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We apply the hybrid Monte Carlo algorithm to pure gauge @CD and to QCD with four flavors of
staggered dynamical fermions. We show how the acceptance in the global Metropolis step depends

upon the parameters of the algorithm. By tuning the values of the coupling constants in the algo-
rithm to be different from those in the global Metropolis step, we find that the acceptance can be

kept large without having to make the step size prohibitively small. We give an analytic discussion

of the tuning, and argue that the algorithm requires computer time growing proportional to V'

I. INTRODUCTION

The greatest obstacle to the sitnulation of QCD is the
inclusion of dynamical fermions. This can be done either
with approximate or with exact algorithms. The advan-
tage of the approximate algorithms is that the time re-
quired grows with a smaller power of the volume. The
disadvantage is that these algorithms have systematic er-
rors which can only be studied by sending e~O, e being
the small parameter characterizing the approximation.
Unless we can prove that mass ratios are not affected by
these e-dependent errors, we have to make several runs at
different values of e and extrapolate e~O. The volume
dependence may be worse for the exact algorithms, but
the fact that there is no overhead to be paid for extrapo-
lation implies that an exact algorithm can be competitive
og lattice up to a certain size. To decide whether this is
true for lattices accessible in current numerical simula-
tions, one must resort to field testing.

To this end we have investigated the hybrid Monte
Carlo algorithm' (HMCA). This is an exact fermion al-
gorithm of the kind proposed in Ref. 2. The basic evolu-
tion through phase space is controlled by the hybrid algo-
rithm ' (HA). The HA is an efficient blend of molecular
dynamics (MD) and Langevin algorithms. ' The evolu-
tion of the molecular dynamics equations provides fast
motion through phase space. The noise in the Langevin
equation ensures ergodicity. The HMCA is made exact
by using the HA to propose changes in the links of the
entire lattice and then doing a global Metropolis accept
and/or reject.

The question we attempt to answer in this paper is
whether by tuning the HMC algorithm we can maintain
reasonable acceptance rates on lattices large enough to
extract useful physical information. We would like to
provide simple rules for choosing the tunable parameters.
We have performed extensive numerical tests for the

SU(3) pure gauge theory and for QCD with four stag-
gered flavors of dynamical quarks. For the pure gauge
theory we have worked on lattices of sizes 4, 6, and 9 .
For QCD we have data on lattices on size 4, 6 X4, and
8'X4.

In order to understand how our results will extrapolate
to larger volumes we have carried out an analytic investi-

gation of the dependence of the acceptance on e and the
volume V. This extends the work of Creutz. We find

that e must be scaled as V ' in order to keep constant
acceptance, and that the computer time needed to gen-
erate uncorrelated configurations scales as V . This
should be compared to the linear dependence on V ex-

pected for the approximate algorithms. As a spin-off
from this analysis we are able to predict the direction in

which the parameters must be tuned for the different
variants of the HMC algorithm which we use.

Using the tuned HMC algorithm we have studied
four-flavor QCD at finite temperature and our results
confirm a first-order chiral transition. These are reported
in the following paper.

II. THE HYBRID MONTE CARLO ALGORITHM

In this section we describe the HMC algorithm for full
QCD. The algorithm for pure gauge theory can be ob-
tained by simply deleting the fermionic parts of the equa-
tions. We are using the N algorithm of Gottlieb et aI. ,

'

and we refer the reader to their work for a complete dis-
cussion.

The partition function for QCD in Euclidean space is

Z = fSP2)g 2)Uexp( —SG+PMP), (2.1)

which can be rewritten in terms of pseudofermion fields
living only on even sites:
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U, ,exp —SG —,M M

—:f2)U 2)$,2)P, exp( —SG —Sp„}. (2.2)

SG is the gauge action (which in the present study is the
simple Wilson action), and M for staggered fermions is

given by

M[U], , =m5, + —,
' grt, „(U,„5, „—U, „„5,J+„),

P

(2.3)

where m is the quark mass, U,„are the link variables, and

g, „are the staggered fermion phases. In all of the fol-

lowing we shall absorb these phases into the definition of
the gauge fields.

The HMC algorithm generates gauge configurations
and P, fields which are distributed exactly according to
the measure given in (2.2). This is done by first suggest-
ing a change to the entire lattice using a "preprocessor, "
in this case, the N algorithm. This change is then global-
ly accepted or rejected in the Metropolis step. We de-
scribe these two parts of the algorithm in turn.

U, „(t)=iP,„(t)U,„(t), (2.8)

where t is the MD time. This preserves U as an element
of SU(3). The equation for P breaks up into two parts.
For links starting at even sites,

r

+2U~ X U+~,.T+p+.,

TA

(2.9)

while for links starting at odd sites,

ty distribution P(r) cc exp( —r ), and the Gell-Mann ma-
trices are normalized as Tr(A, ,A, b)=25,b. This "refresh-
ing" of the momenta ensures ergodicity.

The third and final stage of the algorithm is the MD
evolution. The gauge fields and their conjugate momenta
are evolved, keeping P, fixed, in a manner which
preserves H+ and the differential volume in configuration
space. The MD equation for the gauge fields is

A. The hybrid algorithm

In the 4 algorithm one rewrites the partition function
iP; „= ——U;„V;„+2U;„ g Ti +p, i —v Ui —v, v

as Z=, U Pe (2.4)
t '1—XT+p, +.U,.

