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We test globally corrected hybrid updating algorithms for various lattice theories: a chain of cou-

pled harmonic oscillators, pure SU(3} theory, and QCD with four flavors of dynamical staggered

quarks. Systematic errors, acceptance, and time correlations are studied as functions of discretiza-

tion step size, momentum refreshing frequency, volume, coupling and fermion-matrix-inversion

residue.

I. INTRODUCTION

The lack of algorithms which are both exact and
efficient is the major obstacle on the road towards truly
realistic supercomputer simulations of QCD with light
dynamical quarks.

Updating algorithms such as pseudofermions, '

Langevin or hybrid dynamics allow, at the price of
many hundred CPU hours on a present-generation super-
computer, hadron mass calculations on lattices up to
10 &(32, for quark masses as low as 0.025 (in lattice units)
and for P as large as 5.7 (P=6/g, where g is the QCD
coupling). In the exploration of the phase structure of
finite-temperature QCD, the corresponding "world
records" are 10 p 6 lattices and quark mass 0.0125 in lat-
tice units. However, each of these algorithms relies on
some approximation which makes them violate detailed
balance as they explore phase space with a finite step size.
At best, the resulting systematic errors can be computed
analytically to second order in the step size. ' ' There-
fore, the results of these expensive supercornputations are
subject to some bias which is not precisely known; in ad-
dition, it is not rigorously possible to compare results ob-
tained by different algorithms. Efficient algorithms
which do not make use of such approximations would be
required to establish high-statistics benchmarks by which
to judge the performance of various approximate algo-
rithms. If they were efficient enough, exact updating al-
gorithms could even be used for production runs.

The reason why relatively large lattices are affordable
with the approximate algorithms is that the computer
time required for a given number of sweeps through the
lattice grows only proportionally to the lattice volume.
By contrast, a naive direct evaluation of the fermion
determinant implies a volume-to-the-fourth-power com-
puter time dependence. Various schemes have been pro-
posed in order to obtain a less disastrous growth, while
maintaining detailed balance. ' The algorithms which
obey detailed balance locally ' can achieve at best a
volume-squared increase in computer time. ' The algo-
rithms which combine Langevin or hybrid updating with
a global accept/reject step at the end of the lattice
sweep '

promise to yield a more favorable volume
dependence. '

In practice, one would like such an exact algorithm to
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II. GLOBALLY CORRECTED HYBRID
UPDATING

Consider a linear chain of X coupled harmonic oscilla-
tors. The action is

S=g( —x;+,x;+px; } .

In this notation, the critical coupling of the model is

JM =1. To simulate this system numerically, one generates
a Markov chain of configurations {x{,{x'],. . . . The
probability for the transition to a new configuration
P( {x'{

~
{xI ) must satisfy the detailed-balance condition

P({x')
~
{x] )P({xI }=P({xI ~

{x'I}P({x'I), (2}
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allow larger step sizes than those permitted by approxi-
mate updating methods. Then, the increased cost of up-
dating would be offset by the more efficient exploration of
phase space. However, large changes might cause low
acceptance probabilities of the proposed new
configurations, so that the evolution would be actually
slowed down. The same effect might appear due to an in-

crease in volume or in the length of the molecular-
dynamics trajectories. Too low or too high an acceptance
rate might mean large correlations between
configurations. The interdependences of these various
parameters could be strongly affected by changes in the
gauge coupling and in the fermion mass. There is the ad-
ditional question of the influence of the accuracy with
which the fermion matrix is inverted.

We have addressed some of these problems for various
systems with and without fermions. We have compared
the systematic errors of uncorrected and globally correct-
ed hybrid updating as a function of the step size for vari-
ous couplings. We have studied the dependence of the
acceptance and of the correlation between configurations
on the step size, on the number of degrees of freedom,
and on the length of the trajectory. For full QCD, we
have also tested the dependence of the acceptance upon
the conjugate-gradient inversion residue.

