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Processes near the event horizon of a black hole excite a ringing of fields (electromagnetic, gravi-

tational perturbation, etc.) at certain complex frequencies, called quasinormal frequencies, charac-
teristic of the hole. Evidence for such oscillations consists almost entirely of their appearance in de-

tailed numerical solutions of specific problems. Despite the importance of quasinormal ringing in

the generation of gravitational radiation, little work has been done on clarifying the way in which

the ringing is excited, or in estimating the strength of the excitation, without a detailed computer
solution. We formulate here the theory of the excitation of ringing of Schwarzschild holes from

Cauchy data, in which a coeScient Cq seems to describe the excitation, but is given by a formally

divergent integral. The meaning of Cq is shown actually to be an analytic continuation of the in-

tegral in the complex frequency plane, and this idea is used as the basis of computational techniques
for finding Cq. We then demonstrate that Cq does not in general describe the astrophysically in-

teresting quantity, the near-horizon stimulation of the ringing. We introduce two approaches to the
correct description. The first uses a modified Cq based on an ad hoc modification of the Cauchy
data. The second is based on a series representation of Cq; a truncation of this series automatically
selects the astrophysically interesting part of Cq.

I. INTRODUCTION

One of the most interesting aspects of gravitational-
wave detection will be the connection with black holes.
Black-hole processes may provide the best detectable
source of gravitational radiation and gravitational radia-
tion may provide the best way of studying holes. In par-
ticular, black-hole radiation exhibits certain frequencies
characteristic of the parameters of the hole and indepen-
dent of the process giving rise to the radiation. These
"quasinormal" (QN) frequencies should appear, in princi-
ple, in the electromagnetic radiation produced near a
hole, but the frequencies, 10 Hz or less, are too low to
propagate in an astrophysical environment. Low-
frequency gravitational waves can propagate and it is at
low frequencies that searches for gravitational waves will
be carried out. '

QN frequencies arise theoretically as the complex fre-
quencies at which source-free perturbations (electromag-
netic, gravitational, etc. ) of a black-hole spacetime propa-
gate inward at the horizon, and outward at spatial
infinity. Since these are the physically correct boundary
conditions on the evolution of any perturbation field of a
hole, it is reasonable to expect that some evidence of
these special frequencies will show up in the resulting ra-
diation. QN oscillations were first noticed by Vish-
veshwara in calculations of the scattering of gravitation-
al waves by a Schwarzschild black hole. Press soon after
coined the term quasinormal frequencies. QN oscilla-
tions have been found in perturbation calculations of par-
ticles falling into Schwarzschild holes, of gravitational
disturbances of rapidly rotating Kerr holes, and of the
collapse of a rotating star to form a Kerr hole. Nu-
merical investigations of the fully nonlinear equations of
general relativity have given results qualitatively similar

to the resu1ts of perturbation calculations. In particular,
numerical studies of head-on collision of two black
holes, and of gravitational collapse to form a Kerr
hole, ' have produced gravitational radiation dominated
by QN oscillations.

Various approaches have been given to the computa-
tion of QN frequencies, '" ' but relatively little atten-
tion has been given to understanding what details of a
perturbation determine the strength with which QN ring-
ing of a black-hole spacetime is excited. Cunningham,
Price, and Moncrief gave an ad hoc rule for the QN
energy in the gravitational radiation from a collapsing
star. Leaver' has presented analytic and numerical re-
sults related to the present paper. Aside from these two
investigations there seem to be no studies of the princi-
ples of QN mode excitation. Most important, there is no
useful way of estimating the energy of QN gravitational
waves from astrophysical sources, or of understanding
what features of a problem determine the strength of the
QN ringing it leads to. We attempt here to lay the
groundwork for understanding these issues.

The mathematics of the QN modes of the spacetime
will be seen to have a superficial resemblance to the
mathematics of the normal modes of a linear system
governed by a self-adjoint operator. The linear operator
which determines QN modes is not self-adjoint (due to
the QN boundary conditions) and QN modes differ from
normal modes in important mathematical details: the
QN frequencies are complex, the QN modes do not form
a complete set, etc. The most crucial difference, however,
is a qualitative one: The mathematical procedure for
determining the excitation of a normal mode is clear,
definitive, and straightforward. For QN modes the very
meaning of the strength of the excitation can be vague.

In this paper we will limit considerations to
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Schwarzschild black holes, and to QN ringing of a per-
turbation field which is specified with Cauchy data on a
spacelike hypersurfaee. The latter is a serious limitation;
for problems involving collapse of a star to form a hole,
boundary data would involve Dirichlet data on the sur-
face of the collapsing star, a timelike surface. The gen-
eralization of the present work to other boundary condi-
tions will be given in a future paper.

%e start, in Sec. II, by defining an excitation coeScient
C for the QN ringing. The formal result is an integral
over radius, which in general diverges. It is shown that
the formally divergent integral must be interpreted as an
analytic continuation, in the complex frequency plane,
from frequencies at which the integral converges to QN
frequencies. This interpretation is used in Sec. III where
specific techniques are presented for accomplishing the
analytic continuation. In Sec. IV we show that the
coeScient C does not in general give a meaningful mea-
sure of the extent to which QN energy is present in radia-
tion. The flaw in C is that it is too sensitive to Cauchy
data far from the horizon, whereas QN ringing is pri-
marily excited by perturbations fairly close to the hor-
izon. An ad hoc method of modifying the Cauchy data is
presented which gives useful results. An alternate ap-
proach to a useful answer for QN energy is given in
which the excitation coefficient C is represented as an
expansion. If only a few terms in that expansion are
kept, the excess influence on C of distant Cauchy data is
eliminated.