TA

where the Hamiltonian is

0+ ———,
' Tr g P; „+—Re Tr g (1—U~ )

+P, (M M) (2.5)

(2.10)

Here V; „ is the sum of the six staples adjoining the link

U;„,

T, =X,XJ*, X —=. (M M)

Here U is the plaquette. The form (2.4) clearly yields
the same correlation functions of U and it}, as does (2.2).
The traceless Hermitian P; „, which live on sites, are in-
terpreted as the momenta conjugate to U; „. The p fields
are given no dynamics and thus have no conjugate mo-
menta. Setting the P fields only on the even sites reduces
the number of fermion fiavors from eight to four, which
is the minimum number one can describe with a local
staggered Hamiltonian.

The partition function (2.4) is simulated in three stages.
First, pseudofermion fields are generated according to the
distribution in (2.5). This is done by generating a vector
of random complex numbers r living on all sites and dis-
tributed according to P(r) cc exp( rr). The P, are —then
given by

—P(M M)
iti=M r P(P, ) cce (2.6)

8

P, „= g r,'„k, ,
a=1

(2.7)

where the real variables r,-"„are drawn from the probabili-

Thus, the contribution of fermions to the action is
represented by Gaussian noise.

The second stage of the algorithm is the generation of
the conjugate momenta. This is done by writing

and TA stands for the traceless anti-Hermitian part.
To implement this algorithm numerically, we must

discretize the differential equations. This introduces a
MD time step e. We use a leap-front updating scheme,
which has errors of O(e ) (Ref. 10). Given an initial
gauge configuration U at time t, the recipe we use is a$
follows.

(1) Refresh the momenta P and generate the P, fields.

(2) Update U(t) to U(t + —,'e) using

U(t +—,'e)=exp[i —,'eP(t)]U(t) .

We approximate the exponential by a fourth-order poly-
nomial and reunitarize the resulting matrix.

(3) Calculate P at t+ ,'e using Eqs. —(2.9) and (2.10).
This is the most time-consuming part of the calculation
because it requires calculating (M M) 'P, . We do this
using the conjugate-gradient (CG} algorithm.

(4}Calculate P(t +e) =P(t)+eP(t + —,'e).
(5} Update U to t + 3e using P(t +e) as in step (2).

Thereafter, steps (3)—(5) are repeated nNtD times. At the
end one has P(t+n~De) and U(t+(nxrD 2)e) To- .
complete the MD evolution, we calculate

U(t +n~De) =exp[i ,'eP (t +n~De)]U—(t+(n~D ——,
' )e) .

This entire sequence of changes is then accepted or re-
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jected according to the criterion described below.
We refer to the above as "leapfrog method 1." It is the

method we use for most of our studies. It differs from the
method used in Refs. 4, 1, and 10, in which one first
moves P forward by e/2, and then leapfrogs U to t +a,
etc. This we call "leapfrog method 2." A final method,
"method 1/2, " is to first do n~D steps of method 1, then
n &D steps of method 2, and then accept or reject the en-
tire change.

, P(C'-C)e
P =min 1,' P(C C )e-'(') (2.11)

Here C' is the trial configuration, S ( C') its action,
P(C~C') is the probability of proposing the change
given that one is at C, and P(C'~C) is the reverse prob-
ability. If these two probabilities are equal, as they are in
most algorithms used to simulate pure gauge theories,
changes which lower the action are always accepted,
while those which increase it are accepted only condition-
ally.

In the HMC algorithm a configuration consists of U
and P„and the action to be simulated is SG+S~F. A
new configuration is suggested using the hybrid algo-
rithm as described above. Since the MD equations are
deterministic, the probability of suggesting the change is
given by the probability of choosing the initial momenta

P( U U~) ~&
—Tr(P )l2 (2.12)

where N is a normalization constant. The leapfrog
discretization of the differential equations is exactly re-
versible; given that ( U, P) evolves into ( U', P'), ( U', P')—
will evolve into (U, P) even whe—n using a finite step
size. The probability of suggesting the inverse change is,
therefore, precisely

P( U' U) =Re (2.13)

where P' is the final momentum. Substituting the proba-
bilities (2.12) and (2.13) into (2.11) one finds that the
hybrid-algorithm evolution is accepted with probability

—H4( U', P')—5H~P =min( l, e ) =min 1, (2.14)

Thus, if the MD evolution equations were solved exactly
all changes would be accepted. The discretization means
that 6H+&0, so that some of the changes are rejected,
and in the process the algorithm is made exact. Note
that the need to evaluate the change in a local Hamiltoni-
an constrains one to use a multiple of four flavors of stag-
gered fermions. For the most interesting cases nI ——2 or
3, one must give up the description in terms of a Hamil-
tonian, and therewith the exactness.