The algorithms we use are presented in Sec. II. Section
III contains our numerical results for a linear system of
coupled harmonic oscillators. Results for pure SU(3)
theory are given in Sec. IV and those for QCD appear in
Sec. V. Some conclusions are offered in Sec. VI.
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where P ( [ xj ) =C exp[ —S( I x j ) ]. A classic paper" es-
tablished that this condition can be implemented by pro-
posing some trial change in the configuration and accept-
ing it with the conditional probability

' Pr([x'j
I fxj»(Ixj }

where Pr( [x' j ~
[x j ) is the probability of selecting a trial

configuration lx' j starting from configuration [x j.
Let us choose the following global trial change:

aS( Ix j ) 5t
x =x — +p 5t

ax 2I

(4)

as([xj) as(Ix j)
ax; ax. 2

(5)

for all sites i =1,N, where the p; are standard Gaussian
noise with unit variance and zero mean. 5t is a parame-
ter which describes the magnitude of the change. The
corresponding global trial probability Pr([x'j

~
Ix j) is

proportional to exp( —g;p; /2). The reverse trial proba-
bility (to obtain [x j from [x'j ) is proportional to
exp( —g,p /2) with

discretizations are identical and either form can be imple-
mented numerically. '

Such an implementation begins with a random momen-
tum configuration lp(0) j and with the computation of
the initial value of the Hamiltonian. After completing n

deterministic steps according to Eqs. (4) and (5) or
(8)—(11), one obtains a final trial configuration which is
subjected to an accept/reject step according to Eq. (6).
The whole procedure is then repeated until the desired
number of configurations has been generated. The initial
choice of momenta and the n deterministic steps define a
trajectory through phase space. In the limit 5t ~0 this
trajectory becomes microcanonical (5H=0). For n =1,
the procedure reduces to the simple Euler discretization
of the system's Langevin equation. When n &1, it is a
hybrid updating algorithm. 3

Now consider the case of a theory whose variables U
are elements of an unitary group with generators T
which satisfy tr( T T~) =5 &/2. Its Hamiltonian will be

H=gtr(p, )+S(I Uj) . (12)
I

The canonical momenta p; are elements of the algebra

(p; =rt; T ). The Hamilton equations for this system read

Substituting into Eq. (3) yields dp;= —V;S(I Uj)T dt, dU;=iU, p, dt . . (13)

„,exp[ —H([x'j Ip'j)]
'

exp[ H((x j, 'jp—j)]
(6)

The so-called "leap-frog" discretization of these
differential equations proceeds as follows:

p;(5t /2) =p;(0)—as 5t
ax( 2

(8)

with the notation H =g;p; /2+S({x j ) .
This notation is not accidental: Eqs. (4) and (5) are in

fact a reversible, area-preserving discretization scheme
for the Hamiltonian evolution of the system in phase
space, as a function of the time variable t. H is the sys-
tern Hamiltonian and the p; are the canonical momenta
conjugate to the x;:

dx, =p, dt, dp, = — ' dt = — dt .aH(Ix j, [p j ) aS(Ix j )

ax; ax;

(14)

The corresponding effective action for full QCD with

nf flavors of staggered quarks is

S=SG — trln(M M),
4

(15)

where M([ Uj ) is the lattice Dirac operator; M M is only
defined on even lattice sites, thus avoiding an additional
species doubling. ' For this system, Eqs. (4) and (5) be-
come

U =U;exp i F; (I Uj, IXj)T +p;5t, 5t'
(16)

(V; is the group-invariant derivative. ) The globally
corrected hybrid algorithm can be applied to the discre-
tized form of these equations. We have tested the algo-
rithm for pure SU(3) theory with the Wilson action:

SG ———Pg(trU~+trUz} .
0

is the initial half-step; this is followed by n =t /5t steps
for x; and n —1 steps for p;:

p'=p;+[F'(I Uj I&j)+F; (IU'j I&'j)]T —.