The conventions and notations used in the paper are
generally those of Misner, Thorne, and %heeler. ' For
special notations dealing with quasinormal mode excita-
tions we will use notation similar, but not identical, to
that of Leaver. '

II. THEORY OF THE EXCITATION COEFFICIENT Cq

2

V(x) = 1(l +1)—
r3 r

(2.4)

with a. taking the value 0, 1, and 2, respectively for sca-
lar, electromagnetic, and gravitational perturbations.
For simplicity we shall henceforth omit the multipole in-
dices. The origins of these equations are reviewed by
Leaver. ' Much of the discussion of the excitation of QN
ringing, and of the C coeScient, will not depend on the
detailed form of V(x), but only on the fact that it dies off
at ~x

~

+~.
For the present we assume that the auxiliary data for

Eq. (2.3) are Cauchy data, ql and 8+/Bt, on the initial
surface t =0. We assume that %(x, t) is well behaved at
t ~ 0D and we define the Laplace transform g(x, s) by

4[4(x, t)]=/(x, s)= J e "4(x,t)dt,
0

ql(x, t) = . e "f(x,s)ds,
2771 I

(2.5a)

(2.5b)

8%'= —sq'
I r =o

i=o
(2.6)

Since V(x)~0 as
~
x

~

~ ~ the homogeneous solu-
tions to Eq. (2.6) will have the asymptotic form e*'". We
define two special independent homogeneous solutions

yL (x,s) and ya (x,s) by their asymptotic behaviors

where I is a vertical contour in the right half of the com-
plex s plane. From the usual properties of the Laplace
transform, in particular X(B+/Bt) = %(x, t =—0)
+sf(x, s), the transformed version of Eq. (2.3) is found to
be

a' —[s + V(x)]i}'j=S(x,s)
Bx

A. Excitation of quasinormal ringing

SX —SX

Q ~ —oo &~+ oo
(2.7)

The Schwarzschild spacetime background is described
with the line element

ds = —(1—1/r)dt +(1—1/r) 'dr

+r (d6} +sin Hdg ), (2.1)

where we are using units in which c =6 =2M =1. It is
useful to introduce an auxiliary coordinate x (r, in the
notation of Leaver' and of Misner, Thorne, and
Wheeler' ) defined by

x =r+ln(r —1),

and ranging from x = —ao (the horizon) to x =+ ~ (spa-
tial infinity). Perturbations on the spacetime are decom-
posed into multipole moments as gt 41 (x, t)YI (8,$),
where the functions 4& (x, t) satisfy

yL — A,„(s)e' + A,„,(s}e

yii — B;„(s)e'"+B,„,(s)e
(2.8)

The %ronskian of the two solutions is

(These correspond, respectively, to the functions f„+ and

f„+ of Leaver, '
) Since we will need these definitions to

apply for arbitrary complex s some care must be taken
with their definition. More specifically yL, as a function
of r, has the form (r —1)' multiplied by a function of r
which is analytic' near r =1 for all s. The precise nature
of the asymptotic behavior of y„ is best discussed with
Leaver's expansion in terms of spheroidal wave func-
tions. ' At the opposite limits these functions have the
forms

—V(x)%'I ——0 .
at2

(2.3) = —2sA;„(s}=—2sB,„,(s) . (2.9)

The potential V(x) has the form The QN values s of s are the values for which
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A,„(s )=B „,(s )=0 . (2.10) B. Numerical results for initial data of a finite extent

At these values of s, yz and yz are not independent but
are related by

yL(x, s, )=A.„,(s )yR(x, s )

R(x, s~)/B;„(s~) . (2.11)

+yL (x,s) f y„(x',s)S(x', s)dx'
X

(2.12)

We characterize the intensity of the QN excitation at fre-
quency s with the excitation coefficient C, such that the
QN ringing in tII(x, t), at sq, can be written as

%(x, t) ~, =C yR(x, s )e '
q

(2. 13)

For x ~&1, that is, for a radius very large compared to—S X
the horizon radius, y~ =e ' and 4' has the form

s (t —xj
C e ' . The appearance of QN ringing is associated
with a singularity in P(x, s) at s =s, and the singular be-
havior originates from the zeros of W(s). We follow
Leaver's notation' and approximate W(s) by

Since V(x) is real in Eq. (2.6) the solutions s of Eq. (2.10)
must occur in complex conjugate pairs s and s*. When
we speak of excitation of a QN mode we will in general
mean excitation of a conjugate pair. Accurate and exten-
sive tables of s have been given by Leaver. ' Quasinor-
mal frequencies correspond to waves moving outward at
spatial infinity and inward at the horizon, the boundary
conditions that must apply to any physically acceptable
perturbation field. The solution to Eq. (2.6) with these
boundary conditions can be shown by standard tech-
niques to be given by

T

1 X
1(t(x,s) = yR (x,s) yt (x', s)S(x', s)dx'

W s —m

4'(x, &)=C,yR(x, s t)e ' +[C iyR(x, s i)] e '
S )t=2 Re[C~, yR (x, s~t )e ' ] . (2.17)

The four parameters K,a, co, to of the numerically evolved
waveform can be compared with the two complex con-
stants, C~, and s~, in Eq. (2.17). In particular, in this way
we were able to estimate to three significant figures both
the real and the imaginary part of Cq& for the excitation
of the least damped I =2 gravitational QN mode in Fig.
1. This estimate is in excellent agreement with the result,

For conditions on S(x,s) for which the integral exists,
the expression in Eq. (2.16) does indeed give the correct
value for C . Figure 1 shows the solution to Eq. (2.3} for
Cauchy data which vanish except for 2&r &4 where
r}fir}t=0 and 1(=1+cos[(r—3)n]. This solution was
found by using a second-order finite difference method,
along the characteristics t+x =const, to solve the partial
differential equation. Standard numerical tests have
shown this numerical approach to be highly accurate.
Henceforth we shall refer to this method as "numerical
evolution" of the initial data. The method gives us a
definitive way of assessing the validity and accuracy of
our analytic approach to the evaluation of C .

In Fig. 1, 4' is shown as a function of t at r =r0=11
(or, equivalently, at x =xo ——13.303) for /=2 gravita-
tional perturbations. There is a clear indication that QN
ringing dominates the waveform for t —x greater than
about 5. For large values of t —x we can match the com-
puted 4 very well with the functional form
Ke "cosa'(t to). If we —denote by s~, the least damped
of the s for 1=2 gravitational perturbations, then the
QN ringing associated with this frequency and its com-
plex conjugate is

W(s)=2s (s —s )a +0((s —s~) ) (2.14) 2.4

lt (x,s) = [2s (s —s )aq ] 'yR (x, s }

X f yL(x', s )S(x',sq)dx', (2.15)

and that the excitation coefficient is given by

+x
C = yi(x, s )S(x,s )dx .

