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Hamiltonian lattice gravity. II. Discrete moving-frame formulation
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A discrete version of a moving-frame formalism is developed and is used to obtain lattice gravity
in a Hamiltonian formulation. It is more straightforward to transcribe the constraints of these
theories from the continuum to the lattice using these techniques rather than the ordinary Regge
calculus. The closure of the algebra of constraints has not been studied.

I. INTRODUCTION

Hamiltonian gravity is a theory of constraints. The
algebra of these constraints must close, be it under Pois-
son brackets or under quantum-mechanical commuta-
tors, and in the continuum the classical algebra does do
so. No completely satisfactory transcription of such a
Hamiltonian theory exists for discrete gravity on a spatial
lattice. Two recent' formulations have been presented,
where unfortunately this algebra explicitly fails to close.
In a previous publication, referred to as I, we showed
that should such an algebra close, it will do so in a nonlo-
cal manner. Namely, even though the commutator of
any two operators of this algebra fails to vanish only
when the arguments of these operators are restricted to
nearby lattice sites, the commutator itself has contribu-
tion from the entire lattice. Such nonlocality appears in a
canonical Hamiltonian obtained from a Lagrangian lat-
tice theory. In this paper we will present a different for-
mulation of lattice Hamiltonian gravity. Although we
have not checked it explicitly, there is a possibility that
the algebra of constraints will close and we hope to re-
turn to this problem in a future work.

There are two significant differences in the present ap-
proach from those used in Ref. 1: One, we use a lattice
version of an "n-bein" or moving-frame formalism and,
two, the lattice geometry is used as a guide, especially in
the structure of the momentum constraints. In a previ-
ous work the introduction of a moving-frame formalism
was found to be useful in the transcription of a continu-
um functional measure to the lattice; of course such a for-
malism will be crucial if ever we wish to incorporate fer-
mion matter fields. In the continuum the momentum
constraints are the generators of diffeomorphisms, and
their structure, as well as commutation relations, are
determined by geometry. In the discrete situation we do
not have an invariance under such a diffeomorphism
group; in I we showed that there are lattice transforma-
tions that play analogous roles. Insisting that suck trans-
formations yield acceptable geometries, to be made
specific in subsequent sections, fixes the form of these
transformations. We do not have such a geometric pic-
ture of the Hamiltonian constraint, but in the present for-
mulation the transcription from the continuum to the lat-
tice is almost automatic. The price we pay for this seem-
ing simplification is that we have to enlarge phase space

by introducing redundant variables and canonical mo-
menta; the elimination of these will lead to the nonlocali-
ties alluded to earlier.

As a by-product, we get a discrete moving-frame for-
malism. The lattice n-ads, spin connections have in-
teresting interpretations in terms of discrete geometries.
Such a formalism will have applications, not only to a
Hamiltonian formulation, but also to the Lagrangian
one, especially when fermion matter fields are included.

In Sec. II a moving-frame version of continuum gravity
is reviewed. Instead of presenting results for an arbitrary
number of space-time dimensions, for pedagogical
reasons, we discuss separately the 2+ 1 and 3 + 1 cases.
In Sec. III the lattice (2+ 1)-dimensional system is
developed, while in Sec. IV the same is done for the 3 + 1

situation.
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The d spatial coordinates are denoted by the upper case
subscripts A, B, . . . while T is reserved for the (d+1)th
coordinate. We introduce the (d +1)-ad, '"+"e„' related
to the metric tensor via

(d+1) (d+1) s (d+1) t
pv P v 1st (2.2)

where si„ is a fiat (d + 1)-dimensional Minkowski metric;
likewise we write the d-dimensional metric tensor 'd'gAB

in terms of d-ads, 'd'e
A .

(d) (d) a (d) a
g AB — eA eB (2.3)

II. CONTINUUM HAMILTONIAN GRAVITY
IN A MOVING-FRAME FORMALISM

In a transcription of the functional-integration mea-
sure from the continuum to the lattice, a moving-frame
formalism was found to be useful; likewise in the tran-
scription of continuum Hamiltonian gravity theory we
shall use moving-frame coordinates. We first review con-
tinuum Hamiltonian gravity in this framework.

