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Exact method for nonlinear fermions on finite lattice: Two dimensions
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A new method is proposed to solve exactly the problem of a nonlinear fermion on a finite lattice.
A lattice version of the two-dimensional chiral Gross-Neveu model with broken SU(2) is examined
as a simple example. We found a phase transition through analyses of zeros of the partition func-
tion and of the specific heat.

In recent years various finite-lattice methods (typically
Monte Carlo methods) have been used in the study of the
properties of quantum field theory and statistical
mechanics. Also it has become important to study the
phase transition by evaluating the partition function ex-
actly. Unfortunately, on an infinite lattice with more
than one dimension only a few models of a limited class
such as Ising models are exactly solved. From the physi-
cal point of view, however, a wider class of models should
be discussed on the basis of the information on exact
solutions. An exact partition function on a finite lattice is
also certainly the case, but only some limited classes are
solved: ZN spin and gauge models. '

Exact evaluation of the finite partition functions
beyond ZN spin and gauge models, therefore, would be
important to shed light on lattice field theory. In particu-
lar, it is very interesting to study the nonlinear lattice fer-
mions by allowing such an exact evaluation. This is due
to not only the field-theoretical interests in the context of
the dynamical fermions, but also the long-lived interests
in the distribution of zeros of the partition function in
statistical mechanics. Particularly, the latter will give us

I

a signature of new phenomena.
The purpose of this paper is to present a new method

which exactly integrates out the nonlinear fermions on a
finite lattice. For simplicity we shall explicitly discuss the
two-dimensional four-Fermi model in which a fermion
and antifermion are interacting with attractive or repul-
sive couplings. The attractive case is the lattice version
of the chiral Gross-Neveu model ' with broken SU(2),
and the repulsive case is mainly related to the (extended)
Hubbard model in condensed-matter physics.

We take examples up to a 4X4 lattice. It is, however,
possible to solve exactly for larger lattices and, further-
more, the general applicability of our methods to purely
fermionic theory and the extension to higher dimensions
are obvious.

To illustrate our method concretely, we consider a lat-
tice version of a two-flavor four-Fermi interaction model
in the fermion formulation of Kogut and Susskind (KS).
Since we adopt the KS fermion formulation, the model
has a "chiral" symmetry even for finite lattice. ' The ac-
tion is given by

Q x a x — x x+a
X,p, X,P

where the lattice points are denoted as
x =(x, , x2)=(n]a, n2a). r/](x)= 1 and A)2(x)=( —1) '

are the standard representations. ' This action has not
only a discrete symmetry but also a continuous symmetry
U(1),U(1), which is a remnant of chiral symmetry.
The interaction term in Eq. (1) can be rewritten by the
standard flavor interpretation' as

St= —Go[(ff) —(fy5T3f) ],
where f =(d), and U(1),U(l), symmetry implies the

l $5T3e ' ' invariance. Hence, Eq. (1) corresponds to a lattice
version of the chiral Gross-Neveu model with broken
SU(2). Therefore it is advantageous to use the action in
studies of chiral symmetry. We impose periodic and an-
tiperiodic boundary conditions along the spatial and the
temporal directions, respectively.

The partition function is defined by the following
Grassmann functional integration:

Nl N2

Z =f g dl((x)dg(x)e (2)

Here N, and N2 are the total numbers (even number) of
the lattice points along the spatial and the temporal
directions, respectively. When N„are finite, the integral
is just a polynomial with respect to the coupling constant
g. Therefore, our task is to calculate exactly the un-
known polynomial.

From now on we calculate the integral by using the
algebraic properties of the Grassmann numbers. " Let us
take the minimal bases of the Grassmann algebra for
each fermionic component as follows:

38 1189 1988 The American Physical Society



1190 KAZUHIRO ISHIDA 38

=(1,$ ) (i =1,2, a=1, . . . , N), (3) (5), (6), and (8) enable us to give the explicit form for [0' j
and Rk as

where index cc specifies fermionic components, spinors g
and f and flavor, color, etc. For each a, we can then
write and

[8'j =(l, g, g, gg) (i =1, . . . , 4) (9)

Ja & J ka
I 'g = rk 'g (4) 0 0 0

R1 ——R1 ——r1r1, R2 ——R2 ——r2r1, R3 ——R3 r1r2
l J

where rk are the structure constants given by the ele-

ments of the following matrices:

and

R4 /'R——4, R q
——r2 rz, (10)

or

ri —
—,'(1+cr3), rz cr——, .