2Sq CX
q

oo
(2.16)

near s =s . It follows from Eqs. (2.11)—(2.14) that near
s =s we have
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There is a serious difficulty with Eq. (2.16). For the per-
turbation fields to be stable all s must be (and all s~ are,
in fact) in the left half plane (LHP) of complex s. This
means that yi (x,s ) diverges exponentially both for
x ~—~ and for x ~+ ~. The integral exists only if the
source function S is zero outside some finite range of x, or
if S falls oft exponentially with e-folding length
(1/Re( —s ), as

~

x
~

FIG. 1. Waveforms for I =2 gravitational perturbations re-
sulting from Cauchy data which vanish outside a bounded inter-
val. The initial conditions at t =0 are that 8%'/Bt =0, and that
4=0 except for 2&r &4 where 4=1+cos[(r —3)tr]. The
solid curve is the result of numerically evolving the data; the
dashed curve shows the least-damped QN mode with the excita-
tion coefficient computed from the formal integral expression;
the curve with dashes and dots shows the superposition of the
six least-damped modes. All curves are at r = 11.
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Cq ] 0.377 02 + i0.329 95, of numerical integration of
Eq. (2.16). Figure 1 shows the agreement between the nu-
merically evolved waveforin and a pure QN mode at s

&

with C, computed from Eq. (2.16). Shown also is the
sum of the six least-damped QN modes, each with its ex-
citation coefficient computed from Eq. (2.16). Aside from
the initial turn on of the oscillations the numerically
evolved waveform is extremely well described by either
QN waveform, and is clearly dominated by the least-
damped QN mode. A considerable number of model cal-
culations was studied with a considerable variety of ini-
tial data. In all cases it was found that whenever the in-
tegral in Eq. (2.16) exists, its value accurately predicts the
excitation.

C. C~ as an analytic continuation

In general the integral in Eq. (2.16) diverges. To un-
derstand the meaning of Eq. (2.16) we must go back to
the definition, Eq. (2.5), of the Laplace transform. For 4
well behaved as t ~ ~, the transform P(x, s) will be ana-
lytic in the right half plane (RHP) of s, and only values in
the RHP are needed to do the inversion in Eq. (2.5b). In
principle then, i}'r(x,s), as given by Eq. (2.12), is defined
only in the RHP. The meaning of P(x, s) in the LHP is
the analytic continuation of this g(x, s) to the LHP. Fol-
lowing Leaver' we will assume that the analytically ex-
tended f(x, s) has a branch point in the finite s plane only
at s =0, so that the only specification needed for the path
of analytic continuation is the way the path goes around
s =0. Note that the s dependence of S (x,s) in Eq. (2.6} is
linear, so any multivalued behavior of g(x, s) must origi-
nate in the s dependence of yl and y&, and will be in-
dependent of the Cauchy data. (This conclusion remains
true when the initial hypersurface is more general than
t =0. See Sec. II D below. )

To make sense of Eq. (2.16) we must take it to be the
analytic continuation of some function of s which is well
behaved in the s plane. The obvious guess

f (s) = yt (x,s)S(x,s)dx
2S Ct —oo

q

(2.18)

cannot be used since yt has a part that goes as A,„(s)e"
as x ~+ oo [Eq. (2.8)] and therefore, for s in the RHP,
the integrand in Eq. (2.18) will in general diverge as
Q —++ |X}.

To find a valid approach to treating C as an analytic
continuation we start by defining y „(P„ in the nota-
tion of Leaver' ), a new homogeneous solution to Eq.
(2.6) defined by the boundary condition

g(x, s) =y„(x,s} +f2(x,s),
W(s)

where

f, (x,s)= f yL(x', s)S(x', s)dx'

+ A.„,( s) f "y„(x', s)S (x ', s)dx '

X

and

(2.21)

(2.22)

A;„(s)
f2(x,s)= y„(x,s) f yR(x', s)S(x', s)dx' .

C
ljl(x, s) =

yii (x, sq )
s —s

q

We therefore define

f, (x,s)
C (x,s)=

2sq cxq

(2.24)

(2.25)

From Eqs. (2.14), (2.21), and (2.24) it follows that C (x,s)
is a correct generalization, to arbitrary s, of C . That is,
C (x,s) is well defined in the RHP and the analytic con-
tinuation of C~ (x, s ) to s =sq gives C~.

It may seem strange that C (x,s) is a function of x,
since the excitation coefficient C is, by definition, in-

dependent of x. The point is that C is independent of x
at s =s . To see this, note that

f, (x„s) f, (x2,s}—
Xl

[yL (x,s}—A,„,(s)yii (x,s)]S(x,s)dx,
X2

(2.26)

and [from Eq. (2.11)] that [yL (x,s) —A,„,(s)yti(x, s)) van-
ishes at s =s We could eliminate the somewhat decep-
tive x dependence by simply setting x =0 in C (x,s), but
it is useful to keep C (x,s), as defined in Eq. (2.26), as the
basis for the development, in Sec. III, of specific tech-
niques for analytic continuation.

D. More general initial data

(2.23)

Since A;„(s)/W(s)= —1/2s, the function f2(x, s) will be
nonsingular at s =s . [Note that y„cannot be singular
at s =s since y„(x,s) is well defined for all s. ] Thus
only the first term on the right in Eq. (2.21) can have a
singularity at s =s~ corresponding to QN ringing. We
note that f, (x,s) is well defined in the RHP that
W(s)=2sz(s —s )a near s =sq, and that QN ringing

[the Laplace transform of Eq. (2.13)] corresponds to

y„(x,s) — e'" . (2.19)

yL (x,s) = A;„(s)y „(x,s)+ A,„,(s)yii (x,s) (2.20)

follows from Eqs. (2.7), (2.8), and (2.19). We next take s
to be in the RHP, and in Eq. (2.12), which is valid in the
RHP, we substitute Eq. (2.20), to arrive at

The solutions y, yL, and yz are not independent, of
course. In particular the relation

It is reasonably straightforward to generalize the ap-
proach outlined above to a Cauchy hypersurface other
than t =0. For t =to(x), a single-valued function speci-
fying a spacelike hypersurface, we replace Eq. (2.5a) with

P(x, s) —= f e "+(x,t)dt

= f e "4(x,t)H [t —to(x)]dt, (2.27a)

where 0 is the unit step function. From the last equality
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it follows that this integral transform can be inverted to
give

)p(x, t)= f e "g(x,s)ds,2' 1 I
(2.27b)

for t & t()(x). In Eq. (2.27a) we can differentiate to get

(3 Q/()x = f e "[(}%(x, t)/Bx ]dt

+e ' [(st() —t()'))p(x, t) 2t(—)t)ill(3x

—t() (3%/Bt] ~, , („), (2.28)

+(1+tg)BP)/Bt] ~. (2.29)

Numerical tests have been conducted for examples in
which the initial surface t =to(x) in the t, x plane was
made up of joined line segments with slopes +1. The re-
sult of using Eq. (2.16) for these examples was in excellent
agreement with the results of numerically evolving the
Cauchy data.