F, is the driving force:

(17)

x, (t+5t ) =x, (t)+p, (t+5t /2)5t,

p;(t+5t /2)=p, (t 5t/2) 5t;— —as
Bx;

(10)

and finally by a last half-step for p;:

p, (t') =p(t' 5t /2). —BS 5t
BXI, 2

Since Eqs. (8)—(11) can be rewritten in the form of Eqs.
(4) and (5) by setting x,.'=x, (t') and p,'=p, (t'. ), these two

nf
F, = —V, SG+ X M 'V, (M M)M 'X, (18)

where the Gaussian noise X (with unit variance) serves to
estimate the group-invariant derivative of the fermionic
part of the action. In Eqs. (16}—(18), the index i runs
over all links.

Equations (16) and (17) still obey the reversibility re-
quirement which is necessary for detailed balance. As
shown for instance in Ref. 10, detailed balance can be en-
forced in this case by accepting the new configuration
with the probability
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P„,=min 1,

~2 G~ I I ~ —P (M' M')
exp

' —ytr(p, ') e ' e-~II I'
2 G~I I~ —f IM M)exp ytr(p~2) e G e

—P IM M)
(19)

We use the notation M'=M(t U'I ). P are pseudofer-
mionic fields updated by the heatbath procedure /=M g
(the Ps are another set of Gaussian random numbers
with unit variance).

From the computational point of view, the problem
with simulating Eqs. (16) and (17) is that the matrix ex-
ponentiation in (16) should be done exactly. Otherwise
reversibility and Liouville's thereom will be violated. In
practice, one usually keeps a number k of terms in the
series expansion of the matrix exponential. Such a pro-
cedure must always be followed by an explicit reunitari-
zation, which ensures that the new U's are group ele-
ments. This still violates detailed balance to order k+1
in the step size. The importance of this residual source of
systematic errors in the globally corrected algorithm can
be tested by comparing the results to some exact algo-
rithm (see Sec. IV).

Whereas the evolution equations (16)—(18) are valid for
any nf, the acceptance criterion (19) allows only multi-
ples of nf ——4, otherwise detailed balance is violated. The
globally corrected hybrid algorithm for full QCD which
we have described above is a variation of those intro-
duced in Refs. 9 and 10, because we use the noisy estima-
tor method during the n molecular-dynamics steps. We
believe it is worthwhile to test this method because it is
known to be faster in uncorrected Langevin and hybrid
updating. As we pointed out above, the process still
satisfies detailed balance. However, the final Hamiltoni-
an is no longer a deterministic function of the initial
state. In the limit of vanishing step size, the evolution is
microcanonical with probability 1 with respect to the
noisy estimator sample: (5K)(r~~0 for 5t~0 There.
might be a loss of acceptance with respect to the deter-
ministic evolution for small volumes, but this effect
should decrease with increasing lattice volume.

I
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III. A CHAIN OF COUPLED HARMONIC
OSCILLATORS

Our first task is to verify that the globally corrected al-
gorithm is indeed exact for any step size 5t. This is easily
done for the case of the simple system (1). The quantity
(x ) can be computed exactly for a given chain length
(lattice volume) E and for a given coupling p. We have
determined that the exact result becomes almost indepen-
dent of the volume for N & 100. With the notation of Eq.
(1), the critical coupling of the model is p = l.

We have applied the globally corrected as well as the
uncorrected hybrid algorithm for X = 100 oscillators
with several values of p. Figure 1 compares the results of
up to 5 X 10 lattice sweeps to the known exact values of
(x ). Figure 1(a) shows that the uncorrected algorithm
starts deviating markedly from the exact result for
6t )0.25. By contrast, the corrected algorithm continues