Furthermore, we numbered [&'j, which is the set of
l

the "direct products" of g

(6)

with

[0'j =(1 4 4 g 0e) (i =1 4)

The structure of [8'j is similar to that of [8'j, i.e.,

(12)

4' =diag(1, 1, —1, 1) .

To include the parameter g, it is convenient to define a
set explicitly for the one-component KS fermion:

where

j —1= g 2 '(i —1)
a=1

is a binary system. The structure constants are also
defined in terms of 0J as

8'0'=R )8",
where Rk represent

Rk ——Rk (k =1,2, 3) and R4 ePGR~&——GR~——
with

(13)

(14)

O'L9J =RkJ8 (7)
G =diag(g, 1, l,g)

The structure constants RI'J are rewritten into the form
by using Eqs. (4), (6), and (7):

andg=(1+g )'
We can rewrite the Boltzmann factor in Eq. (2) as (see

also Appendix A)

(R„)'~= g ( —1) '(rk )
' '

aa=1
(8)

2e-'= g n„,
@=1

(16)

where F; denotes the fermion number of g . Equations where

0„=g [1 ri„(n)[—f(n)g(n +p)+@(n)@(n +P)]+(

ling

)[@(n)@(n)P(n +P)g(n +P)] j . (17)

Here we use the nilpotency property [f(n)P(n)] =0. Applying Eqs. (12) and (13) to Eq. (17), we have

N„

n =1
V

N 4

n =1i,i "=1
P P' p+)tt

n"'+1
0 "(n)(S " K), , 8 "+"(n+P) (pQv)

N

n„=1

N
P 4 4 (2) + 1[4 " KR (n)] ""+"0"(n)

n =1i,i -=1p =1
P P @+p

(19)

Here R~ (n)=R~ except at the spatial boundary, and R (N„nz)=R 4 at the boundary due to the periodic boundary
P P ' Pl

condition (see Appendix B for details). 4, K, and n „'
I are, respectively,

4=0 30 3 (20)

4
K= —,

' g o, cr, (cr4=1), (21)

and n„' ' =n, 5„2. S gives the minus sign to the fermonic components of 8' and n „'
' is an exponent of ri„(n) in Eq. (1).

To perform the functional integration over f and P, it is convenient to bring 0 '(x) and 8 '(x) associated with the
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same lattice point x into one place. The above operations require the nonlocal phase factors which are given by
F (x)

( —1) ', where

F (n, , nz)=F~ (n, , nz)
N2

F (m„mz) (22)
fPl

1
=nl PB2 =n2

mod2

for each site (n„nz). Here we use 8 '(x)8 '(y)=( —1) ' '8 '(y)8 '(x) and F~ (n„nz)+F~ (n&, nz)=0, because only

terms proportional to g„"'g(x)g(x) do not vanish in performing the Grassmann integration (see Appendix C for de-

tails). Since the above expression is rather formal, we can further simplify F (x) by g„,F (n„)=0 being easily de-
P1 P

rived from Eqs. (1), (17), (18), and (19). After 8 '(x) and 8 '(x) are set on the same place over all lattice points, we ap-

ply Eq. (7) to the product 8 '(x)8 '(x), i.e., 8 '(x)8 '(x) =R„' '8"(x). Then, the Grassmann functional integration can
be performed by applying fdg(x)dg(x)8 (x)=5„~because of a separate integral at each lattice point. Finally we can
write the partition function as

N1 N2

Z =SpTr g (23)
N1 1 n2

where

and

4

L(ni, nz)= g ( —1)
' ' I[A (n)] ' '+'[4 'A (n)] ' '+'R4' ')

P1~P2 = &

(24)

%~=SKR~ . (25)

Here Sp and Tr are traces with indices of transfer speci6ed by i, and i2 along the spatial and the temporal axes, respec-
tively.