IIIo EVALUATING Cq

A. Choice of spatial variable

where a prime denotes differentiation of to with respect
to x. It is straightforward to use this result and Eq. (2.3)
to derive a differential equation for f which has the same
form as Eq. (2.6), but in which the source term is

S(x,s)= —e ' [(s st' —+ t" )q((x, t)+2t' (3+/Ox

in the complex plane of the spatial variable. For either,
the dependence of the integrand on the spatial variable is
crucial, and both require that the spatial variable r be
used; the x variable, so useful for visualizing QN prob-
lems, must be avoided. The reason for this is that yL is a
simple analytic function of r, as can be seen in the expan-
sion

yL ——(r —1)'r 'e '" " g a„(s)
n=0

(3.2)

1 T
IH(ri, s) = yt (r, s)S(r, s) dr,2sa [ r —1

q q

f2 rI;d(r„s)= yL(r, s)S(r, s) dr,
2s o, &~

' ' r —1
q q

A,„,(s)
I„(r2,s) = y& (r, s)S(r, s) dr,

2$ CX "2 f —1
q q

with

(3.3a)

(3.3b)

(3.3c)

The expansion coefficients are given by Leaver, ' who
shows that the series is convergent, for all finite s and
finite r. The series is therefore an analytic function of r
(for r & oo ) and the singularities of yL at r =0 and 1 are
those displayed in the leading factors on the right-hand
side of Eq. (3.2). The function r(x), the inverse Eq. (2.2),
has an infinite number of branch points, at x =i ~+2ni m. ,
where n =0, 1,2, . . . , and yL, as a function of complex x,
would have singularities at these points. In terms of the
variable r the horizon and spatial-infinity contributions to
C are

The demonstration, in Sec. II, that C is the analytic
continuation of an integral expression does not automati-
cally give us a way of finding a numerical value for C„.
In this section we present several approaches to such a
calculation. The starting point for all of them is Eq.
(2.25) in which f, (x, s) is defined, for s in the RHP, as the
integral in Eq. (2.22), and for s in the LHP as the analytic
continuation of this integral. For some purposes it is use-
ful to rewrite Eq. (2.22) as

xl
f, (x,s)= f yt (x', s)S(x', s)dx'

X~

+ yL x', s S x', s dx'
Xl

+ A,„,(s) f y„(x's)S(x', s)dx' .
X2

(3.1)

The middle integral, for finite x& and x2, converges for s
in the LHP, so it can immediately be continued to s sq

simply by evaluating the integral at s =s . In this way

the numerical details of an astrophysical model can be
put into the middle integral and the contribution to C
evaluated. The difficulties at the horizon (x = —~ ) and
at spatial infinity (x =+ co ) are then confined, respec-
tively, to the first and third integrals in Eq. (3.1) and can
be dealt with separately. We can, of course, choose
x, =x2 so that the middle integral disappears.

Two basic approaches will be given for evaluating C:
(i) a series expansion in the spatial variable, for dealing
with the horizon integral, and (ii) a contour deformation

Cq —~H+~mld+- (3.4)

In the remainder of this section, techinques will be given
for analytically continuing these expressions from s in the
RHP to s . The general approach will be to assume that
for sufficiently small (r, —1) and for sufficiently large r2,
the source function S(r,s) can be approximated in terms
of functions having simple r dependence.

B. Analytic continuation at the horizon

We assume that for r &r, the source function S(r, s)
can be expanded in a series of powers of r —1. Since yL
can be written as (r —1)' multiplied by an analytic func-
tion of r —1 it follows that the integrand in J& can be
written as

yt (r, s)S(r,s)r/(r —1)= g B ( k)(sr —1)"+'
k

(3.5)

Every term for which Re(k+s+1) &0 can be integrated
at r =1. If we choose Re(s) large enough so that every
term in Eq. (3.5) can be integrated, the term by term eval-
uation of Eq. (3.3a) is

1 1 )k +s + 1

IH(r, s) = g Bk(s)
2$ cx k+s+1 (3.6)

The analytic continuation of I&(r,s) from regions of the s
plane in which Re(k +s + 1) & 0 to the QN frequencies is
immediate. In Eq. (3.6), s is simply replaced by s .



38 EXCITATION OF QUASINORMAL RINCyING OF A. . . 1045

T
yL r, sS r, s dr,

r —1
(3.7}

where the contour of integration is that in Fig. 2(a), and
where s is in the RHP.

We can now deform the contour to the new contour y
shown in Fig. 2(b). Since the contour has been deformed
through a region in which the integrand is analytic, the
value of the integrand is unchanged. But with the new
contour the integral in Eq. (3.7), and hence IH, can be
evaluated for any finite value of s. The evaluation of the
integral in Eq. (3.7) can be done not only in principle, but
in practice, with yI (r, s) given by the expansion in Eq.
(3.5). This requires that the contour remain in the region

l
(r —1)lr

l
& 1, or equivalently Re(r) & —,', and that the

source function S(r, s) be analytically continuable from
the real axis to the deformed contour.

As a numerical example of the near-horizon techniques
above, we choose initial data corresponding to the source
function

s(1.5 —r), r &1.5,S(r,s)=
0, r & 1.5 ,

(3.8)

so that complications near r = ~ are avoided. For this
source function C~ =IH(1.S,s ) is computed in two ways:

Note that Eq. (3.5) does not require that the series for
S(r, s) be a power series, and that S therefore be analytic
at r =1. The values of k in Eq. (3.6) need not be integers;
the source function S can have a branch point at r =1.
The expansion for S can, in fact, be much more general
than a series of powers of r —1. It is necessary only that
S can be expanded in terms of a series of functions such
that (i) the series converges in some neighborhood of
r =1, (ii) the expansion functions, when put in the in-

tegral in Eq. (3.3a), can all be integrated for some region
of the complex s plane, and (iii) the resulting integrals can
easily be analytically continued to the LHP, specifically
tos =s

Analytic continuation of IH can also be carried out via
a deformation of contour in the complex r plane. We as-
sume that the source function S is nonsingular near r = 1

so that the integrand in Eq. (3.3a) has a branch point at
r =1 due to the factor (r —1)' in yI. We choose the
branch cut from r =1 to ao along the positive r axis, with
the phase of (r —1) taken to be zero just above the
branch cut. To use analytic continuation we consider the
integral

1 T
yI (r, s)S (r,s} dr

2$ cx
q q

r —1

on the contour shown in Fig. 2(a). For s in the RHP the
infinitesimal circular segment near r =1 makes a negligi-
ble contribution. The segment of the contour just above
the branch cut gives IH(r„s) while the segment just
below gives IH(r, , s} mu—ltiplied by the phase factor
exp(2tris) due to the phase change in r —1. We conclude
that

IH(rt, s) = 1 1

1 —exp(2n. is) 2sqa~

Im (r)

/ah. AAAAAAA. Re(r)

I(r)

t~
-v v v v v v v v Re(r)

FIG. 2. Contours in the complex r plane for analytically con-
tinuing the integral I„(r,s) to QN values of s.

first by expanding the integrand in IB in powers of
(r —1) and second by performing the integration in Eq.
(3.7) on a contour like that shown in Fig. 2(b). For every
C computed the two methods gave numerical results in

perfect agreement (i.e., agreement at the limit of numeri-
cal precision used).

