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We discuss the use of the spectral asymmetry of the Dirac Hamiltonian as a means to determine
the rate of anomalous creation of chiral fermions in the presence of background gauge and scalar
fields. The (suitably modified) spectral asymmetry is computed explicitly for a wide class of Hamil-

tonians in terms of functionals of the restriction of the Hamiltonian to lower-dimensional spaces.
The result is used to determine the anomalous charge which gives rise to superconductivity of cos-
mic or axion strings (vortices). It is shown that superconductivity of cosmic strings is present even

when the usual finite-energy requirement is dropped and open-space boundary conditions are adopt-
ed instead. This is shown to apply to the case of axion strings as well.

I. INTRODUCTION

The most obvious consequence of the chiral anomaly is
the nonconservation of the chiral charge, i.e., the
creation of chiral fermions in an external electromagnetic
field. The direct computation of the rate of charge non-
conservation in the second-quantized theory from the
spectrum of the Dirac Hamiltonian provides indeed an
intuitive way of understanding the physical origin of the
anomaly. '

Although heuristically attractive, this approach has
been thus far of little value for the sake of practical com-
putation. Here, we shall develop a technique to compute
the charge created anomalously in terms of the spectral
asymmetry of the Dirac Hamiltonian, inspired to
methods widely used in the context of fermion-number
fractionization.

These computations find a natural application to super-
conducting cosmic strings or vortices. Indeed, it is the
charge carried by massless fermions created anomalously
which gives rise to superconductivity of vortexlike struc-
tures. The computation of the rate of anomalous charge
creation {if any) allows then one to establish the most
general conditions under which a vortex may be super-
conducting.

In particular, it has been recently shown that several
features of the Dirac Hamiltonian which describes the in-
teraction of fermions with a vortex (and, in particular,
the index theorems that describe the zero-mode sector of
its projection on the plane orthogonal to the vortex) are
common to various kinds of vortices (cosmic strings and
axion strings ) and, furthermore, that they hold true even
when the usual finite-energy boundary conditions are
dropped, in favor of weaker open-space (i.e., scattering-
like) boundary conditions.

Now, zero modes of the transverse Hamiltonian lead to
a dimensional reduction which implies superconductivity
through a two-dimensional (time and the direction along
the vortex) anomaly mechanism. ' However, a naive
evaluation based on spectral-asymmetry methods seems
to suggest that the rate of creation of the supercurrent

carriers may depend critically on the boundary condi-
tions, possibly, at the expense of superconductivity. This
would imply a discrepancy between a full four-
dimensional evaluation of the anomalous charge and
two-dimensional arguments based on the reduction to the
transverse zero-mode sector.

The computational method discussed here will allow us
to settle these issues. The determination of the spectral
asymmetry of an odd-dimensional Dirac operator (as the
Hamiltonian of even-dimensional fermions is) in open
space poses nontrivial problems. In Ref. 6 we have ac-
complished this for massless fermions coupled to an
external gauge field; here, we shall generalize the result to
the more complicated Hamiltonian appropriate to the
description of the vortex-fermion interaction, which con-
tains scalar (Higgs) fields as well.

Furthermore, in the computations of Ref. 6 it was as-
sumed that one of the dimensions (here, the dimension
along the string) be compact, i.e., in the present context,
that the string be closed. Here, we shall discuss the gen-
eralization to the case of open strings. This will allow us
to show that, if ultraviolet and infrared divergences are
treated in a careful and consistent manner, the discrepan-
cy between two- and four-dimensional arguments may be
understood, and that superconductivity is preserved in
open space, although, in the case of closed strings, in
modified form. The methods developed here, further-
more, are more generally useful in the study and compu-
tation of anomalous quantum numbers.

In Sec. II we shall introduce, in a simple two-
dimensional setting, the modified spectral asymmetry
which describes the anomalous charge creation, and dis-
cuss in detail its regularization in open space. We shall
thereby reobtain results familiar from the two-
dimensional anomaly computations.

In Sec. III we shall compute the modified asymmetry,
i.e., the anomalous charge, for a wide class of 2n-
dimensional Hamiltonians in compact and open space, in
terms of lower-dimensional topological objects.

Finally, in Sec. IV we shall apply our results to the case
of superconducting strings; we shall discuss the mecha-
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nism through which a supercurrent may arise due to
anomalous particle creation, and examine the general
conditions that make superconductivity possible.