We have introduced L (ni, nz), Eq. (24), on the analogy of the elementary vertex weights for the Baxter's eight-
F (x)

vertex model. ' However, a remarkable difFerence with it is the existence of the nonlocal factor ( —1) ', F (x) being
P1

given by Eq. (22). Since this factor does not explicitly depend on the indices of transfer specified by i, and iz, this en-
ables us advantageously to factor each term in Eq. (23} into (N i +Nz ) traces along each axis:

4 N2 N1 N1 N2

g Sp g ( —1)' & (n) g Tr g ( —1) "&'&5 p(n)
Ip I —1 n2 —1 n1 —1 n1 ——1 n2

——1

(26)

We should have recourse to a computer in order to calculate Eq. (26) on lattices as large as possible. The following
idea enables us to calculate analytically even a FQRTRAN program. Each term of Eq. (26) can be expressed by the in-
teger matrix (p„„). For example, the column (p„z ) (No fixed) is able to correlate uniquely with

1 2 1 0

Sp( 1I„~ iA (n„NO)), which can be easily evaluated. Although Eq. (26}has 4 ' ' terms, almost all of them will van-
1

ish. Therefore, it is desirable to generate efficiently a set of the nonvanishing terms (p„„).
1 2

Fortunately, the following method does not generate the vanishing terms of (p„„) at all. Here, we note
1 2

SKR~SK =( —1) rK~r R ~ and R~ forms (r„~~~rk~z~} (diagonal matrix). First, the entire set [(k„„)I, being a nonvan-
I 2

ishing term of

ZQ—
2 2r AS

N,

II r„
n =1

1

Nl

n1 ——1

N2

Tf g r3
n =1

2

(27)

can be found by applying the properties of Eqs. (5) and
(28} (see below). Second, we generate the entire set

(i =1,2) are two arbitrary elements of the set I(k„„)).
1 2

An element of the set [(P„„)Iis not always identified
1 2

with (p„„)precisely because of the existence of the ma-
1 2

trix K (note KR K =Knez. R ~ ). However, the set
[(P„„)I is uniquely transformed into [(p„„)J by a per-

mutation of the values of P's satisfying n, +nz ——odd (or
equivalently even}, such as (2~3) (see Appendix D for
details). As a result, only 90 nonvanishing terms' are
picked up and evaluated in a 4&4 lattice size, even if
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symmetries such as translation invariance are not con-
sidered (see Appendix E for details). The above principle
which drastically reduces terms is essentially based on the
relation

N
tr g r &'rz ' ——g tr(r &rz

'
) =0 (if all m;&even) .

(28)

Consequently, the analytic calculation turns out to sort
the integer matrices, and the sum of nonzero terms gives
the exact partition function on a finite lattice:

2.0

l5

Z(2X2)=8(g 22g +2)/2

Z(4X4) =(17g' +136g' +540g' +1384g'

+2530g +3472g

+3712g +2880g + 1296)/2'

(29)

(30)

1.0

0.5

In the attractive-coupling case, the partition functions
are polynomials whose terms all have positive signs.
Thus in the repulsive-coupling case, the partition func-
tions are polynomials whose terms have alternating signs
which is easily seen from Eqs. (1) and (2). It is also easily
understood that the maximal powers mean the total num-
ber of lattice points if one considers the strong-coupling
limit in Eqs. (1) and (2).

In this method, it is very easy to calculate the partition
function of a 2&&2 lattice by hand. Now it will also be
possible to calculate the partition function by hand, even
for a 4X4 lattice, although we have done it with the
FORTRAN program (see Appendix E for a rough estimate
of the amount of calculations for a 4X4 lattice by hand).

Since we regard g as temperature T (see Appendix F),
we can define the following "specific heat" as a response
function for the free energy:

1 8 2 8T lnZ (T=g ) .2 (31)

However, the above specific heat does not guarantee its
positivity due to the nilpotency property of Grassmann
variables. '

In Fig. 1 we show the specific heat for both attractive
and repulsive couplings. In the attractive case, the
specific heat increases monotonically and has little size
dependence. Therefore, there is no indication of a phase
transition. In the repulsive case, on the other hand, the
specific heat has a clear peak at g =2, whose height in-
creases with the lattice size. This means the occurrence
of a phase transition.

