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This is the first in a series of papers dealing with quantum or Wigner probability distributions and
the dynamics of early-Universe phase transitions. In this paper we argue that the inflaton field (a
real gauge-singlet scalar field) when spatially averaged over a causal horizon behaves as if it were a
dissipative quantum-mechanical system in one dimension. Realizing that the mathematical phase-
space or stochastic description of Wigner is the only consistent way to describe these systems and
still preserve the canonical commutation relations we devote this paper to investigating various
properties of the Wigner formalism. This framework rests on the quasiprobability distribution and
its evolution equation: a generalized Fokker-Planck equation. We first show that this generalized
Fokker-Planck equation is equivalent to Schrdodinger’s equation for nondissipative pure states. We
then show how one computes ground-state energies within this formalism (for nondissipative sys-
tems) by calculating ground-state energy levels for a variety of anharmonic potentials. Finally we
compute the quantum-mechanical effective potential in one dimension to order g#.

I. INTRODUCTION

This is the first in a series of papers dealing with quan-
tum probability distributions and the dynamics of early-
Universe (<10~ sec) phase transitions. We are in-
terested primarily in the quantum-mechanical evolution
of the large-scale (R causal horizon) or coarse-grained
real gauge-singlet scalar field (inflaton) from an out-of-
equilibrium configuration in the presence of a de Sitter
background.

Investigations into this problem have been carried out
by Linde,' Starobinsky,2 Guth and Pi,> Graziani and
Olynyk,* Bardeen and Bublik,” and Rey.® All of the
aforementioned find that the dynamics of the large-scale
early-Universe phase transition behaves as a stochastic
process. However, Graziani and Olynyk differ from the
others in some important aspects. The central issue is the
use of probability distributions and their time evolution
to describe quantum processes. Linde, Starobinsky, Guth
and Pi, Bardeen and Bublik, and Rey arrive at an evolu-
tion equation for the probability distribution of the
inflation which has the form of a classical Fokker-Planck
(FP) equation. Because this equation is second order,
there exists an associated Langevin equation with addi-
tive Gaussian Markovian noise.” This noise arises from
the flow of initially small-scale harmonic-oscillator quan-
tum fluctuations across the effective particle horizon. In
a nutshell, they are describing quantum mechanics with
dissipation stochastically by adding a white-noise term
with specific properties (i.e., fluctuation-dissipation rela-
tion) to the classical equations of motion and determining
quantum expectation values by taking ensemble averages.
This cannot be entirely correct except under special cir-
cumstances. The problem is that because of the uncer-
tainty principle, a phase-space description of quantum
mechanics based on real positive-definite (i.e., classical)
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probability distributions is impossible.> We will show in
a subsequent paper that if one is content with stochasti-
cally describing a quantum system to order # which is
dominated by friction then such a description can be
based on classical probability distributions. Thus, the
work presented here in no way invalidates the work of
Linde, Starobinsky, etc. However, going beyond the
order-#i approximation inevitably leads to a breakdown of
the classical phase-space description.

Graziani and Olynyk prefer to base their work on the
so-called quasiprobability functions (real but not positive
definite) of Wigner.” This formulation of quantum
mechanics is well suited to dissipative systems and in-
volves a quantum probability distribution function
W(a,B;t) that can be used to compute quantum averages
just as classical distributions are used to compute ensem-
ble averages. However, the dynamical evolution of
W(a,B;t) obeys a generalized FP or Wigner equation
that attains the classical form in the %—0 limit. Because
the Wigner equation exactly describes quantum mechan-
ics and in the presence of dissipation preserves the canon-
ical commutation relations to all orders in #, we feel it
presents the most useful tool for analyzing the nonequili-
brium nature of the dynamical inflationary phase transi-
tion.

It is obvious that quantum probability distributions
and their evolution based on the Wigner equation are go-
ing to play a pivotal role in our understanding of the ear-
ly Universe. However, this independent representation of
quantum mechanics is not well known in the particle as-
trophysics community. The motivation of this paper is to
bring about an understanding of the Wigner formalism
by studying the stationary or equilibrium properties of
the Wigner equation for nondissipative quantum systems
in one dimension (i.e., ordinary quantum mechanics). Be-
cause the Wigner equation can be written as an expansion
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in #, it can be truncated and solved analytically. We
show in this paper how W(a,pB;t — ) contains all of the
quantum-mechanical information of the ground state.
We do this by showing how one computes to order # the
ground-state energy and the effective potential for a
variety of nonlinear tree-level potentials. Although these
results are not directly relevant to the early Universe,
they do illustrate the usefulness of the Wigner formalism.
The purpose of this paper is to set the stage whereby the
applications of this formalism to the inflationary phase
transition will be set.

