it-
self has no physical meaning nor is it related to any coho-
mological quantity, and it may depend on the regulariza-
tion scheme. On the other hand, the commutator anoma-
ly with a physical meaning or a definite topological origin
should be reproduced in any well-defined regularization
scheme, even if it belongs to the fixed-time method.

In contrast with their approach, our field-theoretical
method automatically satisfies the unitarity condition
since the current operators are Hermitian by construc-
tion. However, we have not been able to prove the com-
mutation relation as an operator relation for 1+d dimen-
sions (d & 1).

In a recent paper by G. Semenoff [Phys. Rev. Lett. 60,
680 (1988); 60, 1590(E) (1988)],he claims that the algebra
of the Gauss-law operators has trivial two-cocycles (con-
trary to the perturbative analyses) if the properties of the
electric fields are correctly taken into account. Much in-
vestigation on the commutator of the electric fields seems
to be necessary in order to settle the controversy.

After submission of our paper, we became aware of a
paper by S. Ghosh and R. Banerjee [Saha Institute of Nu-
clear Physics Report No. SINP-TNP/87-26, 1987 (un-

published)] in which they calculated the same commuta-
tor anomalies as ours by the point-splitting method.
Their results are in agreement with ours.
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Note added

Recently, Mickelsson and Rajeev [Commun. Math.
Phys. 116, 365 (1988)] have constructed a method to ob-
tain a representation for (1+d)-dimensional current alge-
bra in terms of the infinite-dimensional Grassmannian
manifold. They have not been able to prove the unitari-
zability of their representation for 1+d dimensions
(d & 1).

APPENDIX A: PERTURBATIVE EXPANSION
OF THE PROJECTION OPERATOR

%e denote an eigenvalue of Ho and the corresponding
eigenfunction by E„' and (t('„, respectively. According
to the notation introduced in the text, we can write
()()'„)(x)= (x

~
n, 0). The projection operator to the

positive-energy eigenfunctions of Ho and the one to the
negative-energy eigenfunctions are given by

dD+1 1+ygp(0)(x y) g p(0)(x)p(0) (y) I P $(p0)$(p2)p~0 e
—ip (x —y)

&(o( 0 (2ir ) 2E„)0
d p 1 p'fp +75 . .(

D ~ l ~
I

~

0

(2ir )
(Al)

dD+I
(t)'„"(x)P'„"(y)= f" e( —p )5(p )( —gfy ) e

«o) 0 (2ir) 2E„&0

p 1 p fp +X/ .( ) (A2)

The first-order correction to P (x,y) is formally written as

p'"( y)= xX f nx, „, n, o (n, o~ V
~

m, o) m,O, , y) .—2~i E(o) (A3)
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By expansion to partial fractions, the contour integration can be carried out, and it is transformed as

p(i)(„), i' d "p d "q
~( z)~( 2) 8( —p')8(q') —8(p'

d pd q' 1 A o p.yy q'yy
2(E+E ) EE

1+y5
2

A k (p —q) exp( i—p x +iq.y ), (A4)

)8( —q ) o k
1+»—

Py y y" A„(p —q)gy exp( —ip x+iq.y)
2

where A (p} is the Fourier transform of A (x }. With the help of the formulas

dE 1

—2mi (E E„)—(E E—)(E EI )—
1

(E„E)(—E„EI)—[8( E„)8—(E~)8(E~) 8(E„—)8( E)—8( E&)]—+(tw opermuted terms),

dE 1

—2mi (E E„)(E— E)(E— E( )(E—Ek )—
[8( E„)8(E— )8(EI )8(Ek ) 8(E„)—8( E)8(—EI )8( —Ek )]-E„E~ E—„EI E„—Ek—

+(three permuted terms)

(A5)

E +E —E„—E
[8( E„)8( —E)8(E—I )8(Ek ) 8(E„)8(—E )8( —

I )8( Ek )]—
+(two permuted terms),

the second-order and the third-order corrections are obtained as

(A6)

(2)( d p d q d r 1

(2~)3D 2(Ep+Eq)(Ep+E )(E +E )

E +E +E, . 1+y5
X (y'y"r y+y'q yy"+p yy'y")y'+ ' ' "p yy'q yy"r yy'

X A)(p —q) A„(q r)e— (A7)

P' '(x,y)=i(3) . d p d q d r d s 1

(2~)~D 2(E +E )(E +E )(E +E )(E +E )(Eq+E )(E +E )

(E E E„+EE E, +EpE„E,+E E„E,)y'y "y'y

+(Ep+Eq+E„+E, )(yJy"r yyls y+ylq yykyls y+yiq yykr yyl

+p yyy'y"y's y+p yy.'y"'yy'+p yy'q yy."y')y'

+ [E (E +E„+E,)+E (E +E„+E,)+E„(E +E +E, )E E E„E,

+E, (E +E +E„)+2(EE E„+EE E, +E E„E,+E E„E,)]

oXp yy q ry r yys. yy A (p —q)Ak(q —r}A&(r —s)exp( —ip x+is y)
2

(AS)

APPENDIX B: INTEGRAL FORMULAS

In order to evaluate the contribution from the zeroth-order projection operator, we have to pick up terms of the Tay-
lor expansion of the operator of e '

up to third order in e, which involve 1, ep;, e, e p;pj E' p, , or e p,-p p&. Taking
into account the parity, we reduce all of the integrals to the following basic integrals:
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3/2
d p,~2 1e'~ =

(2~)' (2~)' (B1)

dp e'2p e'&e'p, p =—
(2n. )'