The distribution of zeros in the complex g plane is
shown in Fig. 2. The negative Reg region has richer
zeros than that of positive Reg . The distribution is
correlated with the structure of the specific heat. We can
see the closest zero to the negative Reg axis at
Re( —g ) =2, which will approach the axis as the lattice
size increases. This also indicates that a phase transition
occurs around Re( —g ) =2 on an infinite lattice.

A clear physical interpretation for the phase transition
in the repulsive coupling has not been obtained. There
needs to be a calculation of other physical quantities such
as the correlation length and proper order parameter' in

9

1

10

FIG. 1. The upper and lower solid (dashed-dotted) lines
denote the specific heat for 4X4 (2X2) lattices for repulsive and
attractive couplings, respectively.

Im g'

~ 0

Re g'

~ 0

2I

FIG. 2. The zeros of the 4&(4 (solid circles) and 2)&2 (open
circles) partition functions in the g plane.

this formulation on larger lattices to give reliable infor-
mation on the phase transition.

The analogy between chiral-symmetry breaking and
magnetization leads us to the idea of the distribution of
zeros, as suggested by the theorem of Lee and Yang (cir-
cle) in the complex mass plane. We find, however, that



38 EXACT METHOD FOR NONLINEAR FERMIONS ON FINITE. . . 1193

the positivity of the partition function does not hold un-

less m & I/a in the repulsive-coupling case (the stable
ground state disappears owing to the correlation length
being too short). Therefore, careful analyses are required
in the complex mass plane. '

It is clear that our method can be generalized in three-
and four-dimensional nonlinear fermion theories. They
are effective actions of QCD, ' gauge-Higgs theories with
fermions, ' and the new high-T, superconductors. ' In
particular, (reduced) KS fermion versions at a finite tem-
perature will hopefully be attacked along the same line of
thought developed above.

The present method is also successful in solving exactly
two-dimensional gauge-fermion systems (including
QCD2) on a finite lattice. Actually, we have obtained ex-
act partition functions and Wilson loops in the lattice
Schwinger model with the KS fermion version up to a
6X4 lattice.

Such remaining but interesting models as the y5-
invariant Gross-Neveu model and a generalized non-
linear interaction term such as

APPENDIX A

f'=(I/&2)Q, g'=(I/&2)P . (A 1)

(A2)

and

Nl Ã2

Z'= f g df'( x)dQ'(x)e (A3)

with

S'= —g [r)„(x)[P'(x+P)g'(x) P'(x)P—'(x +p)]

If a„=1, fractional coefficients appear in Eq. (1). In an
exact calculation, it is more convenient to treat an integer
coefficient than a fractional one. Therefore, to avoid the
complication of fractional coefficients, we rescale the
fields as follows:

Si=g g exp[/(x)g(x +aP)+H. c. ]
X)p

will be discussed in a separate paper, because these are
also solvable on finite lattices by minor extensions.

Finally, we comment on the improvement of our
method. The problem is whether it can directly give a
(simple) formula to express the terms in analytic forms
when the integer matrices (p„„)are given. The formula

2

will be useful for more efficient calculations in our
method, because it will clarify the symmetries of each
nonvanishing term and also among terms. Furthermore,
from a more general standpoint, the formula will be use-
ful to clarify how the original action's symmetries refiect
the expression of the partition function.

We think now that it is not so difficult, and an attempt
is in progress. The formula will have a general structure,
even though it will, of course, have a part, which depends
on the details of the models. The main reason for it is
that the basic structure of the kinetic term is common. It
will be expected that the basic ideas of the formula will be
applicable also to a wider class of nonlinear fermion mod-
els.

In conclusion, we presented a new method to solve ex-
actly the problem of nonlinear ferrnions on finite lattices.
We explained our method with a concrete example,
which is a lattice version of the two-dimensional chiral
Gross-Neveu model with broken SU(2). We found a
phase transition through analyses of zeros of the partition
function and of the specific heat in the case of repulsive
coupling. The basic ideas will be applicable to a general
class of purely fermionic theory and also the exact calcu-
lations of fermionic integrals in fermion-gauge (or boson)
systems on finite lattices.