This paper is organized as follows. Section II contains
a discussion of the relationship between quantum proba-
bility distributions and the evolution of the large-scale be-
havior of a scalar field. Section III contains a review of
the Wigner formulation of quantum mechanics. Included
is an explicit demonstration of the equivalence between
the Schrédinger equation and the Wigner equation for
nondissipative quantum systems. Section IV presents the
calculation of the approximate ground-state energy levels
for various nonlinear potentials. Detailed comparisons
are made with known results. In Sec. V we present the
computation of the quantum-mechanical effective poten-
tial. In Sec. VI we present our conclusions.

II. QUANTUM PROBABILITY DISTRIBUTIONS
AND THE COARSE-GRAINED INFLATON FIELD

We start with a real gauge-singlet quantum scalar field
in the presence of a Friedmann-Robertson-Walker
(FRW) background geometry.!® The theory is identified
by its canonical position and momentum field operators
in the Heisenberg representation: @(x,t) and f ”(x,t ). In
addition, there exists a Lagrange density L[®(x),
9,®P(x)] where integration over a space-time volume
yields the curved-space-time matter action.'® We now
choose (x,7) to refer to the comoving coordinate system.
If a(t) is the FRW scale factor, then the causal or parti-
cle horizon is given by

t Minkowski,

14172 radiation dominated, 1)

t dt
I(I)_fo a(t) |4

E(l—e —Hr)  de Sitter.

As stated in the Introduction, properties of the scalar
field on scales less than /(z) hold no interest for the prob-
lem at hand. We may therefore ask the following ques-
tion: what effective theory governs the large-scale dynam-
ics of the inflation? This question is of the type posed
quite often in statistical mechanics and critical phenome-
na. Starobinsky has found that if one is interested only in
scales larger than the microphysical or effective particle
horizon, then the long-range dynamics is determined by a
stochastically varying force and the tree-level potential.
We wish to prove here, albeit heuristically, that the field
theory (in the comoving frame), on scales larger than /(z),
actually behaves as a (dissipative) quantum-mechanical
system. One can already see something like this going on
in Starobinsky’s Langevin equation:
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atQ(x,t)~ 3H 56 [¢(x,0)]+n(x,2),
#iH? sine|x —y | /7(1)] 5

art  €|lx—y | /(1)

(2)
(t—t"),

(n(x,t)nly,t")) =

where €<<1 and 7(t)=(1/H)e H. ¢(x,t) is the
quasihomogeneous inflaton field which operates only on
scales greater than the microphysics horizon. ¢(x,?) is
called quasihomogeneous because the field is homogene-
ous over a microphysics horizon. In addition, there are
no spatial derivatives in (2). On scales greater than the
microphysics horizon, the field varies spatially. This spa-
tial variation of ¢(x,?) on large scales arises from the flow
of initially small-scale harmonic-oscillator quantum fluc-
tuations across the effective particle horizon. U[¢(x,t)]
is the tree-level potential for the long-range inflaton.
¢(x,t) is a classical stochastic variable. Equation (2) is
what one would naively write down if one were asked to
quantize a classical system stochastically (in real time) by
adding a noise term to the classical equations of motion

$+3H$+U'[4]=0 3)

and invoking the friction-dominated condition Q << 3H Q
The effect of noise is to reproduce the effect of quantum
fluctuations. In addition, the diffusion constant H? /42
implies that the equilibrium fluctuations attain the
Bunche-Davies value.* This is essentially the phenome-
nological approach of Graziani and Olynyk. As men-
tioned in the Introduction however, this approach is not
valid when going beyond order #. Quantizing a classical
system by adding white noise to the deterministic equa-
tions of motion inevitably leads to a breakdown of the
canonical commutation relations.!! We will show in a
subsequent paper that a classical system can be quantized
by introducing multiplicative non-Gaussian Markovian
noise to the deterministic equations of motion.

To get back to the problem at hand, it should be stated
that deriving a large-scale action from a microphysics ac-
tion is in general a complex problem.'? However, insight
can be gained into the long-range physics by considering
a few simple principles. The first step is to define a
coarse-grained or smeared field operator $X(t) which is
defined as the spatial average of &(x,1) over a causal hor-
izon volume. Although we explicitly mention only $x(t)
it should be assumed that the discussion also applies to
fly(1); the coarse-grained momentum. The index X is a
label referring to the “cell” over which ®(x,z) is aver-
aged. $x( t) is an operator defined by

A~

1 o~
¢x(t>=V—foxd3x d(x,1), @

where | Vy | =4ml3(1).