II. ANOMALOUS CHARGE AND SPECTRAL
ASYMMETRY: A TWO-DIMENSIONAL MODEL

If a constant electric field ( is applied to a system of
two-dimensional chiral fermions minimally coupled to
the electromagnetic field, the anomaly equation
B„J(*)"=+( I/2m )e„,B"A" (+ is the chirality of the fer-
mions} implies that particles are created at a rate per
unit length

(g & =,'~+n n— (6)

When a crossing occurs, the spectral asymmetry varies
discontinuously of two units, while it is smooth else-
where. Thus, separating the continuous and the discon-
tinuous variation of q, we can write the charge created in
At as

no longer true that (b,g & in (2} is the charge created in

b, t. Thus, because after the transition of n+ (n ) levels
from E & 0 (E & 0) to E & 0 (E & 0), the system is left in a
state which is no longer the vacuum. The expectation
value of Q in this state is

a()Jo=+ 2'
This can be seen' as a consequence of the fact that the

second-quantized theory is defined by filling the
negative-energy Dirac sea. When the electric field is
switched on, the Landau level of the Dirac sea shifts at a
constant velocity: the dispersion relation p = + E (ac-
cording to the chirality) is replaced by p —A) ——+E,
where the spatial component of the potential is A) ——@t
(in the gauge Ao=0, appropriate for a Hamiltonian
description). Thus, negative-energy states close to the
Landau level acquire positive energy (or vice versa, ac-
cording to the chirality), thereby creating charge.

Now, in order to compute the rate of particle creation
in a more general setting, we observe that the total
charge created in the time ht is equal to the difference in
vacuum charge:

(2)

Namely, it is only the continuous variation of the spectral
asymmetry which yields the created charge. This can
also be written in terms of a modified asymmetry g:

(8)

where

sgnH(to)
rl[H ( t ) ]= lim Tr = lim rt(s ) .

s o ~H(t) ~' ~ o

We can now verify explicitly that the above prescrip-
tion yields the correct result. We shall consider first the
case of compact space, then the open-space problem,
which requires some additional care.

Take the Dirac Hamiltonian (in the gauge A o ——0)

H(t)= . —A(x, t),a
tax

(10)

which describes right-handed Weyl fermions coupled to a
gauge background (chiral Schwinger model), with
0 & x & L and (say) antiperiodic boundary conditions (this
is appropriate to fermions, but does not affect the result
for bg since a different choice of boundary conditions
changes g by a constant). Time is treated as a parameter;
we shall assume the time evolution to be smooth enough
that the time dependence of the energy eigenvalues be a
smooth function of time.

The eigenvalues of (10) are (see, e.g. , Ref. 6)

in the charge-conjugation odd, normal-ordered definition

Q =—,
' fdx [g,f],with the result

Q / [(~kbk dkdk ) psgn(Ek }] (4) (2k+1)n 2aA
L I.

whence, with g-function regularization and the usual
definition of the Fock vacuum, and the modified asymmetry is

The ground-state charge at any given time is notoriously
proportional to the difference in number of positive- and
negative-energy eigenstates of the Hamiltonian, i.e., in-
troducing g-function regularization, to its spectral asym-
metry. The result is found using the expansion of f in
eigenstates of the Hamiltonian H, g(k*),HQ'k +'

Ek+)g(*)——— —

with sgn(Ek+—') =+1:
(I

q(+)+dt's(

—) } (3)

r sgn(Ek )
(Q & = ——,'lim ~', = ——,'g[H],s-o '

/Ek /'
(5)

rt[H(t )]=lim-
s-o k I.

rt[H] is the spectral asymmetry of the Hamiltonian H
(Ref. 8).

Equations (2) and (5) have been extensively used to
compute the (fractional) vacuum fermion number of vari-
ous systems; however, the definition of the charge (2}
and (5) is not immediately adequate to our purpose.
Indeed, if the energy of one (or more) Pock states
switches sign during the evolution from to to to+At it is

where

Xsgn[k+A(to)+ —,'], (12)

A(t)= f dx A(x, t) .
2& 0

If we set A (to ) =0, then
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(bg ) =lim—1 2m

s o2 L

—S

[j(s;A (t )+—,
' ) —j(s;—,

' —A(t ))]

A—(t }, (13)

where we introduced the generalized Riemann g function

g(s, v)=gk 01/(k+u)'. This obtains a rate of creation
of charge per unit length,

dJo d 1——A—(t ),
dt dt L

(14)

in agreement with the anomaly equation. Had we con-
sidered left-handed fermions, A (x, t ) would have had the
opposite sign in the Hamiltonian (10), leading to a sign
reversal in the final result (14).

In open space (i.e., when L ~ ~ ), a naive application
of Eqs. (8) and (9) leads to a nonsensical result: the spec-
trum of H is just Ek ——k, with —~ (k ( 00, a continuous
variable, regardless of the background A(x, t), and the
functional trace in ri=lim, vf "„dksgnk/j k j' yields

an ill-defined integral for every value of s. Thus, because
when s )0, thereby regulating the ultraviolet behavior of

g,~,„H( t )
—= lim lim gz (s ) .

s OL
(15)

Let us now verify explicitly that this prescription yields
the correct result, and, furthermore, that the order of the
limits in (15) does not matter.

With the above Hamiltonian (10), using the asymptotic
expansion of g(s, v ) for large u:

g(s, v)= u' 'I (s —1)+0 1

1(s)
(16)

we get

the functional trace, there is still an infrared divergence
due to the fact that the spectrum of H stretches continu-
ously to zero. Furthermore, the dependence of 7) on A
seems to have disappeared: this would imply a lack of
particle creation in open space, in disagreement both
with the anomaly equation and the Dirac-sea argument,
which do not depend on the space topology.

