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Anomaly-free theories in D =4k dimensions
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General constraints are found for local anomaly-free theories in D =4k dimensions which yield
chiral four-dimensional theories after compactification: (1) the Yang-Mills group must have a
complex representation; (2) most odd-order traces vanish, i.e., TrF'= TrF = =TrF' '=0
and TrF' +'=c TrF'" ' for D =4k. Any complex representation of the SO(4l+2) group
(I )k +1 or I =k —1) in D =4k satisfies the constraints. Other simple solutions are also given.

I. INTRODUCTION

Recently, the investigation of particle physics has be-
come more transparent by using the topological method.
In particular, it is now well known that the [gravitation-
al, Yang-Mills (YM), and mixed] anomalies in gauge
theories at D dimensions are related to (D + 2)-
differential forms made of traces of a curvature two-form
R and a gauge field-strength two-form F (Ref. 1}. We
hereafter call these differential forms I-forms. It turns
out that anomalies defined in this way satisfy the so-
called Wess-Zumino consistency condition. Further-
more, generating functions of I-forms for various fer-
mionic fields are now known. Consequently, it is possi-
ble to derive anomaly-free constraints for any dimen-
sions. So far only 10-dimensional theories were paid
close attention to in the literature, because of super-
strings. However, for theories of more than two-
dimensional objects, the critical dimension may be
different from 10, although it will take a long time to
find out about it. In addition, now string theories can be
formulated in dimensions different from critical dimen-
sions. Thus, we believe that it is important to classify
all anomaly-free field theories for future physical
theories, especially since it is possible to do so with
present knowledge. For theories in D =4k —2, we have
extended the analysis initiated by Thierry-Mieg and
Schellekens and have done a systematic investigation of
anomaly-free theories in our previous papers. However,
it seems that no systematic investigations were done for
theories at D=4k dimensions from a general point of
view. (There are some works on pure gauge anomaly-
free theories. Also, some works have been done from
the string point of view. ) Therefore, in this paper, we
investigate local anomaly free theories in D =4k dimen-
sions which yield chiral four-dimensional theories. We
do not assume stringlike structures, e.g., modular invari-
ance, and thus our solutions contain more than those
which string theories predict. It is suScient to have an
anomaly-free theory at higher dimension, since
anomaly-free theories remain anomaly-free at lower di-
mensions as long as no isometrics and no U(1) sym-

metrics are generated after compactification.
We summarize simple consequences obtainable from

the fact that I forms are made out of traces of both
gravitational and Yang-Mills two-forms, R and F. First,
note that Tr R' =0, since R is antisymmetric. Thus,
traces of R are non vanishing only for 4k-forms.
Meanwhile, traces of F can be nonvanishing for 2m-
forms. Second, note also the fact that if I(R,F) van-

ishes, one can always find local counterterms to do away
with anomalies. The reason for this is that we have the
following relations among I(R,F) and the anomaly coD.

I(R,F}D+2 dcoD+ i-—,

5coD+ i
———d coD, 5coD ———d coD

0 1 1 2

The third equation is the Wess-Zumino consistency con-
dition. If I(R,F)=0, then we can find an a locally
such that coD+, ——da. Then, using I5,d j =0, we obtain
coD ——5ct (modulo an exact form). Thus, by introducing
a into the action, we can do away with the anomaly.
Using these two facts, we obtain (i) no local anomalies
exist in D=odd ditnension, (ii) no local gravitational
anomalies exist in D =4k dimension, and (iii) all possible
anomalies exist in D =4k —2. However, these anomalies
can be canceled by (1) having various matter fields
and/or (2) having a factorized I-form, as shown by
Green and Schwarz. The factorization condition yields
the trace constraints for the YM contents of matter
fields. Note that the anomaly-free constraints are most
restrictive at D =4k —2 dimensions.

How about constraints of chiral four-dimension-
al theories after compactification? We must satisfy
two conditions for spin- —, fermions with a rep A' for
the gauge group H' in four dimensions: (i) n, ~z( A)

=n, ~ ( 2'A) n", q~(A')&0; (ii) n, ~
—( 2"A} ~n, q2(A') if

fermions with the complex-conjugate representation A'*

exists. The second condition comes about because in
four dimensions a left-handed fermion with A" can be
regarded as a right-handed fermion with A'. The second
condition immediately tells us that the rep A' for the
four dimensional gaug-e group H' must be complex and
thus H' must contain U(1), SU(n) (n )3), SO(4n+2)
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(n )2), or E6, assuming H' to be compact. Witten'
realized that the first condition applies to only zero
modes and these zero modes are correlated to the zero
modes in compact space. Using the index theorem by
Atiyah and Singer, the zero modes in compact space can
be given by the integral of the I-form over the compact
space. Thus, we have the following simple conse-
quences: (i) no four-dimensional chiral fermions exist for
D=odd theories; (ii) no chiral fermions exist if F does
not acquire a vacuum expectation value for the compact
space for D =4k —2 theories; (iii) for D =4k theories,
n, &z( A')+0. Consequently, D =4k theories also have
the possibility of becoming a physically liable theory.