It is important to realize that the coarse-graining
volume is constant in the comoving frame only for a sys-
tem in de Sitter space where Ht >>1. Otherwise, the
above procedure is complicated by the fact that the
averaging volume changes in time. This is what
differentiates the smearing procedure discussed here from
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classical statistical mechanics and even the coarse-
graining procedure of Starobinsky. Although computa-
tionally difficult, spatial averaging over a causal horizon
volume leads to a conceptual simplification of the quan-
tum scalar field theory. The details are complicated and
will be reported elsewhere. For our purposes, a heuristic
argument will suffice.

The large-scale region (or cell) over which the smearing
takes place is equal to the causal horizon. We assign a
“block” averaged operator ‘f’x to each cell. Because
each cell lies outside of its neighbors’ light cone, we ex-
pect spatial correlations { $x(#)dy(1)) | .y to be negligi-
ble. The implication is that the cell of interest becomes
independent of all the other cells. We may think of each
large-scale region (labeled by X) as being an independent
quantum-mechanical system. Spatial degrees of freedom
no longer are relevant, other than as a label for a particu-
lar member of the ensemble. The super-Universe [the
Universe on scales X/(#)], in which the scalar field
theory operates, is broken up into an infinite number of
identical quantum systems by coarse graining over a hor-
izon volume (our presently observed Universe is but one
of these quantum systems). With no interactions between
them, each system or cell is a member of a quantum-
mechanical ensemble with every element of the ensemble
in a state denoted by |¢). The relevant degree of free-
dom is now () [the horizon averaged &(x, t)] which is
measured on each element of the ensemble [i.e., cell] and
averaged. (The X label is dropped because it is ir-
relevant.) This is the meaning of (¢ )). Note that this
procedure is identical to taking ¢’x , measuring it for
each X, and then averaging. We therefore reduce the
problem under consideration from a quantum field theory
which operates on all scales to a quantum-mechanical
system in one dimension (¢) whose canonical position and
momentum are the Heisenberg operators ¢(t) fi(z) and
which operates only on extra horizon scales.

So far, the only mention of space-time curvature effects
have been made when choosing a causal horizon volume.
As is well known, the classical scalar field ®(x,¢) in a
FRW background obeys

al(t)
a(t)

a(0)

2
V2d(x,t)
al(t)

d(x,1)43 d(x,1)—

+V'[P(x,t)]=0, (5

where V[®(x,t)] is the tree-level potential on all scales
and V'[P(x,1)] is SV[P(x,1)]/8P(x,t). Performing the
coarse graining (4) yields

d'x _ 1

3. 4"
= ’t)’
dt" Vx fo x dt" (x
. 8V
5¢ g 19x1= f T s =0T (©)
1

éx(D)] |

10 x4 v(t)—

1 3
~- fod x | Vo(x,t)| (see Ref. 12) .
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Ul ¢x] is the coarse-grained tree-level potential, ¢y is the
coarse-grained classical scalar field, and Y is the label for
cells neighboring X. It operates on scales greater than a
causal horizon. Therefore, after coarse graining, the spa-
tial varying term in (5) is suppressed by a factor
a ~Xt)I~%(t). We therefore ignore it. Equation (5) be-
comes, approximately

as'x(t)+3 bx(t)+U'(dx(1))=0 . )

We can now drop the X, it is irrelevant. Equation (7) de-
scribes the classical dynamics of the large-scale inflaton.
It is just the one-dimensional equation of motion of a
nonlinear system subjected to a time-dependent dissipa-
tion 3[a(z)/a(2)]. Note that U(dx(t)) does not neces-
sarily have the same functional form as V[®(x,?)].

Quantizing P(x,¢) leads of course to a discussion of
quantum field theory in curved space-time. However,
quantizing ¢(¢) leads to a discussion of the quantum
mechanics of one-dimensional dissipative systems.!'®
Therefore, the dynamics of the long-range inflaton is
governed by time-dependent dissipative quantum
mechanics. In de Sitter space, which will be the focus of
later papers, we are dealing with a simpler case; the quan-
tum mechanics of linearly dissipative systems.