We would like to thank T. Kobayashi, M. Hosoda, S.
Saito, H. Minakata, and A. Nakamura for useful conver-
sations.

+g'[g'(x)g'(x)g'(x +p)g'(x +P)]] . (A4)

We can calculate Eqs. (A3) and (A4), and the final ex-
pressions of Z' are multiplied by the overall factors

( —,') ' ' for mathematical completeness, though these are
physically irrelevant. From now on we omit the prime
for simplicity.

APPENDIX B

In Eq. (18), set 8i=(SE8)i and omit the tildes on the
8's for simplicity. Also the subscripts in Eq. (Bl) (see
below) mean the coordinates in 0„. In order to yield Eq.
(10) the following type of rearrangement is carried out:

(8 '8 ')(8'8 ') . (8 "8 "+')

F,

Fi ( —)~ ( —)J
1 )

iX+1 8 &N+1 8 J 1

%+1 ]

F,
the phase factor ( —1) " is canceled out in Eq. (Bl).

APPENDIX C

In Eq. (16), we note

O, Q2 ——020] . (Cl)

In each term of 0„, the order of 8 " is assumed as fol-
lows:

(Bl)

where we assume the periodic boundary condition
( —)J ( —)i
0 z++& ——0 &', and F; +F =0 which is easily derivedI J

from Eqs. (1), (17), and (18). Therefore, if we impose the
antiperiodic boundary condition
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Qii'=[8 '(1, 1)8 '(2, l) 8 '(Ni, 1)][8 '(1,2)8 '(2, 2) 8 '(Ni, 2)] ' [8 '(I, Nq)8 '(2, Np) ' ' 8 '(Ni, N2)],

(C2)

Q(=[8 '(1, 1}8 '(1,2) . 8 '(1,N2)][8 '(2, 1)8 '(2, 2) 8 '(2, Nq)] . [8 '(N„l)8 '(Ni, 2) . . 8 '(Ni, N2)],

(C3)
where Q„are identified with each term of Il„ in Eq. (19) except the coefficients which are omitted for simplicity. Start-
ing from the right-hand side of Eq. (Cl) and changing the order of all the 8 '(x) to take the order as 8 '(x)8 '(x) over
all lattice points, we get

F (n„n2)=F (n„nz)
N1 N2

F (m„m2)
m1 —n1 m2 ——n2

mod2

(C4)

AFFKNDIX D

Proposition. [(P„„)I means the set of all nonvanishing (nontraceless) terms of
1 2

Z1

4 N2

nS
Ip„„ I =1n, =1

N1

1 2
1

N1 N2

n1
——1 n2

——1 1 2

(Dl)

where R are defined by Eq. (10), and p„„+q„„=5.Also, [(p„„)I means the set of all nonvanishing terms of
&n1n2 1 2 1 2 1 2

Z2=
4 N2

rr S
1n2 ——1

n1n2

N1

g KR,
n=1 12

N1

g Tr
n1 ——1

N2

g KR,
1

(D2)

where p„' „+q„' „=5. Then it can be shown that the set [(P„„)) is uniquely transformed into j (p„„)I by a permu-
1 2 1 2 1 2 1 2

tation of the values ofP's satisfying n, + n 2
=odd (or equivalently even), such as (2~3) and vice versa.

Proof. In Eq. (Dl), we note the following equalities for a trace of one term in the spatial direction (the same equali-
ties are also satisfied in the temporal direction):

N1

n =1
1

N1 —1

R KKR
=pdd 1 2 1 2

1

N1

R KKR
n =even

1

N1 —1

KR. KR
P „„ I'n +1n

n =odd
1

Nl

KR. KR
I'n +1n

n =even
1

1 2 1 2

(N, ~1—= 1), (D3)

where we use

R K =K(K R ~ )=KR. (D4)

and K = 1. From the explicit form for the K, P which is defined by Eq. (D4) is identified with the permutation of the
values ofp, such as (2~3).