To cure this disease, we define the open-space problem
as the L ~~ limit of the compact-space one (i.e., we use
box quantization):

Qpp
——lim lim

s~OL~ oo

277

L

—S

2 L[g(s;A(t )+—,
' ) —g(s; ,' A(t )]=—l—im — 2(A )' '=2A(t ),s~o S —l

(17)

which agrees with the compact-space result (13},and with the two-dimensional anomaly equation. Clearly, the same

follows if the s ~0 limit is taken first, leading to Eq. (13).
The box-quantization prescription (15) is actually equivalent to treating the infrared singularity in the functional

trace (9) with a symmetric prescription, as it can be seen by calculating alternatively the open-space asymmetry as

rt, ,„=lim lim
O

(k —A')
L

(k+A'+1)
—S

=lim lim f dk+ f dk+ f +'
dk

STOL~00 2' A'+ e(L) A'+e'(L )

sgnk

21T

L

S (18)

where A'=A —
—,', e(L ) =(2m /L )(A' —[A']), e'(L ) =(2m /L )(1—(A' —[A']) j, and [A') denotes the largest integer

smaller than or equal to A'. Clearly as L ~ ~, @~0,e'~0, and the third integral vanishes [it is O(1/L ) with respect
to the first two]. Computing the integrals explicitly, of course, yields again the result (17).

Finally, it is worth noticing that, as long as no crossings occur, the conventional form of the asymmetry (5) may be
used as well. In particular, if one is interested in computing the rate of particle creation (which depends only on the
continuous variation of g, up to an infinite constant) the standard spectral asymmetry (5) may be used even in open
space, despite the fact that because of the presence of a continuous spectrum, crossings occur with continuity for every
value of the background variable A.

Indeed, a straightforward calculation yields

lim lim gL (s)=lim lim-
S~OL~ oo s~OL~ oo

(k+ —,
' iA —[A+ —,'])

—S

Ik+ —,
' —(A —[A+-,']) j

—S

1 1=lim lim- dk
s-OL ~ 2' 2miL

2'=lim lim
s~oL~ oo L

—S

2IA(t) —[A(t)+-,']j . (19)
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Although clearly this does not have a well-defined limit
as L —+ 00 (A —[A) has a highly discontinuous behavior
as L grows) taking a derivative with respect to t leads
again to the correct result (14) for the particle creation
rate.

This concludes the general discussion of our approach
to the computation of the anomalous charge in terms of a
suitably modified and (in open space) regulated spectral
asymmetry. In the following we shall apply this to realis-
tic four-dimensional (or generally even-dimensional)
models.

III. COMPUTATION OF THE SPECTRAL
ASYMMETRY IN HIGHER DIMENSIONS

We shall consider 2n-dimensional fermionic models de-
scribed by Dirac Hamiltonians of the form

D(x3;t) L(x";t)
L'(x~;t) D(x, ;—t )

where D and L are 2" ' &(2" ' matrix differential opera-
tors, the index p runs from 1 to (2n —2), x3 denotes the
(2n+1)st space coordinate, and t is the time coordinate,
which is treated as a parameter. Furthermore, we require
D to have the form

H(x~, x,;t)=I H, (x,;t)+Hr(x";t), (22)

where x", x3, t, and H& are defined as above and I is a
2"X2" element of the Clifford algebra which anticom-
mutes with Hz. . [I,Hz J =0. Hr will be henceforth re-
ferred to as the transverse Hamiltonian. The form (20) is
achieved by choosing a representation of the ClifFord
algebra where

and defining D =H, ; L =Hr[(1 —I )/2].
The simplest nontrivial example of a model with Ham-

iltonian of the form (20) is that of Dirac fermions coupled

D(x„t}=I . —A, (x, t) = IH. , (x, ;t ), (21)
t Bx3

where 1 is the 2" '&(2" ' unit matrix and H, is the
one-dimensional Hamiltonian (10).

Clearly, any Dirac Hamiltonian that describes the cou-
pling of fermions to an arbitrary number of scalar, vec-
tor, and higher-spin (Abelian) fields can be cast in the
form (10) if it may be written as

to an Abelian gauge field in four-dimensional space, pro-
vided the space dependence of the background fields is
factorized, i.e., A =( A "(x"),A3(x3)) (a simple realiza-
tion is the case when the magnetic and electric fields are
constant and parallel). More complicated examples are
provided by fermions coupled to both gauged and
ungauged vector fields, and scalar fields in the presence of
vortexlike structures, with x3 the dimension along the
vortex. These we shall discuss in somewhat greater detail
in Sec. IV.

Now, we are interested in determining the spectral
asymmetry of the Hamiltonian (20), and in studying its
application to particle creation, in light of the discussion
of Sec. II. If the space is compact, the problem is trivial,
since the eigenspectrum of H is discrete. The eigenvalues

p„k can be expressed in term of the (discrete) eigenvalues
A,„ofthe transverse Hamiltonian H~ and of the eigenval-
ues mk of H&.