How does one go about quantizing (7) for
a(t)/a(t)~const? One can either follow Dekker'* and
do it canonically or follow Caldeira and Leggett'® and do
it via path integration. In either case, the procedure is
nontrivial. The reason is that the Hamiltonian is no
longer a constant of the motion. Unless one is careful
this leads to the commutator [$(z),fl(z)] decaying in
time. The end result of both Dekker’s work and Caldeira
and Leggett’s is that it is possible to write down a time-
evolution equation for the density operator p. Fourier
transforming the matrix elements of 5 leads to a function
Wi(a,B;t), the so-called quasiprobability function of
Wigner, that behaves as a classical distribution in some
respects but obeys a generalized Fokker-Planck equation
or Wigner equation. If the dissipation is time dependent,
the Wigner equation must be modified to accommodate
nonstationary random processes.!® For the purposes of
discussion we will always assume 4 (t)/a(t) ~const.

To sum up, we have given arguments supporting the
fact that the causal horizon averaged inflaton in the
comoving frame becomes a dissipative quantum system in
one dimension. The quantum mechanics of dissipative
systems on the other hand are governed by the Wigner
equation. This is the motivation for studying Wigner dis-
tributions in their own right and applying them to the
early Universe. Before we discuss the Wigner formalism,
two things should be mentioned. First, why the Wigner
formalism? How come one cannot simply modify the
Schrodinger equation for dissipative systems? So far as
we are aware, all efforts in this direction have been fruit-
less.!” For example, Kostin ends up with a nonlinear
Schrodinger equation that obscures the usual Hilbert-
space formulation of quantum mechanics. Second, the
Wigner formalism presented here is frame dependent and
nonrelativistic. Are we justified in applying it to cosmol-
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ogy? The answer is yes.

The focus of attention in this paper is the comoving
frame or so-called synchronous gauge. In this coordinate
gauge the equation of motion for the large-scale scalar
field ¢(¢z) (7) is reminiscent of a damped nonrelativistic
system with a single degree of freedom which is acted
upon by a force —U'(¢(¢)). Of course, it must be
remembered that the coordinate time ¢ that appears in (7)
and the Wigner equation measures proper time along
lines of constant x. The relativistic quantum field theory
in curved space-time is identified by the Heisenberg
operators (l\)(x,t), ﬁ#(x,t), the Lagrange density ., and
the equal-time canonical commutation relations
(ETCCR’s) [®(x,t), fl(y,1)]=i#8>(x—y). In this pa-
per we are interested in the large-scale physics of this sys-
tem. Performing the coarse-graining procedure, the
relevant dynamical variables are now ¢(¢) and ﬁ(t).A It is
easy to verify that the ETCCR become [¢x(1),
fly(1)1=i#/Vy which is, up to a factor of V5!, nothing
more than the canonical commutation relation of nonre-
lativistic quantum mechanics. Finally, by choosing a
gauge (the comoving frame), the coarse-grained equation
of motion for ¢(¢) takes on a nonrelativistic form. By re-
stricting ourselves to de Sitter space, this equation of
motion possesses linear damping. Therefore the large-
scale physics of the inflaton in the comoving frame is
determined by the quantum mechanics of linearly dissipa-
tive systems. The appropriate description of the dynam-
ics of such a system is the Wigner equation. Admittedly,
the equation is frame dependent; in another coordinate
system, the equation for ¢(z) will change and so will the
Wigner equation. But, by specifying a coordinate gauge,
the large-scale physics of the inflaton in the de Sitter
stage can be thought of under the broader category of
quantized linearly dissipative systems with a few degrees
of freedom. Therefore, the tools used to study this type
of statistical mechanics problem (e.g., stochastic
methods) can be applied to cosmology. In addition, the
results obtained by coarse graining a scalar field theory
and specifying the comoving frame become easy to un-
derstand physically and amenable to comparison with
previous works’>~® (who also focus attention on the
comoving frame). Although a covariant formulation of
the Wigner distribution is ultimately important, at this
stage, we feel the theory presented here offers clearer in-

J

oWl(a,B;t)
ot

9
- da [BW(a,B,t)]— 27Tﬁ2

where U( - - -
in powers of #:

IW(a,B;t) __ 9 . hd
= 3 [BW(a,B;t)]+ k=1§'s,..

1
k!

i fwdyeiﬁy’ﬁ U

A
2i
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sight into the stochastic nature of the quantum fluctua-
tions of the inflaton.