When applying Eq. (D3) to all of the columns and rows, there are at least 2 degrees of freedom of choice: i.e., we can
take the choice of either of the last two equalities. The above enables us to transform all p belonging to the site of
n, +nz ——odd (or equivalently even) to P, and at the same time q of n, +n2 ——odd (or even) to q. Then Eq. (Dl) can be
uniquely transformed into Eq. (D2), because only this transformation enables it to satisfy p„' „+q„' „=5 for all sites.

1 2 1 2

Although it is sufficient to prove it within this argument for the present model, it will lead to a more general proof
which is applicable to other cases having more fermionic components or to other lattice fermion formulations. Since
Eq. (D2} corresponds to Eq. (26), the proof is sufficient if the following equation can be proved for each site of
n1+ n2 ——odd (or even}:
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4 4

(KR )g. (KR )(.R P = g (KR ). (KR )(.R
p, q=1

(D5)

where the notations p and q on the left-hand side correspond to p, and pz in Eq. (24), respectively (also see Appendix E
for the technique of removing S). The proof is as follows. The left-hand side in Eq. (D5) can be rewritten as

4 4 4, 4

[K(K R ).]. [K(K .R. )](R ) = g (KR )(. KR )g. [K (R . P K ].
p, q =1p q=] p, q=l p, q, =l

4

(KR 0)e(KR,' )(R,'. Y',
p, q=l

where we use Eq. (D4) and K T=K. Q.E.D.
From the above fact, it is obvious that the set I (P„„)I

1 2

of nonvanishing terms (P„„)is uniquely transformed
1 2

into the set [(p„„}I, and vice versa. Q.E.D.
1 2

We can apply the above proposition to Eq. (26},paying
relevant attention to the difference between Eqs. (D2) and
(26). The difference is the existence of the diagonal ma-
trices I, 1', and G [which are defined by Eqs. (20), (11),
and (15), respectively] in Eq. (26) for each corresponding
term in Eq. (D2) except for the overall factors. The
present argument, essentially, gives the conditions for the
traceless property since the Anal expression of the matrix
has no diagonal elements. (The argument is independent
of the existence of such diagonal matrices, because those
diagonal elements are all nonzero elements. )

On the other hand, the argument ignores the case in
which the traceless property occurs due to cancellation
among diagonal elements. For the above case, detailed
information and discussions about the diagonal matrices
eV, eP, G are required. The cancellation possibly occurs
since the trace includes an odd number of I due to the
periodic boundary condition (although the rate is small).
On the other hand, it can be proved that the cancellation
cannot occur when the trace includes an even number of
4 in the case of the antiperiodic boundary condition (see
Appendix E for a concrete calculation). Therefore the
cancellation can be interpreted as a kind of manifestation
of the boundary effect.

However, we omit a discussion of the case of the can-
cellation, since it has no practical merit compared with
requiring detailed discussions, nor will we focus our at-
tention now on the boundary effect. Finally we em-
phasize that the terms excluded by this rule never contain
nonvanishing terms.

APPENDIX E

It may be instructive to illustrate an example for expli-
cit evaluation for a nonvanishing term of Eq. (26) (the
partition function). Here we list some useful relations:

I

factor q (n) in Eq. (1}(it originates from Dirac matrices),
P

further gives the sign factors

( —1) " (E4)

Here

f„(p)=
1max 2max

X X
n1 ——odd(even) n2

——odd(even)
F~(n„nz), (E5)

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0 0

1 1 p p

0 0 1 1

0 0 1 1

( k&,„7 1)

/3 2 y2

Y3 3 /2 2

1 ~1 4 ~4
rg

~1 1 ~4 4

3 2 2 3

2 3 3 2

1 1 4 4,

1 1 4 4

& Ppn, & & Ppn, &

for each nonvanishing term of (P„„),is given by the
1 2

summations of the fermion number of (p„„). Here,
1 2

N„,„means the maximal odd or even numbers less than
or equal to N„, and we use Eqs. (El), (E2), and (E3).