Pk, k +(~ +mk ) Pi k e mk
2 2 1/2 0 i (23}

7)[H]=nog, [H, ], np= g e', (24)

where g& is the one-dimensional spectral asymmetry com-
puted in Sec. II, and n0 is called the I -index of H&.

Things get more complicated in open space, where the
spectrum of H contains both discrete bound states and a
continuum. The computation of g in open space has
been accomplished in Ref. 6 in the particular case of
three-dimensional massless fermions coupled to a gauge
background [earlier open-space determinations of g (Ref.
9) assumed the operator H, to be just a constant]. The
approach of Ref. 6, however, is of more general applica-
bility, thus, we brieAy review it, and generalize it.

The open-space rt invariant is defined as

g(2 )=f" dpp(p, )
' "„=T

[

2s (H2)s+ 1/2 (25)
s

where p(p) is the spectral density' of H and the integral
over p should be understood as an integration over the
continuum and a sum over the bound states. We may re-
cast the functional trace in (25) by separating the trace of
the transverse Hamiltonian (eigenvalues A,„)and the trace
of H, (eigenvalues mk). Introducing spectral densities
for the operators LL and L L in (20) we get

where 1 &i & n, counts the zero modes of the transverse
Hamiltonian, which are eigenstates of I with eigenvalue
e'=+1. The problem then reduces to an effectively one-
dirnensional one, since

n

g(2s)= — f dpf deme ~ p' 'Tr e
&nI (s+1/2) 0 —~ H +co

f dPf diP' '[p t(A) —p t (A)] $, k f dcoe

f dPP' 'rt(P)PP) .'+2

mk

mk+co +A,

(26)
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Here, we have defined the inverse Mellin transforms of
the spectral asymmetry of H, and of the g function of the
operator [I HT]:

~(p)= f'"","'
p 'r-(r+,'}&,[H, ]

where no is the I -index (24), the A, integration is now ex-
tended over the continuum, and E,h is the threshold ener-

gy of the transverse Harniltonian.
In the case of %eyl ferrnions coupled to a background

U(1) gauge field, E,h
——0 and the continuum is peaked at

hreshold

'I t+ —,
' Tr

C —i oo 2ml (H2 )s+1/2 (27) [PLLt(&) P —t (A, )]=(I),5(A, ),
(33)

g~p)= f'"" "'
p 'r(-t)g[rH,2]

(P(P) =Tr(e ~ —e @ ') =Trre
—PH'

(29)

i.e., in the P—+ ~ limit it yields no in (24); the former is

explicitly

—PH
2)(P) =Tr[(PH, )'/2e '] .

Computing the integral in (26) leads to

(30)

s((2s(= f fs(As . [p s(S( p s (S(]
(m 2+F2)s+1/2 LL

(31)

It is now convenient to separate the bound-state sum
and the continuum integration in the trace over the ei-
genvalues A, of the transverse Hamiltonian. The nonzero
bound-state eigenvalues of LL and L L are paired, i.e.,
to each eigenmode 1/( of LL there corresponds an eigen-

mode 1//'=L 1//of L L with the same eigenvalue (see, e.g.,
Ref. 2 for a proof that 1/(' is a normalizable bound state if
1/i is). Thus, the s(, traces in (26) and (31) receive only con-
tributions from the sum over zero-mode bound states,
and from the continuum integration:

2)(2s) =nor/, [H, ]+r/, (2s),
(32)

2),(2s)= f dk ~, [p t(A, ) —p s (A. )],
(m +g2) +1/2 LL

c —( ao 27tl' (LL )' (L L }'
s.

where, in both cases, Re(c) & M with M the real part of
the pole with largest real part of rl, and g, respectively
(see Ref. 8 for a proof that both g and r/ are meromorphic
with a finite number of poles in the Re(z ) y 0 half-plane).

The latter quantity is just the heat-kernel regulariza-
tion of the I -index of the transverse Hamiltonian

2)(2s ) =(no+()(s, )2),[H, ] .

If scalar fields are present as well (as in the models which
we shall examine in Sec. IV) a mass gap may separate the
continuum from the bound states, preventing the factori-
zation of the asymmetry (33).

It is now apparent how the spectral asymmetry ought
to be modified in order to be used for the computation of
particle creation. In the factorized cases (24) and (33)
(compact space and coupling to gauge fields only) the
problem reduces to an effective one-dimensional one,
since only the zero-mode sector [the /2; eigenmodes (23)]
or the zero-energy threshold of the continuum of the
transverse Hamiltonian contribute to the asymmetry.
The resulting one-dimensional asymmetry is to be re-
placed by the modified form g, and computed with the
symmetric integration prescription discussed in the previ-
ous section; the I -index and the continuum contribution

may be calculated by means of open-space index
theorems' (see also Ref. 6}. The result, substituted in
Eq. (8), yields the anomalous charge.