III. THE WIGNER FORMALISM

A. Review

In 1932, Wigner’® presented a formulation of quantum
mechanics based on a configuration-space description.
The starting point for the Wigner formalism is the
quasiprobability or Wigner distribution

_lH i> iBy /h
dy <a 5 |Ple+ 5 )¢ .

o

W( a’B;t )= E—;—ﬁ- — 0
The ordered pair (a,f3) describes a classical point in the
mathematical configuration space that is analogous to the
ordered (q,p) in classical phase space. W(a,f3;t) contains
all the information of a system in a mixed state with den-
sity operator §. The appeal of the Wigner representation
is that W(a,B;t) acts as a classical distribution in the
(a,B) phase space. Because of this, it has proven to be a
valuable computation tool as well as providing insights
into the connections between classical and quantum
mechanics.!® To calculate the quantum expectation value
of an arbitrary operator A(g,p) one associates a Weyl
classical equivalent object via the correspondence

>

B
k=0

" fpmk, (8)

n
k
the expectation value ( 4 ) becomes an ensemble average

(A4(q,p))=Tr[p4(q,p)]
= [dadB A(a,p)W(a,B;t)
=(A(a,B)) , )

where A(a,f) is determined from (8) and ﬁ(ﬁ,ﬁ). The
dynamics are determined by the motion of W(a,B;t)
which is described by a generalized Fokker-Planck equa-
tion (sometimes referred to as a Kramers-Moyal equa-
tion). For ordinary quantum systems with no dissipation,
W(a,pB;t) obeys

y

Y| pa
a2 Ua+2

2

<a—§|ﬁ|a+l>, (10)

) is the external classical potential. This is known as the Wigner equation. Equation (10) can be expanded

k() W (a,Bit)

da* ap* v

By the Pawula theorem,!® (11) implies that W(a,;t) is not positive definite. For the case of linear dissipation, Eq. (11)

can be generalized to
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SHLBD _ O (pwi(a, 0]+ A5 S 1BW(a,Bit) )4 p LW @Bit)
at 3B
2 L [# ] o) dwiaBit)

+ k=l§5,... % |2 Y (12)
A is the constant dissipation term while D is the diffusion Y _ # 3’y 13
constant. D is an arbitrary parameter which is fixed by it a2 3a? +U@y . (13)
requiring W(a,pB;t) to have some specific form. For ex- ) o )
ample, classically D =AkT implies that W(a,B;t)  For a pure state our starting point is Eq. (10) with
— 0 =l /2+V@V/KT  For the long-range inflaton in de -
Sitter space, we have A=3H, D=9H#%/87% and W(a,B;t):——f dy e /oy a+d ) a—2
#i—#H* in Eq. (12). The reason for the factor of H3 in 2mh Y - 2 2
front of # is the fact that the commutator between the (14)

coarse-grained ¢(7) and fl(¢) is proportional to the in-
verse of the coarse-grained volume ¥ ~ H ~3. Converting
(12) into a Smoluchowski equation by assuming the evo-
lution is friction dominated!” we obtain

OP(a,t) _ 1 3 |0, 3H*% 9
3t  3H da 872 da

P(a,t)

+0(#) ,

where P(a,t)= [dB W(a,B;t)
This is just the result from Starobinsky? and Rey.® The
choice of D is dictated by demanding
3H*

8m2m?

tlim (®21))= lim (a?)=
— t— ©

for U(a)~(m?2/2)a? near the stationary point (i.e., the
equilibrium or stationary state is the Bunche-Davies vac-
uum).

As a general reference we list the various properties of
W(a,B;t) for a pure state (and no dissipation) as listed by
Hillery et al.®

W(a,B;t) is a Hermitian form of the state vector
|¥). This implies that (a) W a ,B;t) is real, (b)
[daW(a,B;t)=(B|p|B), and ( fdadBW(a B;t)
=Tr(p)=1.

(3) Wi(a,B;t) is Galilei invariant and invariant with
respect to space and time reflections.

@ [dadB[W(a,B;t)]?

<1/27# (mixed state)

=1/2wfi (pure state) .

) [dadB A(a,B)B(a,B)=2m#)Tr( AB).

Item (4) is especially important because it shows that
not all W(a,pB;t) are allowed. For example, it rules out
highly peaked distributions such as the classical distribu-
tion 8(a—ay)d(B—pB,). Item (4) is a constraint equation
that is used in conjunction with (11) in determining ad-
missible Wigner distributions. For Gaussian states it is
the integral equivalent of the uncertainty principle. In
the next section we will prove its usefulness by showing
that it can be used to determine ground-state energies.