IO—
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FIG. 1. Accuracy of globally corrected and of uncorrected
hybrid updating for a chain of X =100 coupled harmonic oscil-
lators. The straight lines are results of exact computations.
Squares denote the results of corrected Langevin updating
(n = 1 molecular-dynamics step) and triangles represent the re-
sults of uncorrected hybrid updating (n =5 molecular-dynamics

steps). (a) is for p=2 and (b) is for 1M=1.1.
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FIG. 2. Acceptance and correlation for a chain of %=100
coupled harmonic oscillators in function of the step size for one
molecular-dynamics step. Results are obtained with the global-
ly corrected algorithm for @=2. Squares denote the acceptance
rate (left scale) and triangles represent the corresponding corre-
lation between con6gurations, measured according to Ref. 13
and denoted by it (right scale) ~

to reproduce the exact result. The same qualitative re-
sults were obtained for lower p [see Fig. 1(b) for p= l. I].
The error bars become larger when we approach criticali-
ty, but within statistics the corrected algorithm remains
exact for all investigated step sizes and couplings.

Figure 2 shows the dependence of the acceptance rate
and of the correlation between configurations' on the
step size. The precise values of the correlation length of
(x ) change if a given run is repeated with a different
random seed, but the qualitative shape of the dependence
on 5t is always the same. The main feature is the ex-
istence. of an optimum value of the step size, where the
correlation is shortest. This corresponds to an intermedi-
ate value of the acceptance: too high or too low accep-
tances lead to larger correlations.

We have also tested the dependence of the acceptance
on the number of molecular-dynamics steps, for various
values of the step size. The acceptance Auctuates around
the value determined by 5t (for instance, around 80% for
@=2, 5t=0.25 from n =1 up to n =64 molecular-
dynamics steps). The corresponding correlation length is
found to have a minimum around n = 1/5t.

Figure 3 shows the dependence of the acceptance and
of the correlation on the number of coupled oscillators
(system volume). For a step size which minimizes the
correlation in the corrected Langevin algorithm, we see
that the acceptance drops significantly with the volume;
the correlation increases sharply when the volume
exceeds a certain threshold.

The fact that large step sizes and/or many degrees of
freedom lead to low acceptance is not surprising for a
global algorithm which suppresses large changes in the
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FIG. 3. Acceptance as a function of the number of coupled
harmonic oscillators (lattice volume). Results are obtained with

the globally corrected algorithm with n = 1 molecular-dynamics

step and 5t =0.4 for @=2.

total energy. Even small local changes can accumulate to
a large change in the total energy. Of course, a truly mi-
crocanonical evolution would be characterized by 5H =0,
but any discretization scheme of the Hamilton equations
violates this condition. A large 5t leads to large local
changes resulting in a still larger 5H. The same accumu-
lation effect is obtained when the number of degrees of
freedom i.ncreases.

For small step sizes, the system explores phase space
very slowly and almost every proposed configuration is
accepted. Therefore, a large number of trajectories is
needed to produce an independent configuration. On the
other hand, too low an acceptance means that a very
small sample of configurations is generated. These con-
siderations qualitatively explain the observed dependence
of the correlation between configurations on the step size
and on the number of degrees of freedom.

IV. PURE SU(3) THEORY

Figure 4 shows the step-size dependence of the accura-
cy of uncorrected and globally corrected updating for
pure SU(3) theory with the Wilson action (14) on a 4 lat-
tice. The coupling is P=4. 8 as in Ref. 5; the corridor
represents the benchmark of Ref. 5. 10 configurations
were generated for each data point. We see that the glo-
bally corrected algorithm is consistent with the bench-
mark for 5t as large as 0.3. Thus, the violation of de-
tailed balance due to the exponentiation error (Sec. II)
appears to be insignificant for such step sizes. The un-
corrected hybrid algorithm is accurate for 5t (0.1 but
starts to deviate for larger step sizes (to compare with the
results of Ref. 5, note that 6t=&e, where e is the
Langevin step size).