The validity of the computed values of Cq is demon-
strated in Fig. 3, which shows the results of numerical
evolution of the initial data in Eq. (3.8). This result is
compared to the waveforms corresponding to pure QN
ringing with the computed excitation coeScients, both
for a single pair of QN modes, and for the superposition
of six pairs of QN modes. The agreement is excellent ex-

cept for very early times, at which pure QN ringing can-
not give a good representation of the waveform.

C. Analytic continuation of spatial infinity

To deal with the analytic continuation of I (r2, s) we
assume that the source function S(r,s) can be approxi-
mated by a simple form which can be analytically contin-
ued off the real r axis. We assume furthermore that the
behavior of the integrand in Eq. (3.3c) is dominated by
the e '" behavior of y„. Under these conditions analytic
continuation in the complex s plane is equivalent to a
contour deformation in the complex r plane.

To show this we start with a real positive value of s.
The integrand in Eq. (3.3c) is then well defined. Viewed
as a path in the complex r plane, the path of integration
is the segment of the real axis as shown in Fig. 4. We
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of I„(rz,s) for real s. But for contour I the integral in

I converges for any value of s in the lower half of the
complex s plane. Contour I" thus gives an analytic con-
tinuation of I„(r2, s) to the QN frequencies in the lower
half-s plane. A deformation of the original curve clock-
wise by 90 would give an analytic continuation to the
upper half-s plane, but it is not necessary to do this.
Once an excitation coefficient Cq is found for a QN fre-
quency s, the coemcient for its complex conjugate sq* fol-
lows from Cq(sq') = [Cq(sq )]*.

For a QN frequency s in the lower half-plane we have
then the analytic continuation

FIG. 3. Waveforms for l =2 gravitational perturbations from
a source function that does not vanish at the horizon. The ini-

tial conditions at t =0 are that 8%'/Bt =0, and that +=0 except
that +=(r —1.5) for r &1.5. The solid curve is the result of
numerically evolving the data; the dashed curve shows the
least-damped QN mode with the excitation coefficient computed
via a contour deformation in the complex r plane; the curve
with dots and dashes sho~s the superposition of the six least-

damped modes. A11 curves are at r = 11.

can, however, deform the contour without changing the
value of the integral. We must be sure that during the
deformation no singularity of the integrand is crossed.
The direction in which the new contour approaches
infinity must also be allowable, that is, the integral must
vanish along the circular arc which connects, "at
infinity, " the original and the new contour. For positive
real s this means that the asymptotic large-

~

r
~

direction
of the new contour must be within 90' of the original
direction. Curve I in Fig. 4 shows the result of a defor-
mation which has not crossed the singularities (shown as
crosses) of the integrand and which gives the same value

Re(r)

FIG. 4. Deformation of contour in the complex r plane for
analytically continuing I„(r~,s) to s =sq. The original contour
on the real r axis is rotated to contour I . During the rotation
the contour is distorted as necessary to avoid crossing any of the
singularities, shown as crosses, of the integrand in I „.

A,„,(sq )

I„(r2,s )= y„(r,s )S(r, s ) dr

I r
y~(r, s )S(r,s ) dr .2sa r 'q q r —1

q q

(3.9)

The deformation of the contour and the convergence of
the integral depend, of course, on the nature of S(r,s)
If, for example, S had the spatial dependence
exp[ (r ——1) ], a rotation by, e.g. , 90', of the asymptotic
direction in which the contour approaches infinity would
not be valid. For this particular example rotation is un-
necessary, as the integral in Eq. (3.3c) would itself con-
verge. It is expected that for astrophysical source terms
either the integral on the original path will converge for
$ sq or a simPle deformation, as in Fig. 4, will give an
analytic continuation to s =sq. It is possible, however,
that some source functions will require a special choice of
contour deformation.

With the last expression in Eq. (3.9) the integral can be
evaluated in practice as well as in principle if the series in
Eq. (3.2) is used to evaluate yL(r, s). This requires only
that the deformed contour remain in the region

~

(r —1)lr
~

& 1 [equivalently Re(r) & —,'] in which the
series con verges. Numerical investigations of model
problems confirm that this contour deformation ap-
proach gives the correct C, i.e., a C that agrees with
that found by numerically evolving the initial data.

The contour deformation approach to handling the
divergence at spatial infinity can be conveniently com-
bined with the contour deformation approach used in

Sec. IIIB to form a contour on which the integral

fyLS [rl(r —1))dr yields C . The process is illustrated

in Fig. 5. The choice r&
——rz is made for convenience so

that C =IH(r, ,s )+I„(r,,s ). The contour y from Fig.
2 is used, but the branch cut is chosen to follow the path
shown in Fig. 4. To y is now added a contour I dis-

placed an infinitesimal distance counterclockwise of the
branch cut, as shown in Fig. 5(b). Lastly, a path I" paral-
lel to 1" is added at an infinitesimal displacement clock-
wise of the cut, as shown in Fig. 5(c).

On y the integral of fyr S [r /(r —1)]dr gives

2s a [1—exp(2ins )]IH(r„s )

as discussed in Sec. III A. On I the integral gives
2s a I„(r,, s ). The integral on F' differs from that on
I by a sign and by the factor exp(2ims ) which arises
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1m(r) (a)

S
from the multivalued factor (r —1) ' in yL(r, s). [See Eq.
(3.2}.] The integral on I" therefore adds

—exp(2ims }2s a I (r&, s) .

When the three contributions are added together we see
that'

Re {r)

C =IH(r, , s )+I„(r,,s )

1 1 r
yl(r, sq)S(r, s ) dr,

1 —exp(2nis ) 2sa '~ '~ r —1

(3.10)

where the integral is taken on the complete contour in
Fig. 5(c). Although r~ appears in the first equality in Eq.
(3.10), it is clear that r, has no real meaning in the final
contour integration; this approach uses a single smooth
contour to handle simultaneously the difficulties of the in-
tegral both at r = 1 and at r = ao.