The geometric properties of a (d + 1)-dimensional
space, foliated into d-dimensional spacelike manifolds is
described by a metric tensor ' +"g„, which we
parametrize with the aid of the usual lapse and shift
functions N, NA and a d-dimensional metric 'd'g„B:
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'"+"e =~ '"+"ea 'd'ea
T 7

+']e' =iy' [d+ &]eo =0T A

(2.4)

with N'='")e„'N". The (d +1)-dimensional moving
frame vectors satisfy (in the absence of fermions) the co-
variant curl-free condition

summation over the flat-space index a is implied. We
may now relate the (d +1}-ads to the lapse and shift
functions and to the d-ads. The Minkowski indices are
labeled by 0, for the timelike component, and by a, b, . . .
for the spacelike directions:

dimensional spin connection by

(2.&)

L =E E b[ ((} N —(}g Cia+.COTCdg —
g T )es

+(~~~a' —~~~Ã»'

+ ) (Bz dos —co z'cos —2Ae& es }N] . (2.9}

and A is the cosmological constant. Expressed in terms
of the dyads and of the spin connections, this Lagrangian
takes the form

(d+1)es (d+1) st(d +1) t
( ) (}P V l V (2.5)

An integration by parts yields the momentum m, , conju-
gate to eA:

The above equation may be used to define the spin con-
nection ' + "co„" in terms of the ( d + 1 )-ads and their
inverses. The d-ads satisfy a similar relation with '"+"co„"
replaced by ' )co'„". The d-dimensional spin connection is
related to the (d +1)-dimensional one by

(,d) ab (d + 1) ab
CO A (2.6)

A. Hamiltonian gravity in 2+1 dimensions

For pedagogical reasons we will first study a theory of
gravity in 2+ 1 dimensions; although in this case there
are no propagating modes, it is still an interesting theory
due to its relative simplicity and due to the connection it
has with string theories.

With a convenient choice of units, the Lagrangian for
gravity in this dimension is

PVA, ab ~ a b cL = 4f f,b, R»+ —e„ev e&, (2.7}

where the three-curvature R„' is related to the three-

As for the most part no ambiguity will arise, we shall
drop the prefix (d) in front of the d-ads and d-
dimensional spin connections. Although we could con-
tinue this presentation for arbitrary dimensions, it is
more convenient to discuss the (2+ 1)- and the (3+ 1)-
dimensional cases separately.

A AB ObfabB (2.10)

—2Aeq es ) =0,
= ()g STD + CO g 77b =0 .

(2.11a)

(2.11b)

In a moving-frame forrnalisrn we have the freedom of
making independent, local Euclidean rotations on the
dyads. We wish that the generators of these rotations
vanish; co'T' acts as a Lagrange multiplier whose
coefficient is just this operator:

T=e~a(0~ca =0 .Oc c (2.12)

The coefficient of coT' vanishes when we impose the rela-
tions between the spin connections and the dyads:

Byes —copes —( A 8)=0 . (2.13)

Again, the above relation defines the spatial spin connec-
tions in term of the moving-frame coordinates. We end
this section with a prescription for quantizing this theory.
The vacuum-to-vacuum amplitude is given by

We shall find it convenient to use m., and coA' inter-
changeably. The coefficients of N and N in Eq. (2.9)
above give us the Harniltonian and momentum con-
straints of general relativity:

e ebb( clgNs —cogcos —cogcosAB ab ac cb Oa Ob

Z =f g [de&( }dxn,"( )x(&5( )x}5.(&'( )x)5(V'( )x)(g uage- xfiing terms)]exp i f d x n,"( )exz(x)
X

The quantum-mechanical ordering problem is still present as Eq. (2.14) is only forrnal.

(2.14)

B. Hamiltonian gravity in 3+1dimensions

For this dimensionality the Einstein-Hilbert Lagrangian is

LMV 3 p V (2.15)

In terms of the triads and associated spin connections it may be rewritten as [cf. Eq. (2.9)]

L =E E ), [(BTcoz —B„cuz' aPTru„'+co—„cuT')e ec —2(()&coi)' co„co ')ecN-'

+ 2(d„~s co'„cos— ~„'co—~ 2Ae~es )ecN]—. (2.16)



1058 MYRON BANDER 38

The momentum conjugate to the triad e A is

m, = —2e E
A ABC Ob c

We will use interchangeabl ~" and co A', the latter are obtainable from the former:

a B b b B a
pa Ae 7Tb eB —2e A VTb eB

4 det(e)