B. The equivalence between the Wigner and Schrodinger
equations

For pedagogic purposes we demonstrate that (11) is
identical to

Defining F(a,y)=v*(a+y /2){¥(a—y /2) and observing
that (14)is a Fourler transform we have
2 .
dF(a,y) _ Fla,y) i Ula_?
ot dady #i 2
—U a+§ Fla,y) .
(15)

We now expand (15) in powers of y:

F(a,y)=C0P0(a)+ClyPl(a)+C2y2P2(a)+ Y

Co 1, P0=1/J*((1)¢'(a) y
1 _ Aa_'L*__ « 9
Ci=3 Pi=v ——¥"3 (16)
C, =1 _232‘_ 2_.di_‘L 1/}*22_'!_'
L da da da?’
C ___1_ P _1/,83'70* _“diazlﬁ* _1[}___414
37487 37 3dd aa da? da 3a?
o
da’
Let 6=iy /# and denote (16) b
F(a,0)= Y #"6"d,P,(a) . a7

n=0

Substituting (17) into (15) we obtain a hierarchy of equa-
tions. We write down the first four.

()n=0
oPy(a) i )aPl(a) (18)
ar T T ee
This is just the continuity equation.
2)n=1
. 9dP(a) oP,(a)
(—icy) o =2#(—c,) 2
€o
+U'(a) 7 Py(a) (19)




38

3)n=2
0P, (a)
at

8P3(a)
da

—ic

—Cz) (iC3)

U'la)

+ P, (a) (20)

Pola), 21)

Co
3

etc.

We now show how one generates this hierarchy from
the Schrédinger equation. The n =0 equation is obvious
and well known. To generate the n =1 equation we first
write

oP,
() ¢—‘L v —’ﬁ 22)
e
We then use the Schrodinger equations
_
W(a,Bit) 3 ! 1|4
TR P LR D YR Y
subject to the classical constraints
[dadBwia,Bt)=1, (25)
M =0, 26)
ot

and the quantum constraint (we assume a pure state)

[dadBiW(a,B;0)P=-— 27
Equation (24) is in general difficult to solve even for sta-
tionary states.’’ The complication is the presence of
non-Gaussian terms 3*W(a,B;t)/dB* for k >3. These
terms are always present whenever U(a) deviates from
an oscillator. However, because (24) is an expansion in 4,
we may find an approximate solution to the Wigner equa-
tion. To order #, the Wigner equation takes on the de-
ceptively classical form

W(a,Bit) _ 3 _
at - aa [BW(asﬁrt)]
. OW(a,B;t)
+U(a)-———aB (28)

subject to the constraints (25)-(27). What prevents
W(a,B;t) from equaling its classical (#—0) value is the
quantum constraint (27). Assuming (28) is normalized we
wish to find

QUANTUM PROBABILITY DISTRIBUTIONS ... . I. ...
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9y _
at

Y i
2 2g2 ﬁU(a)!ﬁ,

ayP* ifn Yt i

to replace the time derivatives in (22) by a derivatives.
We then arrange terms and find that Eq. 22) becomes Eq.
(19). This procedure can be repeated for any
(0/0t)P,, (). The upshot is that generating dP,,(a)/dt
via the Schrodinger equation is equivalent to generating
it via the Wigner equation. It is important to note that
the non-Gaussian terms in (11) are mandatory if one is to
make the Wigner and Schrodinger equations equivalent.

(23)

IV. THE COMPUTATION OF THE GROUND-
STATE ENERGY IN THE WIGNER FORMALISM

The previous calculation demonstrated the equivalence
of the Wigner and Schrodinger’s equation (11) for nondis-
sipative systems. As such, the distribution W(a,B;t)
contains all of the quantum-mechanical information of
the system. In particular, the stationary or equilibrium
distribution W(a,B;t — o )=W(a,B) should therefore
determine the properties of the stationary states of the
system. Of central interest here is how W(a,3) can be
used to yield ground-state energies. To start, we must
solve

1
kU (a) 3*W(a,B;t)

(24)

dak apk
r

___pOWl(a,B) vy OW(a,B)

0=—-p 3 +U(a)———aﬂ , (29)
where

1
2__

[dadBW(a,p))= g
We find

W(a,B)=Ne —E[B /24 Ula)) (30)

(N is the normalization constant).