A comparison of Fig. 5(a) and Fig. 2 reveals a similar
interdependence of step size, acceptance rate and correla-
tion between configurations. For 5t =0.3, the acceptance
is only 0.5% and yet the globally corrected algorithm
converges to the benchmark within the set number of
sweeps. This shows that very low acceptance rates are
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0.36—

step was taken with P), we find that the dependence of the
acceptance on 5P shows a rather broad, unstructured
maximum around a small positive 5P. Correspondingly,
the difference between the final and initial Hamiltonians
showed a broad flat minimum. Thus we find no
significant improvement by using 5P&0. It might be
more effective to use a higher-order discretization scheme
of the rnicrocanonical equations in order to reduce the
systematic errors.

To get an idea of the P dependence of the systematic
errors of approximate algorithms, we have used a global-
ly corrected Langevin run with 5t =0. 1 to set a bench-
mark above the deconfinernent phase transition, at

I

Q. I

I

0.2
I

0.3 (a} —600
FIG. 4. Accuracy of globally corrected and of uncorrected

hybrid updating for pure SU(3) theory on a 4 lattice. All the
runs are for P=4. 8. The corridor represents the benchmark ob-
tained in Ref. 5 by means of the local Metropolis et al. algo-
rithm. Squares denote the results of corrected Langevin updat-
ing (n = 1 molecular-dynamics step) and triangles represent the
results of uncorrected hybrid updating (n = 5 molecular-
dynamics steps).
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not necessarily bad, provided the system is such that the
corresponding correlation between configurations is not
unduly large.

Figure 5(b) shows the decrease of the acceptance as the
number of molecular-dynamics steps is increased. The
dependence is seen to flatten out when n g 6. The corre-
sponding correlation' between Wilson loops measured
on successive configurations drops by a factor 2 when we
go from n =1 to n =2 and remains approximately con-
stant (with oscillations) for larger n. When we repeat this
exercise at lower step sizes, we find that all acceptances
are shifted to larger values, so that the decrease of the ac-
ceptance with the number of molecular-dynamics steps is
less and less pronounced. For instance, the acceptance
for 5t =0.035 and n =10 is about 80%. With a different
choice of parameter values and with another variant of
the leapfrog algorithm, Ref. 14 seems to obtain results
which are qualitatively similar to ours.

It is obvious that the acceptance rate can be improved
by minimizing the systematic error of the hybrid trial up-
date at a given step size. It has been suggested in Ref. 9
that this could be achieved by shifting the couplings in
the molecular-dynamics evolution away from the "physi-
cal" values at which the accept/reject step is taken.
Indeed, the difference between the equilibrium action of
the Langevin or hybrid process and the action of SU(3)
can be reduced by such shifts. ' One might use this ob-
servation by tuning the coupling in the tentative updating
until the acceptance is maximal. This would presumably
be at or near where the systematic error is minimal.
However, by running the leapfrog updating algorithm
with various couplings P+5P (where the accept/reject
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FIG. 5. Acceptance and correlation for pure SU(3) theory on
a 4 lattice. Results are obtained with the globally corrected al-
gorithm for P=4.8. Squares denote the acceptance rate (left
scale) and triangles represent the corresponding correlation be-
tween configurations, denoted by it (right scale). (a) shows the
dependence upon the step size for one molecular-dynamics step.
(b) shows the dependence upon the number of molecular-
dynamics steps for 5t =0.1.
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SU(3)

QCD

4.8

5.8

4.8

5.2

0.3752
(0.0018)
0.5780
(0.0013)
0.4076
(0.0011)
0.5250
(0.0046)

0.3715
(0.0006)
0.5597
(0.0008)
0.3956
(0.0007)
0.5248
(0.0011)

P=5.8. Based on our previous results, we are confident
that this choice of parameters will lead to an exact result.
Indeed, we find an acceptance rate of 72% and a correla-
tion of about 170 configurations. We have then run the
uncorrected hybrid algorithm with 5t =0.2, n =5 at the
same P.