(2.17)

(2.18)

(2.19)

f ' E . (2.16) vanish as a consequence of the relations of the spin connec-As in the previous case the coefficients o coT, in q, v

n &
'btions to the triads; these relations are of the same form as those expressed in Eq. & .'n . (2.13). co' acts as a Lagrange mu ti-

plier ensuring the vanishing of the local angular momenta:

cj'a 2&ABC~abc be a 0

The Hamiltonian constraint is

e,b, (B„coq co'—„coq oP—„'co s" 2A—e„'eq )ec ——0 . (2.20)

(2.21)

=a „n,"+co'„"m, =o . .cd A

The quantum-mechanical vacuum-to-vacuum amplitude is

Because of the covariant constancy o e ria s, ef th t
'

d th momentum constraints maybe expressed in two equivalent ways:

2e —e b (~ coa ~x~a )ec=d~n +co'~ma 0.'——

T

Z = P [de' (x)dm "(x)5(%(x))5(&'(x))5(7'(x) )(gauge-fixing terms)]exp f d x n,"(x) ez (x)
X

(2.22)

III. HAMILTONIAN LATTICE GRAVITY
IN 2+ 1 DIMENSIONS

A. Discrete t~o-dimensional moving-frame formalism

Vj =f V„(x)dx " . (3.1)
1

In this manner, we would like to associate with the dyads
e„', link vectors I by using Eq. (3.1):

I;, = f'e„'dx" . (3.2)

However, there will be dift'erent moving-frame coordinate
systems associated with the triangles S and S' on either
side of (ij); thus, for each triangle having (ij) as a bound-
ary, we associate a vector 1;;(S). We want the magnitude
of each of these vectors to equal the corresponding link
length, and thus one may be obtained from the other by a
rotation:

As in Regge calculus, we shall discretize space by ap-
proximating a curved two-dimensional manifold by a col-
lection of flat triangles. In Fig. 1 we show a piece of such
a triangulation. In the Regge calculus the link lengths
are the dynamical variables. These variables do not,
however, have any simple interpretation in the sense of
lattice geometries; they are neither lattice scalars nor lat-
tice vectors and have an indirect relation to a lattice
metric defined on the triangles. It is simpler to obtain the
lattice analogue of the moving-frame coordinates. A lat-
tice vector lives on links, and for any vector field V„(x)
defined on our piecewise flat manifold, we may define a
lattice vector associated with the link (i,j) by

As we shall see, these rotations are related to the spin
connections of the continuum formalism. This result is
obtained using an integrated form of Eq. (2.13). We in-
tegrate this expression on the areas bounded by contours
shown in Figs. 2(a) and 2(b) and then use Stokes's
theorem. The first area is entirely inside one of the trian-
gles; inside such a flat region the spin connection van-
ishes:

f e'„dx"= g I,'(S)=0. (3.4)
(ij)ES (ij)ES

This yields the expected result that the sum of the link
vectors around the sides of a triangle vanishes. Let us,
also, look at the situation depicted in Fig. 2(c) where we
assume that the spin connection has a nonvanishing com-
ponent only in the 8 direction and that it is relatively
constant over the rectangle (i,j,k, 1). Again, using
Stokes's theorem, we obtain

I;;(S')=0'"(S',S)1;"(S) . (3.3)
FIG. 1. Triangulation of a curved surface. Triangles S and

S' share a common link (ij).
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(b)

f e„'dx"=(5' +cosdy) f e„dx" . (3.5)
l t

Note that c/&dy may be viewed as the infinitesima1 part
of a two-dimensional rotation. As shown in Fig. 2(b), we
have such an area straddling a link joining two triangles.
The spin connection is concentrated on this link and this
results in Eq. (3.3). The independent variables associated
with each link are the magnitude of the link vector l; and
the two unit vectors 1; (S) and 1, (S'). The rotation ma-

trix 0' (S',S) is defined by the relation

1 iJ(S')= ' (S',S)l ~~J(S) . (3.6)

Similarly to the way Eq. (2.8) relates the spin connec-
tions to the curvature tensor, there is a relation of these
rotations and the lattice curvature. We remember that in
Regge calculus, the curvature scalar is concentrated at
the vertices and is twice the deficit angle c.; in the discrete
case, it is easy to show that, for a particular vertex i',

(c)

FIG. 2. Two-dimensional regions over which the expression
relating the spin connections to the dyads is integrated. (a)
Area totally within one Bat triangle. (b) Area straddling two tri-
angles. (c) Generic thin sliver illustrating the notation used in

Eq. (3.5).

in the above, the product extends over all pairs of trian-
gles emanating from vertex i.