The key point which allows the use of the Monte Carlo
steps is the reversibility of the MD evolution. For this to

B. The global metropolis step

In the Metropolis method' one proposes small changes
in the configurations, and accepts these changes with a
probability

hold the exponentiation in computing U(t +e)
=exp(ieP) U(t) must be exact. In practice, we have used
a fourth-order expansion for most of our runs, and our
implementation is therefore reversible only to 0 (e ). The
cost of going to a sixth-order expansion is small and we.
have checked that doing so has no significance effect on
the results. A second irreversibility can come from in-
complete convergence in the calculation of X. Of course,
incomplete convergence is not allowed at the end points
in the calculation of 5H+. But for the intermediate times
one has a choice. If the initial guess for X is always the
same, or is random, then incomplete convergence does
not cause irreversibility. The alternative is to make a
good initial guess for X using an extrapolation from the
values at previous MD times. This will reduce the num-
ber of CG iterations needed to calculate X to a given ac-
curacy, but it introduces an irreversibility unless the cal-
culation of X has no error. We use the latter method in
this paper.

To summarize, the MD equations will wander off the
energy shell due to the finite step size. Since the process
is reversible, one can use a global Metropolis step to
correct for the wandering on average. From this point of
view it is clear that the parameters Pz and mz used in the
hybrid evolution do not need to be the same as the P and
m used in the global accept and/or reject. This opens up
the possibility of tuning the parameters Pz and mh (Ref.
1) so as to cancel some of the effect of the systematic er-
rors. Ideally, one should tune the parameters so as to
minimize decorrelation times. In practice this requires
very long runs. ' In this paper we use an alternative cri-
terion: maximizing the acceptance of the global accept
and/or reject step. If the acceptance rate is reasonably
high, then studies of decorrelations using the uncorrected
hybrid algorithm ' should be applicable.

In a similar way one can use a smaller number of
conjugate-gradient iterations (neo) in the intermediate
calculations of X, if one is using the method in which the
initial guess for X does not depend on the previous values
of X. The alternative is to use the previous values to
make a good initial guess for X, and in this way reduce
ncG. Which choice is the better can only be decided in
the field, and will depend on the parameters, particularly
the quark mass and e. Given the number of parameters
that one can tune, we decided to forego the additional
freedom of varying ncG. Instead we use the previous X
as the initial guess, i.e., do a zeroth-order extrapolation,
and always run to a fixed accuracy. The convergence cri-
terion we use for all our runs is

~

(MtM)X —((,
~

'(10 ' &
~

'.
We have found that acceptances are essentially un-
changed if we use half the number of CG steps that result
from applying this criterion. Thus, we consider this
choice conservative.

The HMC algorithm defined above depends on the two
parameters e and n~D. The tuning of coupling constants
must be done separately for each value of e and n~D. It
is also possible to change the HA. For example, one can,
for fixed ((}„repeat the sequence of refreshing the mo-
menta and evolving the MD equations more than once
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before accepting or rejecting using the accumulated 5H+.
One can also use a higher-order discretization scheme, as
long as is reversible. However, in this study we have con-
centrated entirely on the simplest algorithm.

III. RESULTS FOR PURE GAUGE SU(3)

In the absence of dynamical fermions, the HMC algo-
rithm has one physical parameter p, and three tunable
parameters: e, nMo, and p), . We have measured the ac-
ceptance as a function of these parameters on 4 and 6
lattices. We also have measured decorrelation times on
longer runs on a 9 lattice, ' though we have not made a
scan of the parameter space for this lattice.

Most of our runs on 4 and 6 lattices are at p=5.6.
This value lies in the crossover region where there is a
peak in the specific heat. For the 4 lattices this is also
close to the position of the finite-temperature transition.
We choose this value so as to provide the HMC algo-
rithm with the most stringent test.

We display our results as plots of the acceptance versus
the shift in p: 5p=p —p&. The same initial thermalized
lattice is used for all the data points in Fig. 1. Figures
1(a) and 1(b) show our results using leapfrog method 1,
for e=Q.Q5 and Q. l, and a variety of nMo. Figure 1(a)
contains the 4 data and Fig. 1(b) the 6 data. The accep-
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rejects. Figures 2(a) —2(c) compare leapfrog methods 1

and 2 on 4 lattices. The three figures show, respectively,
the effects of varying nMD, p, and e. Notice that the data
in Fig. 2(c) are from p=5.7. Notice also that the data in
Fig. 2 are obtained from an average over 500 Metropolis
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We estimate roughly a 5% error for Fig. 2. We draw the
following conclusions from these figures.
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FIG. l. Acceptance vs 5P=P—P„ for the pure gauge hybrid
Monte Carlo algorithm (method 1) on a (a) 4 and (b) 6 lattice.
The runs are at P=5.6, for two values of e and for a variety of
leapfrog steps n~D. The acceptance is averaged over 2500
Metropolis steps.

FIG. 2. Comparisons of HMCA methods 1 and 2 for pure
gauge SU(3) on a 4 lattice. The points in the right half of the
plot are for method 1. The acceptance is averaged over 500
Metropolis steps. The plots show the effect of varying (a) n&D,
(b) P, and (c) e.
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similar for both methods, but for method 2 the peak is
shifted further from P» ——P.

(ii) For fixed e, the peak in the acceptance inoves to-
wards P»

——P when n ~D is increased.
(iii) The height of the acceptance peak depends weakly

on n MD.
(iv) The shape of the acceptance curve depends on

n~D. It becomes more sharply peaked as n&D is in-

creased.
(v) The height of the acceptance curve falls rapidly

with increasing e, and the peak moves further from
=&» ~

(vi) For fixed parameters, the acceptance drops when

going from the 4 lattice to the 6 lattice.
(vii) On a 4 lattice the acceptance profile shows almost

no P dependence for leapfrog method 1 and only a small
dependence for method 2.