At first, in Fig. 3, we show a schematic illustration for

[K,S]=0, (El)
(b) (c)

SR 4=( —1) ~R (E2)

g F (n„)=0 .
n =1

(E3)

Also we note that 4 ' in Eq. (26), which arises from the

FIG. 3. A schematic illustration for generating a nonvanish-
ing term of Eq. (26) by combining two nonvanishing terms of
Eq. (27). Here unit squares mean the lattice points (n „n, ) and
the coordinates are assumed to be in the same arrangement of
matrix elements. Also 2 means a binary sum, and the shaded
lattice points in the checkerboard mean n, +n2 ——odd.
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generating the nonvanishing term (p„„}from the set of
1 2

nonvanishing terms (k„„)of z() in Eq. (27). In Fig. 3(a),
1 2

the (k„"„}(i = 1,2) are two arbitrary elements of the set

[(k„„}],and 2 means a binary sum. In Fig. 3(b), the
1 2

numbers are (P„„),and the shaded sites in the pattern of
1 2

a checkerboard mean n)+nz ——odd. In Fig. 3(c), the
(P„„) is obtained by the permutation (2~3) of the

values of P's for the shaded sites in Fig. 3(b). This ele-
ment of the set [(p„„)]is identified with one of the non-

1 2

vanishing terms in Eq. (26) (see Appendix D). Next, we
show the steps for the evaluation of Fig. 3(c).

F (n1 n2)
Step 1. For the factors ( —1) ' ' ': for example,

F (1,1)
( —1) ' ' = 1, etc. , and the total contribution is

N1 A2

~n1 —1 ~n2 —1 p 1 2F (n , n )
2

[1f Eq. (E3) is suitably applied to F (n), n2), this is evalu-

ated more easily].
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Step 2. For ( —1) ": there are four p=3, and there-
fore the total contribution becomes ( —1) = l.

Step 3. For 4 ': from Eqs. (E4) and (E5), the total
contribution is given by the factor

f (p) F (1,1)+F (1,3)+F (3, 1)+F (3, 3)

and therefore the total contribution becomes unity.
Step 4. For the trace part

N2 N1 N2

g Sp Q A (n, , n2) g Tr P A (n, , n2)
n2 ——1 n1 ——1 n1 ——1 n2

——1

=Sp(R 3R2R, R, $)Sp(R zR 3R,R, ()')Sp(R zR 3R 4R4$)Sp(R 3R zR 4R 4$)

X Tr(R2R 3R3Rz )Tr(R3R2R3R3 )Tr(R4R4R, R, )Tr(R4R4R, R, )

= 1 x 1 x(g ' —1)x(g '—1)x 1 x 1 Xg 'xg '. (E6)

g '(g ' »'=g—'+2g'+g' (E7)

Although we have calculated the 4)&4 partition func-
tion by the FORTRAN program as stated in the text, we
also emphasize that now the partition function on an
even 4)&4 lattice can be calculated by hand. It is only re-
quired to repeat the above same calculations about 500
times (approximately 90 /4 ), because translation invari-
ance reduces the amount of calculations.

However, since a few (p„„),which have an exception-
1 2

al length of cycle, exist, it is necessary to take care of the
symmetry factor [for example, the case which has unity
for all the elements of (p„„)differs from the case of Fig.

1 2

3(c) with the length of cycle]. If described in detail, the
translation invariance is of course assured by Eqs. (E2)
and (E3) in the case where 4 exists at the boundary as it
was in Eq. (E6).

Here Rp =KRp, and we use Eqs. (El), (E2), and (E3) in
the first equality.

Step 5. For the total contribution of Fig. 3(c): from
the product of steps 1 —4 we have

APPENDIX F

It may not be obvious that g is regarded as tempera-
ture as in pure gauge theories. However, for the follow-
ing reason, we regard g as temperature. If we rescale as

(F1)

and drop an overall multiplicative factor, then the parti-
tion function becomes

/ 2

Z = I P df(x)dP(x)e (F2)

where So is S
~ 2, in Eq. (1) and therefore does not in-

clude the parameter g . Thus, So/g is equivalent to the
original action S in Eq. (1) under the finite g, and there-
fore g can be regarded as temperature. Also, it is shown
that some versions of the two-dimensional many-flavor
lattice (chiral) Gross-Neveu models in the Nf~ ao limit
correspond to some spin systems with temperature ' '
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