The last geometric topic we wish to discuss concerns
the definition on the lattice of functions that are Euclide-
an vectors but curvilinear scalars, such as, for example,
the lapse function N'. In the continuum, to any such
function we may associate a Euclidean scalar but a curvi-
linear vector, namely, N„=N'e„', with an inverse rela-
tion, N'=N„e, . Now consider the two triangles S and
S on either side of the link (ij) in Fig. 1. Curvilinear
vectors are associated with links; on the link (ij ) we have
a vector N;, Th.e Euclidean vector functions N;(S) and

N,'(S') are obtained by contracting N,, with vectors be-

longing to the dual basis: namely,

abl b (S)¹(S)=N;
E bl„(S}l,b (S)

(3.9)
Eoblb($ ),

Na($') =N, ' E'"1'(S')1 (S')

In addition to being labeled by i, the vector N,', (S) also
depends on the link (ij ); as in most cases, no ambiguity
arises; we shall, for notational compactness, drop this
dependence. Note specifically that this N;(S) is orthogo-
nal to 1;k(S), with a similar expression for S' and that
N (S)1;;(S)=N;(S')1;;(S').

B. Hamiltonian gravity on a discrete
two-dimensional manifold

As there are three variables associated with each of the
links so there will be three canonical momenta ~,", the
momentum canonical to I, , and two angular momenta,
L;&(S) and L;J.($'), canonically related to the two unit
vectors. We may also associate a momentum vector
m', J (S) with each link vector:

2 Sing i ~i Gab (3.7)
E' 1;J(S)L;J(S)

rr,'J (S)=I;J(S)~;—
IJ

(3.10)

where the curvature matrix is defined as

a'b= go(S, ,S )
'b. (3.&)

with a similar expression for n'; (S'). The following rela-
tion for phase-space volumes, for each link (ij ),

dn dL (S)dL (S')dl dl(S)dl(S') =d m($)d n($')d 1(S)d 1 (S')5(1(S)—1 (S')}5(1'(S)n'(S)—I '($')m'(S') ), (3.11)

is easy to show. As the sum of the link vectors around
any triangle vanishes, Eq. (3.4), we may choose

n",~($)=0 .
(ij)ES

(3.12)

Ideally, the above relation should be used to eliminate
redundant momentum variables and retain only an in-
dependent set; we cannot accomplish this explicitly and

even in principle the solutions would introduce nonlocal
expressions in that the eliminated momenta, when ex-
pressed in terms of the retained ones, would involve vari-
ables from the whole lattice and not just from nearby
links. This is the nonlocality mentioned in Sec. I. We
shall keep Eqs. (3.4) and (3.12) as constraints on phase
space. We now turn our attention to rewriting the con-
straints of Eqs. (2.11) and (2.12) on the lattice.
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(a) Angular momentum constraint . The angular
momentum constraint is easy; for each triangle we have

(3.13)

&ON(') ——g N(') (S„)[n~(); (S„)+m~oq (S„)] (3.14)

to zero yields the momentum constraints. Again we
should remember that No(S„) depends on the link (Oi)
To show that the transformations generated by this

(b) Momentum constraints I.n the continuum, the
momentum constraints are the generators of
diffeomorphism transformations, which do not change,
but just reparametrize the spatial manifold. On the lat-
tice, such transformations will change the intrinsic
geometry. What we shall require is that neither the
Hamilton-Jacobi functional nor the quantum-mechanical
wave functional change under such transformations.
What is crucial, however, is that these transformations
generate an acceptable lattice geometry. Namely, what-
ever these transformations do to the link vectors, the sum
of the transformed vectors around any triangle must van-
ish and the lengths of vectors belonging to two triangles
sharing a common link must be the same. In the continu-
um the generator of diffeomorphism is just the covariant
divergence of the momentum operator. The lattice diver-
gence at a vertex is related to the sum of vectors emanat-
ing from that vertex. A typical situation is illustrated in
Fig. 3. We have several triangles, labeled by n, with
n =1,2, . . . , and with 0 as a common vertex; the other
vertices of this system are denoted by m = 1,2, . . . , with
vertices m and m + 1 belonging to triangle S . Using the
procedure outlined in the discussion surrounding Eq.
(3.9) we can define on each triangle a Euclidean vector
N'(S„). With an appropriate choice of the N'(S„)'s, set-
ting