To further investigate the difference between methods
1 and 2, we compare them both with and without the ac-
cept and/or reject step. We measure the average pla-
quette in high statistics runs at P=5.7, n~D=6, and
E=0.1. The results are as follows: (a) HA using leapfrog
method 1 [0.5645(6)]; (b) HA with method 2 [0.5415(7)];
(c) HMC algorithm with method 1 [0.5595(3)]; and (d)
HMC algorithm with method 2 [0.5595(4)]. These results
confirm that the two variants of the exact HMC algo-
rithm are simulating the same theory. They also show
that at couplings where the HMC algorithm is efficient,
the lowest-order leapfrog hybrid algorithm has significant
e-dependent errors. We see that method 1 orders the sys-
tem, while method 2 disorders it. The magnitude of the
effect is larger for method 2. These results are consistent,
in both direction and relative magnitude, with the tuning
in P» needed to optimize acceptances.

We have also made tests using the mixed method 1/2.
Since methods 1 and 2 require P» to be tuned in opposite
directions, one might hope that a combination of the
methods would improve upon either. In fact, we find the
opposite: method 1/2 is considerably worse than either
method 1 or 2 for the whole range of P». For example,
using six iterations with @=0.1 of method 1, followed by
six similar iterations of method 2, and then applying the
Metropolis step, we find an acceptance of 9%, 9%, and
2% for P—P~ =0.1, 0.0, and —0.1, respectively.

In Sec. V we take the first steps towards an analytic un-
derstanding of these numerical results. We explain the
direction of the shifts in the average plaquette in the pure
HA runs. We can also estimate the magnitude of the
shifts. We find a partial explanation for the signs and
magnitudes of 5i'""=P$""—P for the two methods. We
find that 5 ""depends on n&D, but we cannot calculate
the form of this dependence. Naively, one expects that
the acceptance should fall monotonically as n~D in-
creases. In fact, the data show a more complicated,
though weak, dependence on n~D. For example, for
some values of P» the acceptance first rises and then falls
as n~D increases. Although we do not understand this
variation in the acceptance, the fact that it is weak sug-
gests that the bulk of the error in the MD evolution
arises from the first few steps. Indeed, the only difference

between methods 1 and 2 is in the initial and final half
steps. This suggests that if one could reduce the errors in
these half steps, one might well improve the algorithm.

The acceptance is very sensitive to the value of e.
Roughly speaking one should choose e to maximize ac-
ceptance X e, which is an estimate of the speed of pro-
gress through configuration space measured in CPU time.
This criterion suggests that e, „,])0.1 for the 4 lattice,
while on a 6 lattice 'Eppt' ] 0.05-0.1. Clearly, the op-
timal e decreases as the lattice size increases.

The lack of sensitivity to n~D means that it should be
chosen so as to minimize decorrelation times. Studies of
the uncorrected hybrid algorithm ' suggest that
eXn»tD-0. 5 —0.1 is optimal. For acceptances )50%
this result should apply to the HMC algorithm.

These results suggest that the HMC algorithm can be a
practical algorithm for simulations on large lattices. We
have tested this by making long runs on a 9 lattice.
These runs are part of a study of decorrelation times us-

ing different algorithm. ' All runs use method 1, and
have P»

——P. At P=6, and using a=0.04, n~D ——5, we
find 59% acceptance. At P=5.9 we have two measure-
ments. With a=0.0375 and n~D ——20 we find 70% ac-
ceptance. With @=0.025 and n&D ——40 the acceptance is
84%. The good news is that the values of e are compara-
ble to those used in HA simulations. For example, a
study of the pure gauge theory using the method 2 HA
on a 8 X4 lattice uses @=0.025 (Ref. 14). Thus, for lat-
tices up to 9 one loses little or nothing by moving to the
exact algorithm. On the other hand, the bad news is that
HMC algorithm is about a factor of =20 slower in CPU
time than the finite-step-size overrelaxed algorithm, as
measured by decorrelations. However, for QCD with fer-
mions, the decorrelation will be slow for all known prac-
tical algorithms, since all involve a small step size. This
is a warning that we should be prepared to make very
long runs to get a reliable statistical sample.

IV. RESULTS FOR QCD WITH nf ——4

We have geared out tests and optimization of the exact
algorithm towards studying the finite-temperature

transition for finite quark masses. We concentrate here
on the optimization of the acceptance, and present our
results for the transition in the following paper. The ad-
vantages of working at or near the transition are (i) that
we have a large body of data to compare against and (ii)
that it provides a stringent test of the algorithm. Our
data is taken on 6 X4 and 8 &(4 lattices.