If, instead, there is a mass gap, the zero-mode contri-
bution in Eq. (32) should be still treated in this guise, but
the continuum contribution does not require either an in-
frared prescription [since the mass gap prevents the in-
tegrand in (32) from having infrared singularities], or a
prescription to account for zero crossing [since the mass
gap endows continuum eigenvalues of the form (23) with
a definite sign along the evolution of the system].
Equivalently, the created charge is again found by using
the Hamiltonian (20) in Eqs. (8) and (9), since the asym-
metry r/ in (9) satisfies all of the above requirements.

Finally, we evaluate the continuum contribution to the
asymmetry r/, in (32) explicitly. We consider two distinct
cases: while we define the transverse Hamiltonian to act
on an open (2n —2)-dimensional space, we take H1 to act
on a compact space first (corresponding to an overall
space topology S' XI "

), then on open space.
In the former case, the trace over H, is a discrete sum,

which we can compute formally by introducing an inter-
mediate regulator

2),(2s)= lim f dA,g, [pLL1(k) —pL1L(A, )]
p~O E(h k ( 2+ $2e —P2 )s+ 1/2

mk

sgn(mk )= lim f dA, g „[p t(&) —pLiL(&)]p-O L(h „(m„)"

&( 1 —(s+ —,') e + +&&2 ( —1)" (2s+1)(2s+3) (2s+2n —1)
e

m k
nt 2n m k

n

=q, (2s)g, (0)——,'2), (2s+2}g,( —1)+ . + ( —1)" (2s+1)(2s+3} . (2s+2n —1)
g, (2n + 1)g, ( n), —

n!
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where g, is obtained from g, Eq. (28), by subtracting the zero-mode contribution [equal to the constant in no in (24)].
Note that g, (t ) is regular if t is a nonpositive integer, and i),(2s) is regular for Re(s) large enough, provided the per-
tinent differential operators are elliptic, positive, and self-adjoint and have a positive-definite symbol. The expression
(34) of i), (0) is reminiscent of the low-temperature limit of the anomalous part of the effective action of four-
dimensional massive fermions coupled to an Abelian-gauge background. '

Although we cannot calculate, in general, the infinite sum in Eq. (34), we may set bounds on il, (0) in (34). In particu-
lar, we prove that

sgn[i), (0)]=sgn[i), (0g'(0)],
~

)i, (0)
~

&
~

rt, (0)g(0)
~

(35)

This means that the continuum contribution in (32) is subleading as compared to the bound-state one. ~e prove this by
showing that

Plk
sgn lim

s~o k (mk+g )'+
sgn(mk )

=sgn lim
k Imkl"

(36)

P2l k sgn(mk )
limg, & lim gs-o k (mk+A, )'+

where A.
2

& 0.
First, we rewrite the sum on the left-hand sides of (36) and (37) using the explicit form (11)of the eigenv»ues mk:

—2$

(37)

oo mk

(m +A, )'+'/
k+f

[(k +f )2+F2]s + i/2
k+(1—f)

I[k+(I f )]2+g2js+1/2
(38)

It is trivial to verify that the equality (36) and the inequality (37) are satisfied term by term in the series (38); it follows
that they are satisfied by the sum of the series when Re(s) is large enough to ensure convergence. To show that they
hold true when s ~0, it is sufficient to show that the series converges when s =0.

This can be accomplished by expanding the summand in (38) in powers of I /k, then truncating the expansion (which
is possible, since the series has alternating signs and, after a finite number of terms, monotonically decreasing sum-
mand). It is thus easy to show that

k+f
[(k +f )2+g2]s+ I/2

k +(1 f)—
I[k+(1—f )] +/(, 'j'+' '

2s(1 —2f ) ——2s(s+ —,
' )(1 2f)+0—1 1 1

(39)

which proves that the series converges if s )0, thereby completing the argument.
We come now to the case when H, acts on open space as well. It follows immediately that the continuum contribu-

tion vanishes identically:

2), (2s)= f dA, , [p t(A) —p t (k)]=0.E „(k2+F2)s+i/2 LL

Of course, the same result is found taking 0(x3 & L and computing the large-L limit:

oo mk(L )

L~~
k tfmk(L)] +g j

+ / L ~ 2ir s(L) (k2+/I2)s+I/2

l L t= lim [Q&(L )2+ g2] 1 —2s
[QEi(L )2+ g2] 1 —2s

l —2s 2m-

(40)

(41)

where e(L ),e'(L ) are defined as in Eq. (18) and tend to
zero as I.~ oo.

T»s shows that if the Hamiltonian (20) is defined on
(2n —1)-dimensional open space and a mass gap
separates the continuum from the zero modes, only the
latter contribute to the spectral asyrnrnetry, which is
given by Eq. (24) as in the compact-space case. The

anomalous charge is just obtained replacing g, with g, in
(9) in Eq. (24), and substituting the result in Eq. (8).