FIG. 3. Complex of triangles surrounding the vertex 0.

operator preserve the geometry, consider the set N'(S&)
and N'(S2) originating from an No2 [cf. Eq. (3.9)]. It is
easy to show that I;2 and 123 do not change; lo, (S, ) and
I Q3 ( S2 ) are just rotated and thus do not change their
lengths while the change in length of Io&(S& ) is equal to
that of I('), (S2).

(c) Hamiltonian constraints. As the structure of lattice
curvature is described in the discussion surrounding Eq.
(3.7), the transcription of the Hamiltonian constraints,
Eq. (2.11a), to the lattice is obvious once the cross prod-
uct is defined. This is particularly simple for vectors
whose sum around any basic triangle vanishes. In gen-
eral, let V„"(x), r =1,2 be a two-vector field, whose
discrete versions V,

" satisfy g~;.~~s V =0; similarly, let
N; be the discretization of a scalar field N(x). The con-
tribution of a triangle S with vertices i,j,k to the integral
of the cross product of the Vs is

I d x N(x) V„"(x)Vt't(x)e" e„~,'(N, +N +N„—)(V,
"

V,'.„+V".„Vk,. + V„",V,.', )e, .

Referring to Fig. 3, the Hamiltonian constraint at the vertex 0 is

&o——eo —
—,', g [n~();(S„)n~~j(S„)+n';~(S„)nJo(S„)+a~)0(S„)mo;(S„)]e,b

(3.15)

A——g [Io;(S„)I,)~(S„)+I~(S„)I~()(S„) I+; ( 0S) t;I( S)] qe. (3.16)

By using the phase space constraints on the I,~(S)'s and
the m', (S)'s as well as the three dynamical constraints &,
&', and T, we can write the discrete version of Eq.
(2.14); it is somewhat tedious and we refrain from doing
this explicitly.

IV. HAMILTONIAN LATTICE GRAVITY
IN 3+1 DIMENSIONS

A. Discrete three-dimensional moving-frame formalism

Many of the arguments used in the previous section
may be carried over to this dimensionality; we shall not
present them in as great detail as before. A curved

three-dimensional manifold is approximated by piecewise
flat tetrahedra. Each link (ij) belongs to several such
tetrahedra, the precise number depending on the specific
tessellation. Again, for each tetrahedron S we define a
three-dimensional link vector I,', (S). Vectors belonging to
different tetrahedra, but to the same link are related by
Eq. (3.3), where this time 0'"(S',S) is a three-
dimensional rotation associated with the triangle com-
mon to the two tetrahedra. As we require that the sum
of the link vectors around any triangle vanish, we have,
for each tetrahedron, three independent link vectors that
form the bases of the moving frames, or triads. As the
rotation matrices 0' (S',S) are associated with triangles,
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we have three relations of the type of Eq. (3.6}, only two
of which are independent; given the I/'s, these relations
determine the rotation matrices.

In the two-dimensional situation the curvature ma-
trices were associated with points, whereas in this case
they will be defined on links. Consider all the tetrahedra
S„containing a common link (ij) and labeled sequentially
in a counterclockwise manner. We define

R = g O(S„,S„,) (4.1)

The deficit angle e.;J around this link is obtained from

(4.2)

As in the two-dimensional case, we close this section
with a discussion of the proper definition of a Euclidean
vector field¹.Consider the situation depicted in Fig. 4
where we have several tetrahedra surrounding a common
link (01) and links (Om), m =2, 3, . . . , forming the edges
of these tetrahedra. [We should have indicated a deficit
angle around the link (01); for clarity of presentation we
have not done so.] To a vector field N0, we associate the
Euclidean fields N0(S ) by

E'"'I (S )I' (S )0 0( +))
E l0((S )10 (S )10( +))(S )

(4.3)

As in the previous section, the explicit dependence on the
link (01) is suppressed. For each tetrahedron, N0(S ) is
orthogonal to 10 and to 10~ +» and its scalar product
with I0, is independent of the particular tetrahedron.