With the introduction of dynamical fermions we have
one extra parameter to vary: mI, . The proliferation of
parameters forces us to study the effect of varying one or
two parameters at a time. Based on our study of the pure
gauge theory we decided a reasonable estimate of the ac-
ceptance for a given set of parameters would be provided
by a run of 500 trajectories. Here a trajectory is a unit of
MD time, i.e., 1/e iterations. Thus, we are averaging
over 500/(eXn»iD) global accepts and/or rejects. We
have measured the acceptance on the 6 )&4 lattice at
m=0. 1, 0.2, 0.3, and 0.5. All results are obtained using
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FIG. 4. Acceptance vs 5P for m=0.2, and 5m=0.0 and
—0.005. Results are for @=0.05 and nMD ——4 on a 6'X4 lattice.

is possible, with no loss in acceptance, to use the value of
nMD which minimizes the decorrelation lengths.

We have extended these results onto an 8 &(4 lattice
for m=0. 1. For @=0.05 and nMD

——4, the acceptance
drops to 15% (cold phase) and 25% (hot phase). We thus
decreased e to 0.0033. Once again, we find little depen-
dence on n MD, and so for our studies of the phase transi-
tion we use nMD

——15. We find that the acceptance rises
to -65%. This is roughly an average between the hot
and cold phases. As for the pure gauge theory, the op-
timal value of e is comparable to those used in HA simu-
lations. For example, Ref. 15, use a=0.01 on an 8 )&4
lattice.

V. ANALYTIC CONSIDERATIONS

In this section we give an analytic discussion of the
HMC algorithm. We first derive the dependence of the
acceptance on e and the volume V. Our aim is to calcu-
late how the CPU time varies with the volume. This
analysis is an extension of the work of Creutz, who con-
sidered the acceptance in the exact Langevin algorithm,
i.e., HMCA with nMD

——1. For simplicity we work with a
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FIG. 3. Acceptance vs 6m =m —md for m=0.5, a=0.05,
and nMn =4 on a 6'X4 lattice. Results for 5p= p p„=00and—
0.02 are given.

FIG. 5. Same as Fig. 3 for m =0.1 and 6P=0.02. Data points
in hot and cold phases are distinguished.

the method-1 leapfrog algorithm.
We first fix a=0.05, nMD ——4, and search for the op-

timal Pi, and ms. It turns out that the results are similar
to the pure gauge case. The peak in the acceptance
occurs when both Pz and ms are chosen to disorder the
system, i.e., 6p= p—p„—&0 and 5m:—m —m„&0. It
turns out that the location of the peak is at 5P-0.02 and
5m ——0.005 for the ranges of P (5.1&P&5.6) and m
that we studied. For all but the smallest quark mass, the
data at different p agree within. our statistical errors, and
we average them. Figure 3 shows the acceptance as a
function of 5m for m =0.5 and 5P=0.O and 0.2. Figure 4
shows the acceptance for m=0. 2 as a function of 5p for
5m = —0.005 and 0.0. The curves for m =0.3 and 0.5 are
similar except for a small overall decrease in acceptance
as m is reduced. The important feature exhibited by this
data is that with dynamical fermions the acceptance
profile is very Aat about the maximum. Thus, running
without any shift in the couplings is close to optimal.

Most of our runs sit on the finite-temperature transi-
tion and we see, for all m, tunneling transitions between
high- and low-temperature phases. For m =0.2, 0.3, and
0.5 we see no significant change in the acceptance when
the system jumps from one phase to the other. However,
for m=0. 1 we do see significant diiT'erences between the
phases. This is shown in Fig. 5, where we label points by
their phase (hot, i.e., p~p„„, or cold). Comparing this
plot with Fig. 4 one sees that there is a drop in accep-
tance on going to m=0. 1 from m=0.2 for the same e.
These results are consonant with the expectation that the
MD evolution becomes more sensitive as the eigenvalues
of the Dirac operator become smaller.

Figure 6 illustrates the dependence of the acceptance
on e for eX n MD fixed at 0.2. The data is for
m =md ——0.3 and 5p=0.03. For these parameters the e
which maximizes acceptance)&e is e-0.07. As for the
pure gauge theory, we find that the acceptance is almost
insensitive to the value of nMD. For example, with
m =md ——0.3, P=5.33, and 5P=O. 1 —0.2, we find accep-
tances of 0.895, 0.891, 0.882 for nMD =6, 15, 30. Thus it
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0.8

that 5H3 is almost opposite for the two methods.
Let us briefly recap the analysis of Creutz for

n MD + 1. Recall that the probability of acceptance is

P„,=min( l, e } . (5.6}

0.4

0.2

8 x4 P=5 35 m=0 3

exnMD=O 2

0.0
0 0 02

I

0 04
I

0.08 0.08 0.1 0.12

theory of scalar fields, the Hamiltonian of which is

H = ,'P, P, +S-($) . (5.1)

S is an arbitrary local action, and we use the notation
S, =OS/B(t), for partial derivatives. Repetition of indices
always implies summation.

The exact MD equations are

FIG. 6. Acceptance vs e for egnMD ——0.2. Data are for
@=5.35, m=0.3, 5m =0.0, and 5P=0.03 on a 6'x4 lattice.

