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BRST-invariant tadpole calculation and diagrammatic formalism in the bosonic string
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Planar and nonorientable tadpole operators are evaluated in the Becchi-Rouet-Stora-Tyutin-
N +1/2

(BRST-) invariant formalism. It is shown that the insertion of ( —1) ' (N, =ghost-number
operator) is needed for keeping the BRST invariance. %'e shall also discuss the extension of the
BRST-invariant diagrammatic calculation to arbitrary diagrams.

A covariant quantization of the bosonic string is given
by the Becchi-Rouet-Stora-Tyutin (BRST) formalism. ' It
was shown that the nilpotency of the BRST charge
(Q =0) requires the critical values D =26 and ac= 1 for
the space-time dimension and the intercept of trajectory,
respectively. Following this formalism, the ghost interac-
tions corresponding to the Caneshi-Schwimmer-
Veneziano (CSV) vertex and the general iV-Reggeon ver-
tex have been derived. The BRST invariance of planar
one-loop diagrams was also discussed in this formalism.
However, no BRST-invariant diagrammatic operator for-
malism based on Fock spaces has yet been completed. In
this paper we shall study a BRST-invariant calculation
satisfying unitarity for the planar and nonorientable tad-
pole operators and show a possible BRST-invariant di-
agrammatic operator formalism.

The three-string vertex given by Fig. 1 is described in
the symmetric form as
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U„and V, are defined in conventional forms:

where V and Vg", respectively, stand for the vertices of
the X part and the ghost part. Following Ref. 4, the
ghost vertex is given by
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FIG. 1. Symmetric three-string vertex. The dot on each leg
indicates the side of the line on which the external particles are
to be attached.

FIG. 2. Diagrams for the (a) planar and the (b) nonorientable
tadpole operators, where X stands for the twist.
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sentation D' ' ' except for the normalization
coefficients. ) The BRST invariance of ( V, 23 i

is shown

by the equation

Q=e '( —1} '=( —1) e

are BRST invariant, where
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Since the BRST charge commutes with all Virasoro
operators I.„(n = —0(), . . . , 00 ), operators written in

terms of L„,e.g. , the propagator

p2 QC

+ g n((2 „a +b „e+c „b ) —1 . (6}
n=1

0

Lo 0

and the twist operator

(4)
In order to evaluate loop amplitudes illustrated in Fig.

2, we need a reflection operator which transforms a string
state (x

i
to

i
x ) in the BRST-invariant way. Such an

operator is easily derived from the vertex as follows:
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It should, however, be noted that the prefactor (bo" —bo ) is required to keep the BRST invariance.
In the evaluation of the loops we also have to define the trace of the inner product such as 031 ——( V1.23 ~
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which may be defined in terms of the coherent states as
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where 03-, ——0310g3-"„ the coherent states follow the usual conventions, and
~
g) „and

~
p, y) „represent the coherent

states written by auxiliary oscillators a„' ', b„' ', and c„' ' which do not couple with any other oscillators. The contrac-
tion in the auxiliary Fock spaces automatically yields the identification of a„"'=a„' ', b„'"= b„' ', and c„'"=c„' '. It is not-
ed that the minus sign of ( —p"', —y
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must be introduced to derive the right trace over the ghost states.
(Although the identity operator of the coherent states for one fermionic operator P is give by fda du e
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i.e., fda da e ( —a
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Following the definition (9), we can easily derive the well-known result
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—) for the ghost oscillators, the creation and
annihilation operators and the normal-ordered product have to be defined on the vacuum

~

0) and the coefficient ma-
trices A~ and also the coefficient vectors 8 and C do not contain any oscillator variables.

A. Planar tadpole operator ( T)

The simplest formula for computing the planar tadpole operator is given by
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where the ghost-number operator' is defined by

,'(c—()b() b—()c()}+ g (c „b„b—„c„)
n=1

(12)

and bo ' has to be inserted because the expectation values between 3(x I
and

I

x & l should have no ghost number. The
N, +1/2

insertion of ( —1) ' may be understood as the change of the antiperiodic boundary condition to the periodic one for
N +1/2

the ghost. It is noted that ( —1) ' anticommutes with Q' ', b' ', and c' ', and commutes with all operators con-
structed from L„' ' and the oscillators except b' ' and c' ', whereas bo ' does not anticommute with Q' '. This indicates
that the bo insertion is not BRST invariant. We can, however, show that in the tadpoles it is effectively BRST invariant

by using Feynman's tree theorem. Following the argument of Freeman and Olive, we can write ( Tz
I

Q' ' as
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where the Eqs. (3) and (8) are used in the derivation of the first term and the last term with Lo ' derived from

t
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That is, the tadpole operator defined by (11) is BRST invariant. It should be stressed that the insertion of ( —1) '
is essential to keep the BRST invariance.