Classically £ is an arbitrary parameter which is fixed by
the equipartition theorem (i.e., §~1/kT). As T—O this
obviously breaks down. Instead, as T—0, £ is deter-
mined by the quantum constraint (27). Note that the or-
der # distribution W(a,f) is positive definite.

Although £ has the dimensions of 1/energy, we as yet
cannot be sure that £~ ! is exactly the ground-state energy

E,,. Weknow E is given by

=1(Pp g+ {U@))y 31
or by the Weyl correspondence

=1{B*)+(U(a)), (32)

where we have assumed U(g) is some polynomial in §.
The ensemble averages in (32) are to be evaluated with
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respect to W(a,B). Let U(a)=Aa*, then

1
(U(a))=§—k

(54

Therefore,

and

Ep=~

s ¢
To find &, we substitute (30) into (27) and obtain
f dae—2%U@

1
[fdae‘gv(“’]z T H

For the harmonic-oscillator (k =2) Eq. (30) is exact and
we expect (34) to yield the correct ground-state energy.
Let U(a)=(w?/2)a?, performing the Gaussian integra-
tions, we obtain Egs=1/§=ﬁw/2. For k > 2, the solu-
tion (30) is only an approximation and the value for E
obtained from (33) and (34) is therefore only approximate.
For Ula)=Ad*, the integrals in (34) can be solved analyt-
ically. We find

1 1
2+k,' (33)

\/’IT§

(34)

2k /(k+2)

1_ __k_‘_/_—”__ #2k/(k+2)3 2/(k +2)
& | 2'VRD(1/k)
(35)
From (33), Egs is therefore
— 2k /(k +2)
[ U U N 7
&2 k|| 21k D(1/k)
XﬁZk/(k +2))\2/(k +2) . (36)

We are now in a position to compare (36) with the re-
sults of Hioe, MacMillen, and Montroll.?! They comput-
ed the energy levels of oscillators with " anharmonicity.
We will take k =4, 6, 8 (n =2,3,4) and compare our Egs
with the exact result.

(a) k =4,

Eo =0.578%*3A17, Eg =0.668%'°L"

% difference = 13.5%.
(b) k =6,

E g =0.524#2017%, ESe =0.681%°201/*

% difference = 23%.
(c) k =8,

E, =0.495%°A!3, ES =0.704# A7,

% difference = 29%. It is clear that the estimates of E
based on the truncated Wigner equation and the quantum
constraint get worse as the order of the nonlinearity in-
creases. This is to be expected. As k increases, we are
effectively dropping more and more terms from the

Wigner equation. What is comforting to know is that the
simple procedure of the truncated Wigner equation plus
quantum constraint yields reasonable ground-state prop-
erties.

As a last example, we compute the approximate E for

the bistable potential V(§)=—(v/2)q%+(g/4)q*.
From (34),
VE e | =2y 8t 2L
vgfdaexp 2¢ 5 a+4a P

The integrals can be evaluated analytically and we ob-
tain

2
K
— g 1/4 4g 1
2V §1r—2— =2 (37
Yo, | &
174 8g

[K,(x) is the Bessel function].

Solving (37) for £ in general can only be done numeri-
cally. However, for £y%/4g >>1K (x)~V'm/2xe ~* and
(37) can be solved for £ explicitly. We obtain

1_Vy
é_—- > f. (38)

The last step to be performed is to find the relationship
between £ and E gs- AS before,

Egsz<%2>+<U(a)>,

where (B%/2)=1/2¢. {(U(a)) is more difficult to com-
pute but it is still tractable:

1 d

<U(a))=—T§)EI(§) , (39)
where
I(&)= [daexp | ¢ ;Zla2+%a4 (40)

Equation (40) can be evaluated explicitly and substitut-

ed into (39). For &y%/4g>>1, (39) reduces to
(Ula)) ~1/2E. Therefore,
1 V2y
=C= . 41
Egs é- 2 ﬁ ( )

This is just what we would expect. The condition
y%/4g >>1/€ implies that the ground-state energy lies
well below the top of the energy barrier that separates the
two ground states. Approximating the potential around
a=1V'y /g by a harmonic oscillator, the effective fre-
quency squared is just 2y. Writing E,, =% /2, we obtain
(41).

V. THE EFFECTIVE POTENTIAL
IN ONE DIMENSION

The effective potential ¥ 4[{(q)] is by now a standard
tool used in theoretical physics. It represents the
minimum expectation value of the energy for stationary
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(q(2)). The functional computation based on path in-
tegrals is by now also standard lore. In this section we
wish to show how the effective potential in one dimension
is computed within the mathematical phase-space formal-
ism of Wigner. Again, we are discussing nondissipative
quantum systems.