To get the average acceptance this must be integrated
over the equilibrium probability distribution:

(P„,) = f f dP' 'dP' 'e '~ ' 'P„, . (5.7)
P

Each term in 5H is proportional to the volume V. We
want to find the first term in 5H which causes the accep-
tance to decrease exponentially with the volume. This
will then determine how large we can make e. The
third-order term in 5H averages to zero since it is propor-
tional to odd powers of the momenta. This means that
however big 5Hi becomes, it can only lower the accep-
tance to 1/2. To get exponential suppression we must
find a term whose average is positive definite. As shown

by Creutz, (5H4() ) =0 for inethod 2. One can also
demonstrate that this is true for method 1, although the
expression for 5Hz differs from that found with method
2. For both methods, (5H5 ) vanishes trivially, leaving
the first nontrivial term to be 5H6. Creutz shows that
(5H6 ' ) & 0 for method 2, and we find the same to be
true for method 1 (Ref. 17). Thus

(t);=P;, P;= —S; . (5.2) (P„,)-e px( —e V) (5.8)

p(n+1) p(n) &S (g(n)+ (&p(n))
l l 2

g( +1) g( )+ gP( )+ pP( +1)
Wl Vl 2 l 2 l

Method 2:

y(n+)) y(n) +&p(n) ) &2S (y(n))

P(n+1) P(n) ) eS (y(n)) ) &S (y(n+1))
l l 2 l 2

(5.3)

We solve these approximately using the two leapfrog
methods described above. These can be built up from ele-
mentary MD steps which move P(") and P'"' to P("+"
and P'"+" (Ref. 16), where the superscripts indicate the
total number of steps taken.

Method 1:

and to maintain reasonable acceptance, e~ V ' . Since
the HMCA with n MD ——1 is equivalent to the Langevin
algorithm, it takes 0 (1/e ) steps to obtain a significantly
different configuration. To move this far thus requires a
time a: V, since each Langevin step requires time
growing as V.

We now extend this analysis to nMn —1/e, i.e., the
case in which we move unit distance with the MD equa-
tions before the global accept and/or reject. To do this
we have to account for the fact that the measure after
some number of steps differs from that for the first step.
To this end, we define H, ff to be the functional which is
kept constant by the single steps defined in Eq. (5.3):

(y(n+1) p(n+1)) H (y(n) p(n))
eff eff

For both methods the measure is preserved:

dy(n+1)dp(n+i) dy(n)dp(n)

The change in the H during a single step can be written
as (subscripts refer to powers of e)

5H(n) H(y(n+)) p(n+1)) H(y(n) p(n))

To leading order

H,~(P, P) =H(p, p)+e'H, (P,P)+O(e'),

where

H~(P, P) = —( —,'a +b)S,S, bS, P, P~ . —. .

(5.9)

(5.10)

—p 5H ~ "~ + /45H ~ "~ + /55H ~ "~ + /65H ~ "~
3 4 5 6

This can be seen by noting that for the exact trajectory

+ 0 ~ ~ (5.4) —„H,(P(t),p(t)) = —5H, (P(t),P(t)) .
d

(5.11)

where

5H3 aP Sj'Sj +bP'Pj PkS jk ~ (5.5)

We do not need the explicit forms of 5H4, 5H5, and 5H6
for the present analysis. The parameters a and b distin-
guish methods 1 and 2. For method 1, a = ——,

' and
b =—2'4,

' for method 2, a =4 and b = —
—,', . This means

The result (5.10) agrees with that of Duane and Kogut,
who have calculated Hz for method 2. Notice again that
the result for the two methods are roughly opposite.
However, for both methods Hz has the same, positive-
definite, average: (H~ ) = (S;S;)/24.

From Eq. (5.9) it follows that the measure in terms of
the fields after n steps is
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dP' 'dP' 'exp[ —H(P' ', P' ')]=dP'"'dP'"'expI —[H(P'",P'"))+e H (P'"',P'")) e—H (P' ', P' ))+O(e n)]) .

(5.12)

(SH'"') = (SH"') ~'(S—H"'H,"')
+~2(fiH(0)H( — ) )+O(e6)

=+e'(SH"'H' ") -)+O(~')

=+E (5H'"'H' ')+O(E ) . (5.13}

We have changed variables freely, and assumed that
n &1/e Since. we are dropping terms of O(e ), we can
replace P'"' and P'"' by the values they would have along
the trajectory obtained by integrating the MD equations
exactly. This means that averages of quantities which
only depend on the fields at a single time are time in-
dependent. In particular (H2"') =(H~2 '), which means
that on average the O(e ) term in the measure is zero.
However, the fluctuations in this term are correlated with
those in 5H&"', leading to a nonvanishing contribution to
(5H'") ), as we shall now see.

To evaluate the right-hand side (RHS) of (5.13) we use
Eq. (5.11). Concentrating only on the leading term, we
have (t = n E)

dHz(t)(5H'") ) = —e H2(0)
dt

(5.14)

What we really want is the average value of the total
change in H summed over all the steps,
(b,H) = g™0(5H'")).To leading order, the sum can
be turned into an integral, which we can integrate trivial-
ly since the RHS of (5.14) is a total derivative. The final
result is

We would like to bring down the e terms from the ex-
ponent. We show below that H2"' —H2 ' is a fluctuating
quantity proportional to v' V. Thus, provided
e cc 1/+ V, we may make the expansion. This is precise-
ly the scaling relation we find below. Using this we can
calculate the average of 5H for the (n +1)th step:

(P„,)-exp( —e V), (5.16)

so we must scale e~ V ' to keep the acceptance fixed.
This means that to traverse a unit in MD time takes CPU
time ~ V . This is a slight improvement over the exact
Langevin algorithm (n MD = 1).