IV. APPLICATION TO SUPERCONDUCTING STRINGS

We shall now apply the results of the previous sections
to the determination of the rate of fermion creation in the
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o'2X

this is seen to be equivalent to coupling 0 to A„with a
single charge q through X=%y"(iB„qA„)%,with —the
usual Dirac matrices.

The single-particle Dirac Hamiltonian implied by (42),
with respect to the basis of Dirac spinors '0 defined
above, has the form (in the gauge Ao ——Ro =0)

H =a'[i 8; —(s„+y «e „)A; —(sR +y «eR )R; j

+p( Re/+ i y «Imp ), (43)

where i =1,2, 3; P=y, a'=y y', and s„„
,'{qA,R qA, R) eA-, R p(qA, R+qA, R).

model, s„=e„=e„=O; in the cosmic-string model,
e A =0 sR =s+ e /2, and eR = —e /2.

A vortexlike background configuration has A 3

=R&=—0; A~= AR(x ), RR=RR(x ) with a,p=1,2, and
lI}=p(x ), i.e., purely transverse gauge and Higgs fields.
Furthermore, the Higgs field vanishes in the core of the
vortex [say, lI}(0,0) =Oj and satisfies the boundary condi-
tion

background of a stringlike or vortexlike structure; this is
related to the superconducting properties of these objects.

Stable vortices arise in many models due to spontane-
ous breaking of gauged or ungauged symmetries. Most
notably, we consider the coupling with fermions of vor-
tices arising in the spontaneous breaking of the gauged
U(1) of a theory with gauge group U(l)XU(1) (cosmic
strings ), and of a global (ungauged) U(1) symmetry of a
theory with gauge group U{1) (axion strings ). We shall
only examine the fermion couplings, and refer to the orig-
inal literature ' for a more detailed description of these
models.

The fermion part of the Lagrangian of the former mod-
el is {in Minkowski space-time)

X=/ 8/+X O'X [PP o—&X+/'g o2(X ) j,
where g, X are two-component, four-dimensional left-
handed Weyl fermions, the covariant derivatives, defined
with the usual Dirac-Weyl matrices o"=(I,—o ), con-
tain the coupling with the U(1) gauge fields A„and R„:
D„=iB„q„—A„q„R„;—D„'=iB„q„'—A„—qRR„, and
lI} is the Higgs field which couples to the R field and is
thus responsible for the breaking of U(1)R.

The charges qz z, q„' z are adjusted so as to cancel the
chiral gauge anomalies that would make the theory in-
consistent. In order to remove the chiral anomaly due to
the A coupling, it is suScient to set qz ———q„'. Cancella-
tion of the anomalies due to the R coupling and to the
mixed triangle diagrams ( A AR, ARR ) requires the in-
troduction of (at least) one more pair of fermions with
complex-conjugate coupling with P, that is, with action
obtained replacing p with l))" in Eq. (42). In the cosmic
string model, qR ———(qR +e ), where e is the
gauge- Higgs-field coupling constant.

The Lagrangian of the axion model is obtained from
(42) by setting R„=O, and q„=—q„'. If g and o 2X' are
arranged in a single four-component Dirac spinor

where the integration is performed over a loop which
encircles the string.

The Hamiltonian (43) is of the form (22) discussed in
Sec. III, with the following identifications:

I = —a&, HT a'D;——+p(Rep+iy«Imp) . (44)

The transverse Hamiltonian has a nonvanishing I -index
(24). Indeed, its zero modes' (when A„and R„are rota-
tionally invariant up to a gauge transformation) and the
relevant index theorem' have been known explicitly for a
long time in the axion case, and were recently deter-
mined in the more general case of models of the form
(42), with an arbitrary number of fermion flavors. The
result is

ind(HT ) = n & n, —— (45)

where n is the winding number defined above. This is
true provided the eigenstates of the transverse Hamiltoni-
an obey scatteringlike boundary conditions, i.e., if the
gauge potentials and the covariant derivatives of the
Higgs field fall off at least as 1/~ x

~

as x~~ in the
transverse plane.

Projecting the Hamiltonian on the zero-mode sector
yields an effective low-energy one-dimensional operator,
of the form (10), which describes motion along the vor-
tex. The eigenmodes of the Hamiltonian in the trans-
verse zero-mode sector thus describe massless particles
moving along the string. If an external electric field
directed along the string is switched on, i.e.,
A3=8(x«)t&0, the vacuum gets populated by anoma-
lously created particles, whose number builds up at a rate
given by the anomaly equation (1). These are bound to
move along the string, at the speed of light, and with
direction of motion determined by their two-dimensional
chirality (i.e., by the eigenvalue of I =a«). Hence, a
current builds up, also, proportional to the anomalous
charge. Since the charge increases linearly with time, so
does the current, thus displaying superconducting behav-
ior (see Refs. 3 and 4 for a detailed discussion).