The explicit expression of ( Tz
I

is given by

where ( Tz I
and ( Ts

I
stand for the contributions of the X part and ghost part, respectively, and are evaluated as fol-

lows:
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where U, = U, and V, = V, for t&i and U, =0"tU, and
V, = V,O" for t =i. The trace for the

N, +1/2
operator with ( —1) ' can be reduced to a simple
form
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for n, m )2. The notation in (16) follows that of Ref. 7 as
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B. Nonorientable tadpole operator ( T)

The nonorientable tadpole operator shown in Fig. 2 is
evaluated as

T2
~

=Tr' [( V),23 ~

0' 'tD' 'bo'Q'

X( —1) '
~&)) )]. (20)

The BRST invariance of T is easily proved in terms of
Feynman's tree theorem as was done in A. The operator

T is also described as
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by inserting the identity operator between 0 and
N +1/2

( —1) ' . This equation shows that the BRST-
invariant trace over the ghosts with the insertion of

N, +1/2
( —1) ' may be represented with the trace formula
defined by the coherent states with the periodic boundary
condition. It is well known in the statistical mechanics of
covariant gauge theory.

In both equations ((x)/[1 —(x)])„=[x "/(1 —x")]&„
is used.

In the above calculation we can derive the following
useful formulas. The multiple law of an operator 0 writ-
ten in terms of Lo and L z, to ( V
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is simply described as
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and the same matrices as were used in (17) should be tak-
en for M~ and M

It is noticeable that attaching an N-tachyon state con-
structed on the vacuum

I

—) to the tadpole operators
derives the well-known one-loop N-point formulas as il-
lustrated in Fig. 3. Since the details of the derivation
were given in the paper by Gross and Schwarz, we do
not give them here. It is noted, however, that in their
derivation the definitions of the variables should be
changed as follows:

(J =1—(1 —co)pj ~(~ =1—pj for the planar loop,
(24)

g, =1—(1—co )p, ~g, =1—(1+x)p,

for the nonorientable loop .

It is noted that the factor ( 1+x )
' in Ts" cancels out

the Jacobian factor (1+x) associated with the above
change of variables in the nonorientable loop. Both
loops, of course, have the right measures.

In the extension of the BRST-invariant calculation to
general diagrams a difficulty arises from the b0 insertion,
because bo effectively anticommutes with Q only in one-

loop amplitudes where 5L 0 in the Feynman tree theorem

saves it. Remembering the relations

IQ bo —bi I =Lo —Li

and
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I R)) )] .
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Equivalence of (25) and (26) to our (11) and (20), may be
shown in the following consideration: %e have an opera-
tor identity in SL(2,R)

(bo b, )P (x)=Q—( z) 'boQ, — (27)

where z =x/(1 —x). Since fI =( —1) e, we rewriteLo —L

(27) as

(bo b, )P(x)=—Q"(z) 'boe

Considering that the factor e may be removed be-
—L

cause it represents a conformal transformation continu-
ously connected to the identity, we may consider that D
is effectively equivalent to

Lo
where P(x):x'Q—,(1—x) with &=1.o L„w—e find

out one possibility of the BRST-invariant b0 insertion by
using

D =(bo b) J — P(x)
o x(1—x)

instead of Db0, which was used in the recent paper by
DiVecchia, Frau, Lerda, and Sciuto. This operator D
is nothing but the multiple of the (bo b, ) fact—or to the
twisted propagator. In this choice the tadpole operators
are expressed as

~ ~ ~ ~

FIG. 3. Diagrams where an N-tachyon state is joined to the
(a) planar and the (b) nonorientable tadpoles. They coincide
with the usual one-loop N-point formulas.

Q dzz b0 ——Q Db0
0

which is nothing but the operator used in our formulas.
Note that the replacement of D with 0 Db0 makes cal-
culations very simple as was done in our evaluations.

Now we can calculate arbitrary diagrams in terms of
the operators ( V&23 I, D, fl, ( —1) ', and

I
R»).

The details for the BRST-invariant diagrammatic oscilla-
tor formalism will be discussed in a future paper.

After the completion of our evaluations, we found the
paper by DiVecchia, Frau, Lerda, and Sciuto. In their
work and also that by LeClair, however, the necessity of

N +1/2
the ( —1) ' insertion is not discussed and the BRST
invariance of the definition of the reflection, i.e., b„~b„,
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c„—+ —c„,and (0
~

~
~
0), in Ref. 7 and the bo insertion

to general diagrams by LeClair are not clear.
Recently Cristofano, Nicodemi, and Pettorino derived

the planar tadpo1e formula by using the method given in
Ref. 7. There is some difference between their formula
and our Eq. (17), especially in the expression for the ghost
modes. The difference due to that between the technical
terms used there is not essential, e.g., the difference be-
tween the propagators and also that between the vacuum
(0

~

and ( + . It should, however, be noted that the

BRST invariance of their formula is only recovered when
their formula is attached to physical states, whereas ours
is manifestly BRST invariant as was shown in (14). The
main difference for the expression of bo and b& modes in
the exponent arises from this point. Of course, both for-
mulas derive the same results for arbitrary physical quan-
tities. An example has already been shown by the deriva-
tion of the one-loop N-point formula, where the
difference between the definition of the variables noted in
(24) has to be taken into account.
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