Using this result, one can estimate the size of the fluc-
tuations in AH. The leading term in hH is proportional
to E —1/e steps each with error &x: e . This term aver-
ages to zero, but since it is fluctuating we expect that it is
~v'V. Thus, the size of the fluctuations in bH are

ccrc

v'V —1, i.e., of the same size as the contribution
from the e terms. Since the powers of e are different in
the fluctuating and positive-definite parts of AH, we ex-
pect the acceptance to vary rapidly from 100%%uo to O%%uo as
e is increased though the critical value. The result for the
scaling of e also justifies the expansion of the exponential
in the measure (5.12).

We close this section with a discussion of the
differences between methods 1 and 2. We will only con-
sider the pure gauge simulations. We would like to un-
derstand why acceptance is optimized by using P), &P for
method 1, while the opposite is true for method 2. A re-
lated question is why the pure HA with method 1 orders
the system, while the HA with method 2 disorders. It
turns out that the latter question is easier to answer so we
discuss it first.

The analysis of hybrid algorithms using method 2 has
been given done by Duane and Kogut. Using a generali-
zation of the Fokker-Planck equation they find that the
equilibrium action for the P fields is independent of n MD.

S",~)())) )—:S+S',"=S+e'( —
—,'S,.S,. +-,'S,, ), (5.17)

tween sites.
The average acceptance for the entire trajectory scales

as

(t))H ) =e (H2(0) —H2(0)H2(t) )

= —,
' e ( [H2(0) —H2( t) ]2), (5.15)

The superscript denotes the method. This agrees with
the result from the Langevin limit. It is possible to
adapt the analysis of Ref. 4 to method 1, and after con-
siderable algebra we find the simple result

where t is now nMDe. To get the second line we have
used the time independence of (H2(t} ). The RHS of
(5.15) is manifestly positive, and thus reduces the accep-
tance. It is of lower order in E than (5H' ') —one pays a
price for running the MD equations for many steps.
However, for t-e it is easy to see that the RHS of Eq.
(5.15) is cc E, and thus matches smoothly onto the
n MD

——1 result.
Despite appearances, (AH) is proportional to the

volume, since it is the difference of two quantities,
[ "Mr) ](H ) and (H' '), each linear in the volume. This is

true for the RHS of (5.15) because the difFerence
H2(0) —H2(t), whose average is zero, is uncorrelated
from site to site. For small t this can be shown explicitly.
For t —1 there should be no remaining correlations be-

(5.18)

S ( U) ~P g ( 1 ——,
' Re Tr U ),

S S;~——,
) P g Tr[( U, „V,„)r~(U, „V,„)r~], (5.19)

S;;~—,'P g Re Tr U, „V,„.

The shift in the action is again independent of nMD, but it
is almost opposite to that from method 2.

To apply these results to gauge theories care must be
taken because U is an SU(3) matrix. The equations de-
rived above can be used with the substitutions
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Thus, S,,- is of the form of the original action, up to a con-
stant. To relate S;S; to S one can either perform a non-
linear change of variables, or use an approximation valid
as the lattice spacing vanishes. The former method is ex-
act through 0 (e ), but the nonlinearity in the change of
variables means that the expectation values of the Wilson
loops are renormalized in a loop-dependent way. We
are seeking a qualitative understanding so we use the ap-
proximate, but transparent, approach. The crucial obser-
vation is that the TA part of a plaquette is proportional
to F„„at the lowest nontrivial order in the lattice spac-
ing. Dropping higher-order terms we find

=4@ Q(1——,'Re TrU&)+0(a ) . (5.20)

Plugging these correspondences into (5.17) and (5.18)
we find

where a and b are defined in Eq. (5.5). The coefficient of
e is ——', for method 1, and —,', for method 2. The shifts in

P are of the same sign as those needed to correct the pure
HA. However, as we expected, the magnitude of the
shifts is smaller. Notice that for this choice of S2 method
2 requires a smaller shift than method 1.

In summary, the two methods are expected to require
opposite shifts in P. Method 1 should be optimized by
shifting to smaller P, method 2 by shifting to larger P.
These shifts should depend quadratically on e for accep-
tances away from the limiting values of 0 and 1.0. The
shifts should depend on nMD, but for e)&nMD —1, the
magnitude of the shifts should be in the range suggested
by Eqs. (5.21) and (5.23). Thus, for @=0.1 we expect a
-1% shift in P for both methods. This is consistent with
the data in Figs. 1 and 2. As for the difference in the
magnitude of the shifts between the methods, or for the
behavior of the shifts at small nMD, our results are incon-
clusive.

Sz ——( —,'a +b)S, S, +bS;;

leading to

P„=P[1+e(2a + ~4b)],

(5.22)

(5.23)

S, =sP, ps(1 —
—,'Re TrU&),

(5.21)
P,tr=P(1+a c"),

where c"'=
—,
' and c' '= ——,'. Thus, we expect method 1

to increase the expectation values of Wilson loops com-
pared to the exact algorithm, and for method 2 to de-
crease them by a somewhat larger magnitude. These ex-
pectations are in agreement with the results of the high-
statistics runs described in Sec III.