However, we know from the computations in the pre-
vious section that in open space the anomalous charge re-
ceives, in general, contributions from the entire spectrum,
and not only from the zero modes. In particular, the
anomalous charge has been estimated in Ref. 4 with
somewhat surprising results. The computation, however,
is based on a rough and ready way of evaluating the spec-
tral asymmetry, and it is thus presented as a conjecture,
which requires further test. The idea is that the g invari-
ant can be written as

nl~a l= $ el~el, (46)

where H„ is the operator obtained projecting H, in (22)
on its eigenmodes

~
ok ), which satisfy

~
Og )™l

lI}(x ) ~ P„=const .
/x/~m

Topologically stable vortices exist, and are classified by
the winding number of the Higgs field

1
~

y'iay „,
2vr
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Hk = (~k I
H

I a~ &

Strictly speaking, Eq. (46) is true only before all regula-
tors are removed. Nevertheless, in Ref. 4, rt[HI, ] was
computed in the s ~0 limit, with the result

r 1/22
mI,

qH (0)=sgn(mi, ) n (—n +Pz )
mt+10

(48)

d )d pe BR
2n

~'9H ~'9H

Bt Bk
=nH I

(49}

The spectral asymmetry (48) was substituted in Eq.
(46). Despite the fact that, in open space, setting m„=k
and integrating over all k leads to a linear divergence, it
was observed that the derivative of the charge with
respect to time is finite, even if it is computed using in
Eq. (5) the spectral asymmetry determined in this fashion.
This is true at least if the time dependence is entirely con-
tained in the eigenvalues of H„mz, because then

[P t(k) —P t (A, )]=/, 5(A, —E,h) . (51)

To prove this, we drop the sum (or integral) over k in
Eq. (32), and take the resulting expression

rt, „=f dA, f(A, )[p t(A, ) —p t (1,)],

between the fermions and the electromagnetic potential
A„.

The zero-mode contribution coincides with the result
from the two-dimensional anomaly computation. Ac-
cording to Eq. (45), no ——n; thus, the result of Ref. 4
would suggest g, = (n—+Pa )Ft

&
[H

&
]. This vanishes

only when P&
—— n(a—s advertised); otherwise, it modifies

the zero-mode contribution, and, if Pz ——0 it cancels it
completely.

However, we already know that if the string is open g,
vanishes identically, and only the zero-mode contribution
survives, contrary to the conjecture. More generally, we
can determine q, from Eq. (31), observing that if the
eigenstates of Hz reduce to scattering states at infinity in
the transverse plane, the left-right spectral density is
peaked at threshold, i.e.,

(52)
mI,

f(A, )=
(m +A,'}'

as a definition' of the action of the spectral density
(which is a measure, not an ordinary function) on the test
function f(A, ). From Eq. (32) and the index theorem (45)
we get

(53)r), I,
——rtH (0)—n sgn(mi, ),

where rlH (s ) is the ri invariant (25) of H„ in (47). The re-
k

suit (51) follows immediately by comparing with the
determination of rtH (0), Eq. (48), with

k

(54)Eth I
4'

I (( ((t'R +n }

Note that, because of the coupling to the Higgs field,
the fermions acquire a mass; the threshold energy is just
the fermion mass in the vacuum (i.e., no-vortex) sector.
Also, the normalization of the continuum contribution

g, (0)=P, = —(Px +n } is fixed by sum rules' in terms of
the high- and low-P limits of the heat kernel (29), which
are, respectively, the index (45) and lim& g(P)= —Pz,
since g, (0)+g(0)=g(ao), with g, and g defined in (28}
and (34).

At any rate, we get

Ply
q, (2s)= — g. .. „, (P, +n)

a (mi', + l4

Moreover, it follows that the rate of charge creation is
B(bQ ) IBt ~ P„.

This result, if correct, has a dramatic import. For ax-
ion strings, Pz ——0 identically. This would imply a
discrepancy with the two-dimensiona1 anomaly computa-
tion in the transverse zero-mode sector, since axion
strings would not be superconducting, despite the fact
that the transverse Hamiltonian has a nonvanishing I-
index. More generally, the two-dimensional argument
would agree with the full calculation only when Pz —— n, —
as will soon become apparent. This is actually true if one
requires the string to carry finite energy per unit length,
since it is equivalent to requiring that the covariant
derivatives of the Higgs field fall off more rapidly than
1/

I
x I; but this is not necessarily the case if scattering

boundary conditions are enforced instead. "'
Let us now test these conjectures using the machinery

developed in the previous sections. We shall treat both
the case of a closed and an open vortex in open space. If
the string is closed, its interaction with fermions is still
described locally by the Hamiltonian (43), but the spec-
trum of H„ the Hamiltonian along the string, is affected
by the long-range behavior of the fields. Thus, use of (43)
with the space topology S'&I, discussed in Sec. III, is
appropriate.

In any case, the determination of the anomalous charge
is based on the computation of the spectral asymmetry of
the Hamiltonian. As we have seen in Sec. III [Eq. (32)],
the g invariant, thus, the vacuum charge, consists of a
zero mode and a continuum contribution

$A
(b,Q ) = — In gO, [ H] g+, ( )0I .