As a check on the validity of this method, initial data
were chosen to be

Im (r)

1

(r —1.5) +1

aeZar [, ,= 1

(r —2.5) +4

(3.11)

A A
V Re(~)

The branch cut was chosen to be horizontal out to r =3
and vertically upward thereafter. The I and I" contours,
infinitesimally close to the branch cut, lay to the right of
the poles of S at r =1.5+i and r =2.5+2i so that the
singularities of the integrand were not crossed as part of
the contour was rotated by 90' counterclockwise from the
real axis. The value of C computed from Eq. (3.10) with

this contour agreed, within the limits of the numerical
precision used, with values found by other approaches
(i.e., IH and I„evaluated by separate contour deforma-
tions, or IH evaluated by a series and I„evaluated by a
contour deformation). The computed values of C gave a
waveform in excellent agreement with the numerically
evolved waveform.

Tm(r)

IVJ TIMING AND THE MODIFICATION OF Cq

A. The onset of ringing

Re(r)

FIG. 5. The combination of the deformed contour for deal-
ing with IH and the deformed contour for dealing with I„.

The evaluation of C, as presented in the preceding
section, does not by itself answer the question of how
much energy is radiated in the form of QN ringing. The
additional crucial piece of information required is the
time at which the QN ringing starts. For a given value of
C, the earlier the start is the more energy is radiated.

Some simple arguments give an approximate idea of
when QN ringing turns on: The values of the QN fre-
quencies depend on the shape of the potential V(x) in Eq.
(2.4). This suggests that ringing should originate where
the potential is strongest, near the peak of the potential at
x =0. At significant distances from this peak the form of
the potential is simple and familiar. For x « —1 the po-
tential vanishes, and for x ~~1 the potential V(x) is
essentially a centrifugal potential. In neither case does
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anything like QN ringing get generated; the ringing
therefore must originate where

~

x
~

= 1. This conclusion
is supported by a three-dimensional plot, Fig. 3 in the pa-
per of Cunningham, Price, and Moncrief, showing the
development of the ringing in space and in time.

If the ringing starts near the peak of the potential,
what is it that sets off the ringing? Vishveshwara studied
the scattering by a black hole of an incoming gravitation-
al waveform with a Gaussian shape exp( —ax ). For a
broad packet (a «1) he found no QN ringing. Ringing
was excited only when the width of the packet was com-
parable to, or smaller than unity, i.e., than the
Schwarzschild radius. This suggests that Cauchy data
must vary on a length scale less than or of order unity to
excite ringing. This relatively rapidly varying Cauchy
data, furthermore, can set o8' ringing only near the peak
of the potential V(x).

The issue of timing is closely tied to certain difficulties
with the usefulness of Cq. Suppose that the Cauchy data
has the form of a narrow pulse that we can approximate
as a delta function 5(r —r ). For such a pulse the in-

tegral in Eq. (2.16) does not diverge and C can be evalu-

ated directly. Because of the asymptotic form e ' of
yL(x, s ) at large x, it follows that C~ must be an ex-
ponentially increasing function of r . This would seem to
suggest, contrary to intuition, that a bump in the Cauchy
data far from the horizon will excite much more ringing
than a similar bump close to the horizon. The explana-
tion lies in timing: A bump in the Cauchy data far from
the horizon must first propagate inward to the region of
the potential peak before it can stiinulate QN ringing.
The onset of QN ringing is therefore delayed by a time
td, ~,„=rz required for this inward propagation, and
the magnitude of the ringing (e.g. , the height of the first

I

0) x&1
2/x, x&1. (4.1)

With this substitution the homogeneous solutions to Eq.
(2.6) can be found in closed form. For x & 1 they are siin-

ply e*";for x & 1 the potential is a pure dipole centrifu-
gal barrier and the solutions are sxh'i' '(sx), where h", '

represents the dipole spherical Hankel functions. By
matching yL

——e'" for x &1 to ytt
—— isxh—', "(isx) for

x & 1, we find that there is a single conjugate pair of QN
frequencies

1 i
s — +

2 2
' (4.2)

As initial data at t =0 for our model problem we take
B%'/Bt =0 and

x /(2x, ), 1 & x, & x & x2,%(x)=
0 otherwise . (4.3)

The solution for this initial data can be found in closed
form and can be written as a superposition

%(x, t) =%o(x, t) +O'QN(x, t ), (4 4)

in which +o represents the direct propagation of the ini-
tial data and %QN contains the QN ringing. For x »1
the solutions are

QN peak) will be suppressed by a factor of order

~
exp(s~td, ~,„)~. This small factor will cancel the large

factor
~
exp( s—r )

~

in C .
This phenomenon is most transparent in a model prob-

lem in which we replace the actual potential of Eq. (2.4)
by a surrogate potential

1
40(x, t)= [(2x 2t —x2)H(t ——x+x~)+(2x 2t +x~)H(t ——x —x2+2)

4x)

—(2x 2t —x) )H(t ——x +x) ) —(2x 2t +x) )H(t ——x —x, +2)], (4.5)

1 —(t —x —x&+2)/2
%QN(x, t)= — H(t —x —x2+2)e ' [(4—xz)cos '(t —x ——x&+2)—x2 sin —'(t —x —xi+2)]

4x
1

2 2 2 2

1 —(t —x —xl +2)/2+ H(t —x —x, +2)e ' [(4—xi ) cos —,'(t —x —x, +2)—x~ sin —,'(t —x —x, +2)], (4.6)
4xi

where H is the unit step function. Both in its analytic
form and in the plot shown in Fig. 6, the waveform shows
two distinct points at which QN ringing turns on: one
point at t =x +x

&

—2, and one at t =x +x2 —2. The
time of the first turn on is the sum of two times: the time
(x

&

—1) for the sharp edge of the initial data at x =x, to
propagate to the peak of the potential at x =1, and the
time (x —1) for the QN ringing to propagate from the
peak of the potential out to the observation point at x.
The second turn on is produced similarly by the edge of
the initial data at x =x2.