These results suggest a simple strategy for tuning the
HMC algorithm: shift Pi, such that P,s ——P. For then the
pure HA will be producing gauge configurations that
have the correct distribution. However, this may not be
the best strategy, for the following two reasons. First, the
global changes are accepted or rejected using the change
to the entire Hamiltonian, including the momenta.
Second, at each refresh one is drawing the gauge fields
from the exact distribution, rather than one equilibrated
with S,ft. This will tend to reduce the shift in P that is
needed.

It is difficult to calculate this reduced shift because the
true measure, Eq. (5.12), depends on the number of steps
taken, and does so in a complicated way. One can carry
through the acceptance analysis described above for a
tuned action, and the results are identical if one substi-
tutes H2 ——H2+S2 for H2. It also remains true that the
leading nonvanishing change for nMD

——1 occurs at order
e (Ref. 17). Clearly what one should do is to minimize
( b,H ). This will not remove the 0 (e ) correction, but it
will reduce it as much as possible. In general, the best
choice of S, will depend on nMD. A possible choice of S,
is that which minimizes (FXzHz ), i.e., the first term on
the RHS of Eq. (5.15). This turns out to be equivalent to
choosing S2 such that H2 vanishes after averaging over
mornenta. The result is therefore

VI. CONCLUSIONS

We have presented the results of a systematic study of
the HMC algorithm. We find that by tuning the parame-
ters we can increase the acceptance of the global Metrop-
olis step. For the pure gauge theory tuning can increase
the acceptance by as much as a factor of 2. The impor-
tance of tuning is decreased when we include dynamical
fermions. Tuning is also needed less when we use method
1, the leapfrog algorithm in which we move the gauge
fields forward in time first. Thus, for the simulation of
QCD with dynamical fermions, we can expect almost op-
timal acceptances if we use method 1 with Pz ——P and
m&

——m. This is encouraging as it makes the algorithm
simple to use in practice.

We also find that the acceptance has little dependence
on the number of MD steps, nMD. This means that one
should determine the optimal nMD by studying decorrela-
tion times. Studies of uncorrected hybrid algorithms sug-
gest using eX nMD -0.5 —1. It is.very satisfying that the
introduction of the Metropolis step does not make the
optimization of n MD more difficult.

We find that the acceptance drops rapidly with increas-
ing e. For each lattice size and quark mass, there is an
optimal choice of e for which the motion through
configuration space is maximized. For that choice of e,
the acceptance is roughly 50—70%. The optimal e de-
creases with increasing lattice size, and with decreasing
quark mass. We have argued that, asymptotically,
e ~ V ' in order to maintain constant acceptance. Our
results are roughly consistent with this prediction.

How well does the HMC compare to approximate al-
gorithms for the simulation of dynamical fermions? This
depends crucially on the values of e that one must use.
For the HMC algorithm one simply increases e until the
acceptance drops to roughly 50%. For users of the pure
HA the choice of e is less straightforward. One must de-
cide what is an acceptable error in physical quantities
and reduce e until this level of systematic error is
achieved. As discussed above, if we compare the optimal
e for the HMC algorithm on our largest lattice with the
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values used in production runs by practitioners of the
HA, we find that the HMC can tolerate somewhat larger
values. If we reduce the HMC algorithm e by the accep-
tance, then the values are comparable, so that for a given
CPU time the number of independent configurations is
similar.

We can scale these results to larger lattices using the
asymptotic formula. For example, if we assume equal
speeds on an 8 X4 lattice, then on a 16 &(40 lattice the
HMC algorithm will only be three times slower than the
HA. There are clearly considerable uncertainties in the
estimation of this ratio, and a reasonable range of possi-
ble values is 1 —10. Since an exact algorithm gives one
the considerable advantage of not having to worry about
systematic errors, we think it is very worthwhile testing
the HMC algorithm on larger lattices. Although all the
tests in this paper have been done using staggered fer-
mions, the algorithm is most useful for Wilson fermions,
where one is only restricted to multiples of two Aavors.
In fact, studies with Wilson fermions on 8 lattices find
that acceptances of 60—70% can be attained using values
of e similar to those used in the HA simulations. '

Finally we would like to comment on how one might
improve the HMC algorithm. In Sec. III we found evi-
dence that the dominant source of incomplete acceptance
was the initial and final half-steps. This is a result that is
not explained by the analysis of Sec. V. Nevertheless, it
suggests that a simple way to reduce the systematic error
of the hybrid algorithm is to increase the accuracy of the

computation of the half-steps. This could be done, for
example, with a higher-order Runge-Kutta scheme. Such
an approach only makes sense for large nNID, where the
extra work at the ends requires only a small increase in
the number of steps. Of course, for this improvement to
be applicable to the HMC algorithm, the evolution must
be reversible.

Note added. While this work was being written up we
received two papers containing related results. Gausterer
and Sanielevici' test the exact Langevin algorithm
(HMC algorithm with n~n= I). Bitar et al. study the
HMC algorithm using method 2. Their definition of step
size differs from ours according to e (Bitar)=&2@ (Gup-
ta). For this reason we added the curve with @=0. I /&2
to Fig. 2(c).
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