As seen in Table I, the systematic error in the 1X1
Wilson loop is larger in the deconfined phase. Since the
relative error only goes from about 1% to about 3%, the
phase transition does not seem to induce a qualitative
change in the systematic error. The deconfinement order
parameter (the Polyakov loop), as measured with the un-
corrected procedure, is clearly nonzero at P=5.8. (The
systematic errors on this nonlocal observable are hard to
quantify on a 4 lattice because of the large finite-size
fluctuations. ) Thus, the upward shift in the critical cou-
pling which is induced by the systematic error is not
very large.

TABLE I. The globally corrected and uncorrected hybrid al-

gorithms are compared on the basis of 1X1 Wilson loops.
Quoted errors (numbers in parentheses) are corrected for corre-
lations between configurations (Ref. 13). For SU(3), G is a glo-
bally corrected Langevin (n = 1) with 6t =0. 1 and H is an un-

corrected hybrid with 5t =0.2 and n =5. For QCD the quark
mass is ma =0. 1 and nf ——4. G is a globally corrected hybrid
with bt =0.01, n =3 and a residue r =0.01; H is an uncorrected
hybrid with 5t =0.1, n =5, r =0.2.

Theory

configurations could be generated in a practical time
span. By reducing the step size to 0.05, the acceptance
was raised to about 30% but the corresponding correla-
tion was of the order of 1000 configurations. To reduce
this correlation, w'e increased the number of molecular-
dynamics steps between momentum refreshings, but this
again caused a drop in the acceptance. We finally used
5t =0.01 in our runs.

The inversions of the staggered Dirac matrix M re-
quired by Eqs. (16)—(19) were all done with the
conjugate-gradient method. Denoting y =Mx, our
definition of the residue is r =

~

Mx —y ~

. (Note that this
definition does not divide out the volume. ) Even a fer-
mionic algorithm which satisfies detailed balance will
have a systematic bias if this residue is nonzero. There-
fore, one would like to run with as low a residue as possi-
ble. However, as seen in Fig. 6, in our globally corrected
scheme this means not only more computer time per up-
dating step but also an additional penalty in acceptance.
Figure 6 was obtained using the same residue for all
conjugate-gradient inversions (in the computation of the
initial and final Hamiltonians as well as in the leapfrog
steps). Very similar results are obtained if one only varies
the residue in the computations of the Hamiltonians
while keeping the residues in the leapfrog steps fixed at
0.2.

Table I shows our result for W(1X1) after 22X10
globally corrected hybrid trajectories with 5t =0.01,
n =3, r =0.01. The average acceptance rate was
9.2+0.5% and the correlation was about 700
configurations. The slow rate of exploration of phase
space and the smallness of the lattice lead to large Auc-
tuations at equilibrium [W(1X1)K[4.00,4.20]]. For
these reasons, a longer run would be required to establish
a truly reliable benchmark.

The globally corrected algorithm was run with the
same parameters at P=5.2, above the @CD phase transi-
tion. An interesting feature was that the acceptance rose
to about 33%, which is presumably related to the fact

V. QCD WITH DYNAMICAL QUARKS

Full QCD with light dynamical quarks is of course the
most challenging potential application of globally
corrected updating schemes. There has been a series of
investigations of the systematic errors of various approxi-
mate algorithms on a 4 lattice for nf ——4 quark Aavors of
mass ma =0. 1 in lattice units at @=4.8 (Refs. 4—6 and
8). The main controversy in these studies concerns the
benchmark to which the approximate results are to be
compared: the results obtained with various "exact" al-

gorithms for the 1 )& 1 Wilson loop range from
W(1X1)=0.416 to W(1X1)=0.404. All these results
can be criticized for having small statistics and for using
rather large inversion residues —these limitations being
consequences of the lack of eSciency of the exact algo-
rithms. It is interesting to see if our globally corrected
hybrid algorithm can fare any better.