The excitation coeScient can be found, e.g., by a direct
evaluation of Eq. (2.16). For the mode with

sq s
&

———0.5 +i 0.5, it has the value

C = [e ' ' [(1—i)x2 —4]
1

sl(2 —xl )—e ' ' [(1—i)x, —4]] . (4.7)

This does not seem compatible with the analytical or the
graphical form of the solution. As x2 increases, C grows
exponentially, though the actual QN ringing increases
only slightly. Why this is so is clear in Eq. (4.6). The ex-

—(t —x —x2+ 2)/2
ponential factor e ' does increase exponen-
tially with x2 (this is the increase that shows up in C~)
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FIG. 6. Model problem showing two epochs of QN ringing.
In (a) is shown the surrogate potential and the initial data. A
waveform is shown in (b) of the resulting waveform. The curve
shown corresponds to x~ ——5 and x~ =15.

but the step function that precedes the exponential
guarantees that at the second turn on the argument of the
exponential is zero. Timing prevents an exponential in-
crease in the QN ringing. The small timing factor

+x& /2
e " "+ ' cancels the large factor e

A numerical example shows that timing considerations
for quadrupole gravitational QN ringing of a
Schwarzschild hole [i.e., with the potential of Eq. (2.4)]
are similar to those of the model problem. Initial data at
t =0 are chosen to be 8+/Bt =0 and

%=exp[ —(r —4) ]+exp[ (r —40) ] . — (4.8)

The results of numerical evolution of these initial data,
presented in Fig. 7, show two apparent epochs of ringing.
From the period and the decay rate of this ringing we
find that each epoch is characterized by a complex fre-
quency s= —0. 18—i0.75, in good agreement with the
QN frequency' sq = —0. 1779246 i0 7—47 34. 3 4 for the
least-damped quadrupole gravitational QN frequency for
the Schwarzschild background. The times for the turn
on of each epoch of ringing follow a pattern similar to
that in the model problem above. Since wave propaga-
tion in the Schwarzschild background proceeds at

FIG. 7. Two epochs of quadrupole gravitational QN ringing
in the Schwarzschild background. Initial data shown in (a) con-
sist of Gaussian peaks at r =4 and 40, or x =5.10 and 43.66.
The numerically evolved waveform, shown as the solid curve in

(b), exhibits two epochs of QN ringing, starting at around
t —x =5 and 47. The other two curves show pure QN ringing
(the superposition of the three least-damped QN quadrupole
modes) with excitation coefficients computed separately for each
bump.

dx/dt =+1 we note that the peaks in the initial data at
r =4 and 40, are, respectively, at x =5.10 and 43.66.
The two epochs in Fig. 7 start at t —x =5 and 47, which
is consistent with the picture that the bumps propagate
inward to the potential peak at x =0 where they create
the QN ringing.

Another interesting insight is to be found in this exam-
ple. We can separate the initial data into two separate
bumps at r =4 and 40, and can compute (for the mode
with s = —0. 1779246—i0.7473434) a separate excita-
tion coefficient for each. [For the separate bumps or the
combined bumps of Eq. (4.8) the excitation coefficient can
be evaluated directly from Eq. (2.16).] The results are

single bump at r =4
single bump at r =40
combined bumps

Cq 0 485 48 l 0 0 14 623
C =371.27 —i109.38
C =370.78 —i109.39

(4.9)

Figure 7 shows the QN waveforms corresponding to each
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of the two single-bump excitation coefficients above. The
comparison with the numerically evolved data confirms
that the two excitation coefficients give a reasonably ac-
curate description of each epoch of ringing.

Note in Fig. 7 that the two epochs of ringing contain,
to order of magnitude, the same amount of energy, but
the excitation coefficient for the second epoch is larger
than that for the first by a very large factor. Ths shows,
as did the model problem with the surrogate potential,
that Cauchy data far from the horizon can produce an
enormous and misleading value of C . If the only source
of QN ringing is a bump or edge far from the horizon,
this presents no real problem; the large value of C is
combined with the late turn-on time and results in a good
estimate of the energy in the QN ringing. The real prob-
lem occurs if the QN ringing is due to some feature of the
Cauchy data close to the horizon, but the Cauchy data
also contain a distant bump or edge. In this case the ir-
relevant distant feature will dominate the value of C and
make it useless for estimating the QN energy. The two
methods found for dealing with this difficulty are de-
scribed below.

B. Hand-shaped initial data

The simplest way to avoid difficulties with irrelevant
Cauchy data at x »1 (or, for that matter, at x « —1) is
to eliminate that Cauchy data. We can keep only the
Cauchy data in the neighborhood of x =0. In doing this,
however, we must be somewhat careful about the manner
in which we truncate the data. If, for example, we re-
placed the actual Cauchy data, with data cut off sharply
at some intermediate value of x, the sharp edge induced
by the cut would itself generate QN ringing and would
change C . The Cauchy data near x=O must be ter-
minated smoothly. But, if the excitation coefficient de-
pends delicately on the details of a smooth termination,
this approach would not be very useful. Fortunately
there is no such sensitivity.

As an example we consider quadrupole gravitational
perturbations of a Schwarzschild hole with B4/Bt =0 at
t =0. We suppose that 4 at t =0 has the form

(r —1)/r, r & ro,
0'(r, t =0)= ro —1 ro

r
r &r0

(4.12)

For the choice ro ——10 the values of the excitation
coefficient for various values of n are

0
1

2
5

10
20

—0. 116720+ i0.058 114
—0. 120 849+ i0.086 329
—0. 122 157+iO. 114470
—0. 113086+ iO. 191 401
—0.080 943+ i0.224 837
—0.047 185+i0.230 284
—0.031 409+ iO. 232 277

(4.13)

For reasonably small values of n, , the data are terminat-
ed gradually; for large values of n the termination is
abrupt and, like a sharp turn off, this inAuences C . The
division between gradual and abrupt termination can be
understood quantitatively. Note that the characteristic
length scale, A. =ql/(B%/Br), with which ql dies out is
A, -ro/n at r =ro. For n less than or of order 10, k is
larger than unity, i.e., larger than the Schwarzschild ra-
dius, and the termination is gradual; little QN ringing is
excited. This is consistent with the fact that the values of
C computed for 0(n & 5 are all fairly close to each oth-
er, and are reasonably close to the value in Eq. (4.11).
For n & 10, however, A, is smaller than unity and C~ is

affected. The values of C for n &20 vary very little and
are a11 nearly equal to the value for n = ~, i.e., for an
abrupt turn off of the initial data.

The conclusion is clear: We may replace the actual
Cauchy data with "hand-shaped" modified data. If we
see to it that the length scale for termination of the Cau-
chy data is much larger than unity, the modified C com-
puted will give a good estimate of the amount of QN
ringing that will actually be excited by the original data.

r —1 + "small bump at large r ."
2

(4.10) C. Truncated expansion

The excitation coeScient due only to the (r —1)/r part
of the initial data is

C = —0. 11958+i0.068 607 (4.1 1)

for the QN mode at s = —0. 1779246—i0.747 3434, and
this value of C accurately describes the QN ringing that
is excited by the initial data. If there were a small bump
at large r there would be little change in the energy of the
ringing, but the value of C would change significantly.
To avoid the bump, and other distant features of the Cau-
chy data, we can terminate the Cauchy data at r =ra,
where ro is some moderately large value of r. We can
then join the Cauchy data for r & ro to a tail of the form
r "for r &ro. Specifically, we replace the actual initial
data by

gL(x, s) =yL(x, s)S(x,s)e

g„(x,s) = A,„,(s)y„(x,s)S(x,s)e"' .
(4.14)

The factors e —'" on the right-hand side cancel the asymp-
totic behavior of yL and yz. For S(x,s) well behaved at

~

x
~

~+~, the functions gL, gz will also be asymptoti-
cally well behaved.