B. Hamiltonian gravity on a discrete
three-dimensional manifold

On each link (ij) we have I; and n unit vectors, the
I '(S„)'s, as dynamical coordinates. Their canonical mo-

menta are m; and n angular momenta, L;&(S„). The in-

dex n refers to the various tetrahedra containing the link
in question. For each of these tetrahedra we may define a

I

momentum ~ector n,' associate. d"with (ij ):

E'" 1,/(S„)L,'J(S„)
m';, (S„)=I;"(S„)n;/—

l/

(4.4)

For each link the following relation among phase-space
volumes,

FIG. 4. Complex of tetrahedra sharing a common link (01).
Tetrahedron S2 has vertices (0,1,2,3).

dm dl g dL'(S„)dl '(S„)=g d n(S„)d I (S„)5(1(S„)—l(S„,))5(l '(S„)n'(S„)—I '(S„,)n'(S„,)), (4.5)

holds. We require Eq. (3.12) hold on all triangles.
(a) Angular momentum constraints For each tetrah. edron we have

7'(S)= g L &(S}=0.
(ij)ES

(4.6)

(b) Momentum constraints. The argument for the construction of the operator giving the momentum constraints is
the same as the one presented for the two-dimensional case. Let S„be the set of tetrahedra having a common vertex,
say 0; denote the other vertices of each tetrahedron by i,j,k. Then,

&'N0 =g N'(S„)[m~0, (S„)+m~(), (S„)+n~()k (S„)], . (4.7)

with an appropriate choice of the N'(S„)'s, yields, upon setting it equal to zero, the desired momentum constraints. As
in the lower-dimensional case, the N'(S„)'s are determined by Eq. (4.3); under infinitesimal transformations by &' lat-

tice geometries are preserved.
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(c) Hamiltonian constraints. The lattice version of the integral over a tetrahedron Sz, with vertices 0, 1, 2, and 3 (cf.

Fig. 4) of a triple product of the vector fields, V„" (x), with r = 1,2, 3, is

d x N(x) V„" (x) Vs(x) Vc(x)e" e„,~ —,', (Np+N, + N2+N3 )
S2

X ( Vpi Vp2 Vp3 + Vi2 Vip Vi3 + V2p V2i V23 + V3i V3p V3p )e„„ (4.8)

Ap= —,
' g Iptspt —

—,
' g [mp;(S„)top~(S„)cook(S„}]e,b,

I n

A g [Ip& (S& )Ipj(S+ }Ipk (S& )]E~s~
n

(4.9)

where the cp,".J's are related to the momenta by [cf. Eq.
(2.18)]

X(kl)ES (~ij ~kl kl 2Iij ~klIkl }

8 vol(S)
(4.10)

The factor —,
' in front of the deficit angle term in Eq. (4.9)

reflects the fact that sp, appears twice: once in &p and
once in JV&.

We have written the above in a form symmetric in all the
V;"'s. Because of the condition that the sum of the V"s
vanishes around any triangle we could have just kept one
of the four products on the right-hand side above and
multiplied the answer by four; we shall do thus below.
The Hamiltonian constraints will be presented for the set
of tetrahedra discussed in connection with the momen-
tum constraints, namely, all tetrahedra S„, emanating
from a common vertex 0. Within each tetrahedron we
will label the sites by O, i,j,k; we will use I to denote any
of the sites connected by a link to 0:

V. CONCLUSION

Through the use of a lattice version of a moving-frame
formalism we obtained a discrete version of Hamiltonian
gravity. As mentioned in Sec. I, we paid a price in that
the phase space had to be enlarged; even though for each
triangle the sum of the link vectors and the sum of their
canonical momenta vanishes, these are treated in a sym-

metric fashion. It is not possible to implement Eqs. (3.4}
and (3.12) or their three-dimensional analogues, in a
closed form. The redundant variables will be nonlocal
functions of the retained ones. It is this that hinders an

immediate check of the closure or nonclosure of the con-
straint algebra. We hope to return to this problem soon.

The discrete moving frame formalism has its own

geometric aesthetic appeal; the spin connections are ex-

plicitly related to Euclidean rotations between coordinate
systems de6ned on contiguous simplices, and the curva-
ture is related to a product of such rotations around a
subsimplex. This is reminiscent of the definition of field

strengths in lattice gauge theories.
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