For our computation we will take

2
_H A2, Bk
U(@)—Z@ +k@

or the Weyl equivalent U(a)=(u?/2)a*+(g/k)a*. In
addition, things will be simplified if we take g to be small.
We again use the truncated form of the Wigner equation.
This means our calculation of V 4[(g)] will be per-
formed to order #g.
The approximate stationary solution to (24) is

B2
W(a,B)=N exp +Ula)

—& (42)

We define a generating function T[J] for the stationary
ensemble averages (a") =(g "):

T[J]= [dadBe’*W(a,B) . 43)
Equation (42) is now expanded in powers of g:
2 2
W(a,B)=Nexp | —¢& BT+J“2—a2 1~§k£a" (44)

and substituted into (43).
zation constraint and find

We evaluate N via the normali-

(k —1 —1)0J!

T[J]=e . Tt Sl 91 A8
§(k +l)/2 l#k +1

(45)

J/26u? & [
* 2

even

The generating function for the nth-order cumulants (or
in field-theory language, the connected Green’s functions)
is given by

W[J]l=InZ[J]. (46)
From (45) the lowest nontrivial term is
J?
260

(k —1—1nJ!

(k+D/2—1, k+1 °*
£ Iz

wiJ]=

(47)

k
_ g
k §
even

The ground-state expectation value (in the presence of J)
of g is given by

oy SWL]
(@)=Ca)=—"47, "
(9)=(a)
_J g 2’:' k| (e—1—1J!
& k=, l ghHD/2=1 k41"

We now wish to solve for J as a function of {§). To do
this we solve (48) perturbatively and obtain

1129

(k -l
pk-

§(1 k) /2+1(a>1—1 .

g X
J=Eu*(q)+ ; 2
(49)
We perform a Legendre transform of W[J] by
0[(q)1=J(q)—wI[J]. (50)
Using Egs. (47) and (49) we have
k
ADI_ gy, 2 § l iM‘W-

k—lglke—D72
even
(51

Performing the summation by writing the term with / =k
first and then / =k —2 second, etc., we obtain

01€9)] _ 1 (v2, 8 (ayk
P (g) +k(@)

k
k-2

k-2
+—% <j—>E—+0(g/§2 (52)

Realizing that (§_,)=k(k —1)/2 and 1/E=#u/2+40(g)

we have

R (a)2+k(@>

TR AT EYE I N (53)
4u
The first two terms in (53) represent the classical poten-
tial while the third term is the lowest-order perturbative
quantum correction.
Coleman?? has computed the effective potential associ-
ated with the tree-level U(g) using standard summing-
over-loops techniques. He finds

Val (@ 1=UL1+ VT 1)) (54

To see how this compares with (53),

UL(q) 1=(u?/2)(q ) +(
Veﬂ[<a>1=f*2—2<a>2+§<a>k

substituting
g /k){q Y* into (54) yields

e N L (55)
Expanding (55) about g =0, we have

Vel (@)1= ()24 ()i Bt

+ 78 _1y(g k-2 (56)
4u
Comparing (53) and (56), we see that they are identical up
to the constant zero-point energy:

0[{q)] _

€ Vesl(q)]1—Vl0] . (57
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This completes the calculation of the effective potential
in one dimension within the Wigner framework. It
should be mentioned that the above procedure can be
easily extended to composite operators. A subsequent pa-
per will deal with this for a dissipative quantum system:
the free large-scale inflaton in de Sitter space.

VI. CONCLUSION

We have presented arguments, based on causal horizon
coarse graining, that the long-range scalar field (inflaton)
dynamics in a FRW universe is governed by dissipative
quantum mechanics in one dimension. As far as we are
aware, the Wigner representation of quantum mechanics
(which is based on quantum or quasiprobability func-
tions) is the only consistent way of describing these dissi-
pative quantum systems. Thus, we have initiated our
study of the dynamics of early-Universe phase transitions
by investigating the approximate equilibrium solutions of
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the Wigner equation. We have shown that these equilib-
rium solutions describe the ground-state properties of
various nondissipative quantum systems reasonably well.
We have done this by showing how one computes
ground-state energies and the effective potential within
the mathematical phase-space framework of Wigner. It
should be stressed that if one were able to construct the
full W(a,B) solution to (11) the calculations of the
ground-state energy and effective potential would be ex-
act.
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