3/2
1

(2~)'
(B2)

3

3
~P

E ~

p

~ ~ ~
2 i~i~

d p, 2~p&.pg 1e'~ g" i
(2n. ) &i, 12m. e

(B3}

d p,p2 p(PJPkPI

(2n ) Ep
gij gkl +gikgjl +gilgjk (B4)

A typical integral which appears in the contribution from the first-order projection operator is

dI(g )=I e'i' ( e'~ 1)— (B5)
I p I

+
I p +41

I(g ) itself and its first derivative at g =0 are well defined but its higher derivatives are not. In fact its asymptotic be-
havior at g =0 turns out to be

I (g ) =—
I Co+ C, eg +e P[C&+Cz in(eg )]+0(e ) j . (B6)

Then only the first two terms are relevant in the vanishing limit of t.. The constant Co is easily evaluated as

Co=eI(0)=e e'i' (e'i' —1)dp e' e'
2lp I

(B7)

As for the constant C„we differentiate Eqs. (B5) and (B6) twice with respect to g and we set /=0. From Eq. (B5) we
obtain

From Eq. (B6) we get

BI(g ) =2C,g;

2 2 1 PP d

4lp I' .
" (B8)

(B9)

Then the constant C, is related to the integral on the right-hand side of Eq. (B8) as follows:

d p, 2,p2 1 1 1 1

(2m)
I p I

24 4m

z
lim dt t' '(e ' —e ')= lim [(—,

')' —1]I (e)=-
96m ~-o 0 96~ 96m

(B10)

Similarly we can derive the formulas

d p ep' ei' Pipj 1 ln2 2 ln2

(2~)' lp I lp+g I( p I+ lp+g I
} 48~'e " 96~' ' 24~' ' ' (B1 1)

d3p Ep Ep

(2~)'
I p I I p+4 I

(
I p I + I p +4 I

}

ln2
, $, +0(e) .

16~
(B123

(B13)
I p I

+
I p+41

This time, terms of the Taylor expansion of the operator e '
up to second order in &e should be retained and they in-

volve ep, , e, or e p,p-. Therefore, the relevant formulas are

(2m } 8m.

d p ~p2

(2n )

6p;

I p I
+ I p+0 I

1 g;+0(e),
48m.

(B14)
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3d p
(2m )

3d p
(2m. }

3d p
(2m )

f
3d p

(2m )

2
& PlPj

I p I
+

I p+01
1

, g,,+0(e),
24m

&Pl.pj
ls I lp+kl( lp I+ lp+41)

&pl.pjpk

lp I lp+41( I p I+ Is +41}
2

& Plpj PkPI

ls I lp+41( lp I+ lp+41)

1
g,, +0(e),

24m

1
(g, gk+gkg, +gkg;)+0(e),

80~

1

p (gij gkl +gikgjl +gilgjk )+ 0 ( e) .
120m

(B15}

(B16)

(B17)

(B18)

In the following, we list the formulas to be utilized in evaluation of the contributions from the second-order and the
third-order projection operators:

d3

(2m) Dg p»'q 96m

d3

(2n) D&(p g, q) 32m

d p, 2, 2 PlPjPk P + P+ + p+9
&

e'~ (e'l' —1)
I s +0 I I s +n I D, (p, (,rj)

(B19)

(B20)

ln2
[g; (g+'9)k+g;k(g+rj), +gik(g+rj); j+0 (e),

96m

(B21)

f d'p „2 „~ ppj lp + Ip+kl+ Is+el~e'~ (e l' —1)
Is I ls +0 I I p+n ID~(p k, n)

ln2
g, +0(e),

321T'
(B22)

d p,p2 pipJ 1

(2n') D&(p, g, rj) 96m

P pp
2 PlPJpkPI P + P + + P + 9

Is I I p+0 I I p+n I
Dg(p, g, n)

1

160m 2 (gij gkl +gikgjl +gilgjk )+0 (e }

T

(B23)

(B24)

f d~p lp';2 I p I ls +O'I lp+g I lp+g I

(2n )' D, (p, g, rj, g)

1 + 1 + 1 + 1 ln2
z +0(e),

I p+C I I p+n Is +g I

64~'

(B25)

p pj I p I
+ I p+41+ Is +n I+ I p+01&

&

e'~ (e'l' —1)
(2n )~ D4(p 0 n N)

ln2
2 g;, +0(e),

192~
(B26)

P pp gp Pl'Pj PkPI

2~ D4 p»g, p p+ p+g p+
ln2

2 (gijgkl+gikgjl+gilgjk )+0(e), (B27)
960m.

(2~)' D4(p, g, q, g)
I p+n I

+ I p+& I + I p+41+ I p+0 I I p+g I + I p+g I

I p I I p+& I I p I I p+rjl I p I I p+g I

lp I+ lp+&I + lp I+ Ip+nl Ip I+ lp+gl
I p+& I I p+& I I p+411p+0 I I p+g I I p+g I

1n2

320 2 gijgkl+gikgjl+gligjk )+0(e), (B28)

where D&(p, p, rj) and D4(p, g, rj, g) are defined hy

~(»&»=( I p I+ I p+kl &( ls I+ I p+n I &(lp+gl+ I p+g I ),
4'»&»&}=(

I p I
+

I p+g I
&(

I p I
+

I p+q I
&&

I p I
+

I p+g I
&

x(
I s +O'

I
+

I p+a I
&&

I p +41+ I s +0 I
&&

I p +n I + I p +g I
)

(B29)

(B30)
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