With gt and g„we now write Eq. (2.22) in terms of an
arbitrary parameter so as

The excitation at ear1y time can be extracted from the
Cauchy data through the use of a power-series expansion
in the integrand for Cq. We start with the expression for
f, (x,s) in Eq. (2.22), with s in the RHP so that the in-

tegrals exist, and we define
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(4.15)

f, (x,s) =f gi (x', s)e'" dx'+ f g„(x',s)e '" dx'
—oo X

X (S +Sp )Z —SpX
gL (x', s)e ' e ' dx'

I I

+ f g„(x',s)e ' e ' dx' .
X

The expansions

+(s+s )x " (&+&o)"
(+ I)n

nf
n =0

are then used to reexpress Eq. (4.15) as

( +,)"
SpXf t (x, &) = g, f gL (x', s)(x') "e ' dx'+ f gz(x', s)( —x')"e ' dx'

n! X
(4.16)

In interchanging the summation and integration we have assumed that Re(so ) & 0 and that, as a consequence, all the in-

tegrals in Eq. (4.16) exist.
SpXTo understand the convergence of the series we note that for large n the factor x'"e ' in the second integrand has a

magnitude that peaks fairly sharply at x =x„=n IRe( —so), with a characteristic width of order bx =&n IRe( —so).
If, over this width, g„ is constant to order of magnitude and if x &&x„,we can approximate

f oo SpX SpX n!gz(x', s)x'"e dx'=gR(x„, s) x'"e dx'=ga(x„, s)
X 0 s"+' '

p

(4. 17)

The behavior of the first integral is similar. With these
approximations the ratio of successive terms in the series

f, (x,s) = g a„ is

an+&

an

S +Sp

Sp

g (xn+ l, s)

g (x„,s)
(4.18)

in which g represents gL or gz. As .n ~ 00 the ratio
g (x„+,,s) lg (x„,s)

~

approaches unity unless the source
function S(x,s) asymptotically decreases exponentially or
faster, in which case the ratio is less than unity. In any
case a sufficient condition for convergence of the series is

s +sp &1.
sp

(4.19)

qg 1 / 2+ —(r —40) (4.20)

in which the second term adds a narrow "bump" at
r =40 or x =44 to the 1/r data which will turn on the
early ringing. It is straightforward to compute, e.g., by
contour deformation, the excitation coefficient for the

The series in Eq. (4.16) was derived assuming that
Re(s) )0, but the convergence of the resulting series re-
quires only the condition in Eq. (4.19); Re(s) can be posi-
tive or negative. The series, with the convergence condi-
tion of Eq. (4.19) satisfied, then gives an analytic con-
tinuation of f, (x,s) to values of s in the LHP and hence
to the QN values of s. The terms in this series further-
more, have a very useful feature: In the second integral
in Eq. (4.16) the Cauchy data are weighted with a func-

SpX
tion, x "e ' that peaks fairly sharply at
x—:x„=nIRe( —so). Cauchy data far from the horizon
will therefore not affect the low-n terms in the series. If
the series seems to be converging after a few terms it can
be truncated to give an answer for C untainted by any
feature of the Cauchy data which will excite a later epoch
of QN ringing.

To illustrate this we consider the Cauchy data at t =0
to be B%/Bt =0 and

Cauchy data in Eq. (4.20), as well as separate excitation
—( —40)4coefficients for the 1/r part and for the e ' ' part

[which was already given in Eq. (4.9)]. For the least-
damped quadrupole Schwarzschild mode, the results are

C (1/r )= —0.20026+i0 0422.36,

C (bump) =371.27 —i109.38, (4.21)
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FIG. 8. The evaluation of C by a truncated series. The ini-
(r 4p)4tial data is 4'=1/r +e '",and C is evaluated as the sum

g a„, up to n =N, of the series expansion presented in the text.
The magnitude of the partial sum evaluation is shown as a func-
tion of N Also indicated are the values .of

~
C» ~, computed by

contour deformation, for the total Cauchy data and for the 1/r'
part alone.

C (total) =371.07 —i109.34 .

Results for C were also evaluated using the series in Eq.
(4.16) with s =s = —0. 1779246—i0.7473434, the value
of the least-datnped quadrupole QN frequency, and with
sp= —0.5035+i0.949. For this choice of sp the value of
Re( —so) is large enough so that the integrals in Eq.
(4.16) are easily evaluated to good accuracy, while at the
same time

~
(sq+so)/so

~

is small enough so that the
series converges fairly rapidly. In Fig. 8 the partial sums
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of the series for C are shown as a function of N, the or-
der of the highest term included. The series converges to
C (llr ) after only a few terms. As more terms are in-

cluded the inAuence of the distant bump appears around
N =14 and the partial sum begins to evolve to C (total).
The approximations for x„and Ax which lead to Eq.
(4.17), along with the fact that the bump is sharply
peaked at x=44, suggest that the bump will influence
terms in the series from n =18 to 27. In view of the ap-
proximate nature of the analysis, these values are in good
agreement with the evolution shown in Fig. 8.

The applicability of the method of truncated expansion
depends on the fact that within the Cauchy data there are
two or more distinct features which turn on QN ringing
and that these features are well separated. If, for exam-
ple, the bump in our numerical example were located at
r =5 rather than at r =40, the method would fail; for a
bump at r =10 the method would work only marginally.
The method of hand shaping the data similarly fails when
the distinction is not clear between the two features of
the Cauchy data which excite ringing. This inability to

compute a value of C for the initial ringing is related to
the fact that there is no we11-defined initial ringing.
There can be clearly defined first, second, and subsequent
excitations of the QN ringing only if those excitations are
separated by times significantly larger than the QN
period. [For the least-damped quadrupole mode the QN
period is 2n/~ lm(so)

~

=8.4. ] If this condition is not
satisfied the direct outward radiation of the Cauchy data
will be similar in frequency to QN ringing. The
identification of QN ringing will be meaningful only after
the direct radiation has died off, only one epoch of QN
ringing will appear, and only one C will be needed.
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