In writing down Eq. (50) we assumed ( Q(to) ) [Eq. (2)] to
vanish. This is true when A3(to)=0 [see (31)]; it is thus

apparent that the charge creation takes place by switch-
ing the electric field on. Note that the above is the elec-
tric charge, and it depends explicitly on the coupling sA

= —(P~+n )[rt, (2s) ——,
' 1$„1 q, (2s+2)+ . ],

(55)

where we have also used Eq. (34). Substitution of this in
Eq. (50) yields immediately the charge.

The continuum thus contributes to the spectral asym-
metry, i.e., to the charge, because of an imbalance in the
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density of states, and not because of particle creation.
The relevant states are massive fermions, bound to move
along the string, since their transverse momentum van-
ishes (the only contribution to their energy besides the
mass is from the Hamiltonian along the string H, ). Con-
trary to what happens, e.g., to ferrnions coupled to a
gauge vortex, and, in general, when the continuum
stretches to zero, there is no continuum contribution to
the creation of massless fermions due to redefinition of
the Dirac sea.

Thus, the continuum contribution, because of the in-
equality (35), cannot cancel the contribution from the
transverse zero inodes, even when P&

——0. It follows that
the anomalous charge creation is present even for axion
strings. Finally, the continuum states, being massive, do
not contribute to the superconductivity proper (since
they do not move at the speed of light, neither with direc-
tion fixed by their helicity). In the particular case of open
strings, there is no continuum contribution at all, and the
two-dimensional computation in the zero-mode sector is
fully adequate to determine both the supercurrent and
the anomalous charge.

It should now be clear why the naive computation (49)
fails in this case, whereas it would work in two dimen-
sions. Taking a derivative with respect to k amounts to
extracting the ultraviolet behavior of the integral over the
momentum along the string. This does not lead to the
correct result, in general, if it is done, as above, after re-
moving the regulator, since the regulator affects precisely
the ultraviolet behavior: for example, zero, and not PR is
(correctly) obtained if a derivative with respect to k of
il, (2s ), Eq. (40), is taken when s & 0.

In the two-dimensional case (or, equivalently, in the
transverse zero-mode sector of a higher-dimensional
problem) an infrared singularity is present aside of the ul-
traviolet one. The charge creation is due to shifting of
the infrared singularity [recall (19)]; since, however, the
spectral density of Hi shifts rigidly (it is a constant for
every k ) the effect is equivalently detected by measuring
the shift of its ultraviolet limit.

We conclude that superconductivity is present, both
for closed and open strings, whenever the I -index of the
transverse Hamiltonian is nonzero. For models without a
mass gap, and with a spectral asymmetry peaked at
threshold, as described by Eq. (33) (for example, the
gauge vortex, reviewed, e.g., in Ref. 16) superconductivi-
ty is present even when the I -index vanishes, provided
the continuum contribution is nonzero. Since (no
+P, ) o: Ps, if Ps is the flux of the magnetic field in the
plane orthogonal to the vortex, superconductivity is
present whenever Ps&0.

V. CONCLUSION

In a recent paper, we have shown how the spectral
asyrnrnetry of an odd-dimensional Dirac operator can be
computed in terms of lower-dimensional topological in-
variants, and we have used this to determine the parity-
anomalous part of the effective action of odd-dimensional
fermions coupled to a gauge background.

Here, we have turned our attention to the use of the
spectral asymmetry as a means to compute vacuum quan-
tum numbers: the odd-dimensional Dirac operator now
being the Hamiltonian of an even-dimensional theory.
This has required a generalization of the computational
technique of Ref. 6 in several respects.

First, we modified the usual g invariant in order to
adapt it to the computation of charge creation, then we
discussed the infrared problems that arise when all the di-

mensions are taken to be open, and finally we computed
the g invariant for a more general class of operators, in-

cluding the case when a mass gap is present. The pecu-
liarity of our approach is the possibility of disentangling
the contributions from bound states and continuum
modes to the spectral asymmetry.

These, which are our main results, we applied to a sim-

ple problem, namely, the computation of the charge
which gives rise to superconductivity of vortices. Of
course, the discussion of the conditions for anomalous
charge creation may be used as a determination of
sufficient conditions for the presence of chiral anomalies;
above, we have explicitly verified that our method agrees
with the anomaly computations which have been widely
discussed in the literature from this point of view. '

A more interesting possible application of our methods
is their use to compute different anomalous quantum
numbers in addition to the electric charge. In this case,
the spectral asymmetry is weighted by the eigenvalues of
the pertinent operator. A systematic study of the anoma-
lous vacuum quantum numbers, and even a more direct
determination of the vacuum current and supercurrent
would thus be possible. The computation of the anoma-
lous angular momentum in the presence of a supercon-
ducting string, in particular, is of peculiar interest since
the conjectural results of Ref. 4 suggest unexpected
anomalous effects. Finally, it is interesting to ask wheth-
er these methods could be used to shed light on the gravi-
tational interaction of fermions with a vortex, and, in
general, on anomalous quantum numbers due to gravita-
tional anomalies.
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