The combination n =1, 6t=0. 1 had produced an ac-
ceptance of 80% for pure SU(3). Upon adding the fer-
mions, this dropped so sharply that no new
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FIG. 6. Acceptance versus inversion residue for full QCD on

a 4 lattice. Results are for P=4. 8, nf ——4, ma=0. 1. They are
obtained with the globally corrected algorithm with 5t=0.01
and n = 3 molecular-dynamics steps.



1226 H. GAUSTERER AND S. SANIELEVICI 38

that the number of conjugate-gradient iterations required
to achieve r &0.01 dropped from about 87 to about 60.
Within the statistics of our runs, the systematic error by
the uncorrected hybrid algorithm appears to be lower
above the phase transition. Because of the proximity of
the QCD phase transition, the correlation in this run was
far larger than at @=4.8, which accounts for the larger
error quoted in Table I. In any case, as for SU(3},we find
that the phase transition has no dramatic effect upon the
systematic error. The uncorrected algorithm reproduces
the fact that the absolute value of the real part of the Po-
lyakov loop is large at P=5.2, i.e., that the theory is in its
high-temperature phase.

The fact that the acceptance decreases when the quark
mass is decreased from infinity [pure SU(3)] is due to the
fact that the effective step size of the noisy estimator al-
gorithm increases when the mass is lowered. ' Another
factor which may contribute to the decrease in accep-
tance as the fermions are added is the corresponding in-
crease in the number of degrees of freedom of the system
(equivalent to an increase in volume}. The decrease of the
acceptance with the inversion residue may seem surpris-
ing, since one might expect that a more exact inversion
would generate smaller deviations from the true equilibri-
um of the fermionic theory and hence a higher accep-
tance rate. On the other hand, inexact inversion will tend
to reduce the fermionic degrees of freedom to noise,
which will cancel out in the global accept/reject step.
Thus, the gauge degrees of freedom will dominate the ac-
ceptance criterion, leading to a higher acceptance rate.

By comparing our results to those obtained by the
background-field method, ' ' one sees that the noisy esti-
mator method requires lower step sizes in order to
achieve similar acceptances. Thus, it seems that one
must pay a price for using nondeterministic evolution
equations. The large fluctuations in equilibrium and the
long correlations which were our main practical prob-
lems might also be consequences of the noisy estimation
of the fermionic contribution.

VI. CONCLUSIONS

We have tested globally corrected hybrid updating al-

gorithms for various physical systems. For the coupled
harmonic oscillators and for pure SU(3), we found that
such algorithms work satisfactorily even at step sizes
where the corresponding uncorrected hybrid algorithms

have significant systematic errors. The updating step size
can be chosen such as to minimize the correlation be-
tween configurations, thus ensuring an efficient explora-
tion of phase space. However, for such bosonic theories,
"classical" Monte Carlo updating remains superior. '

We have tried to use a globally corrected version of the
noisy estimator algorithm, which is popular in uncorrect-
ed Langevin and hybrid updating, to produce long bench-
mark runs above and below the finite-temperature phase
transition in full QCD. Advantageous acceptance rates
were only obtained at rather small step sizes, which lead
to large fluctuations and to long-run time correlations be-
tween observables. To a lesser extent, fermionic simula-
tions which use globally corrected background-field up-
dating encounter the same problem. ' ' ' It appears
that these problems become more severe as the fermion
mass is decreased and as the lattice volume increases. At
the small step sizes to which the corrected algorithms are
thus forced, the corresponding uncorrected algorithms
have small systematic errors themselves. ' '

The obvious way to improve the performance of the
global algorithms is to improve the performance of the
hybrid algorithm which produces the trial configurations.
The idea is to reduce the departure from microcanonical
evolution for a given step size by some higher-order re-
versible and area-preserving discretization of the equa-
tions of motion. As long as reversibility and Liouville s
theorem are preserved, one is in fact free to chose any in-
termediate updating scheme which proves convenient. In
this context, it is interesting to investigate to what extend
one can save computer time by performing the inversions
for the intermediate updates with less accuracy than
those required for the global accept/reject step.
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