II. YANG-MILLS TRACE CONSTRAINTS

As shown in the previous section, only Yang-Mills
and mixed anomalies exist for theories in D =4k dimen-
sion. Therefore, fields which have only gravitational in-
teractions do not contribute to the anomaly at higher di-
mension. Furthermore, these fields do not contribute to
the anomaly at lower dimension either, as long as no
isometrics are generated by compactification. The
reason is as follows: if D =4k is separated into
D'=4m —2 space-time and D =4(k —m )+2 compact
space, then the zero modes for these fields vanish.
Meanwhile, if D=4k is separated into D'=4m space-
time and D =4(k —m ) compact space, then they do not
contribute to the anomaly, since the I-form for them is a
(4m+2)-form. That is, we cannot tell whether or not a
theory in D=4k has a supergravity structure by just
looking at anomaly-free constraints, in contrast with a
theory in D =4k —2, where the anomaly-free constraints
at both higher and lower dimensions yield constraints
for the gravity sector. Thus, we obtain constraints for
only those fields which have Yang-Mills interactions.
For D =4k space-time, there is no upper limit for
space-time dimensions to be investigated, in constrast
with the existence of an upper limit of D =26 for N=1
supergravitylike theories in D =4k —2 (Ref. 6}.

For spin- —, chiral fermions with some representation
for the gauge group G, the I-form is given by

I= A(R )Ch(F),

~ 2k +1I'rF2k +1

(2 )2k+1
(2.1)

where A„denotes the Dirac class, containing polynomi-
als of traces of 2n curvature two-forms, i.e., TrR ",
TrR TrR '" ", etc. The explicit form for 3„ is not
necessary in this paper, but can be found in Refs. 3 and
6. Therefore, we have the following proposition.

Proposition 1. Any theory with TrF' =0 (odd
(2k+1) is anomaly-free in D =4k.

where A (R ) denotes the Dirac genus and
Ch(F) =Tr exp(iF/2m ) denotes the Chem character.
For theories in D =4k, we have the explicit form

i TrF ~ i TrF
4k+2 ~k + ~k —1 3 +

2m (2m' }3

Thus, any group which does not contain U(1), SU(n)
(n )3), SO(4n+2) (n )2), or E6, can be used to make a
theory anomaly-free, since in this case we have
F= —SF'S ' for some nonsingular matrix S, and thus
TrF' =0. However, as we will see, these groups can-
not yield chiral fermions at four dimensions, if no
isometrics are generated after compactification.

For U(1) and a complex rep of SU(n) (n )3), all odd-
order traces do not vanish in general. For SO(4n+2),
only spinor-tensor reps have nonvanishing odd-order
traces of order 2n +1 or higher. For complex rep of E6,
the only nonvanishing odd-order traces are of order 5 or
higher. If a rep is not complex (i.e., self-contragredient),
all odd-order traces vanish for these groups also.

Now, we obtain constraints on traces, using the
Green-Schwarz method. The I-form is factorized into

I4k+2 ——(A )+a)(rk )+rk 2+ +r)+ro), (2.2)

where r„denotes a term containing 2n curvature tensors
R and [2(k n) —1]—Yang-Mills F Com. paring this
with Eq. (2.1), we obtain a second proposition.

Proposition 2. In order to have an anomaly-free
theory at D=4k in the manner of Green and Schwarz,
we must satisfy

TrF =TrF = =TrF =0,3 2k —3

(2.3)

gm, Q„(A, )=0 for n=1, 3, . . . , 2k+1 (2.4}

except n =2k —1. Amazingly, this equation always has a
solution, as long as the (complex) gauge group G is
SO(4l +2) with either I )k+1 or 1=k —1 for D =4k
space-time, since the only nonvanishing odd-order index
for SO(2n) is Q„(see Appendix B).

It is interesting to compare these two constraints with
those of nonsupergravity theories in D =4k —2 dimen-
sions: '"

TrF =TrF = . . =TrF =0,2 2 2k —4

rF =c'TrF
(2.5)

where c' is an arbitrary constant in proportion to TrF
of some representation. One solution in D =10 (k =3)
is SO(16)XSO(16) with the rep (16,16)(128, 1)$(1,128)
(Ref. 11). We have found solutions for SO(X) (X: arbi-

III. CHIRAL FOUR-DIMENSIONAL
FERMION CONSTRAINTS

We assume the following: (1) a D =4k theory has a
gauge group G with the rep A; (2) G is broken into

rF "+'=cTrF
where c is an arbitrary constant in proportion to TrF of
some representation.

Note that we have for a rep A=pm, A (A: irreduc-
ible) of G:
TrF(A)"= gm Q„(AJ ) TrF(CI)"

+[products of lower-order traces of F(O)],
where indices (Casimir invariants) Q„(A ) are normal-
ized to a rep . Thus, it is necessary to have
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AI ) = index(Ai )K

= J & (&o )Ch(F~)

i Tr(F, )
A +A

(2n )

i Tr(yo)2m
+i

(2~)2m
(3.1)

H')&H with the rep g;(A,',A;) after compactification,
where F; is the vacuum expectation value for F; (3) no
isometrics are generated after compactification. The last
assumption is needed to prove the anomaly-free property
after compactification. Then, the index for fermions
with the rep A,' is given by

the groups, 6, H', and H, be simple, unless otherwise
stated.

Because G uses a complex rep and still satisfies vanish-
ing of most of odd-order traces, it is usually hard to find
a solution with just one irrep, except for the case of
SO(4l+2) as mentioned in Sec. II. Even with two ir
reps, it becomes harder to find a solution as one looks at
a higher dimension. Here, we are satisfied with solutions
up to D =12 dimension. Our strategy is (1) try to find
solutions with a single irreducible representation (irrep)
and (2) if we cannot find them, then try to find solutions
with two irreps. Hereafter, A, denote the fundamental
weights in Dynkin notation. We also use the Dynkin
notation for an irrep:

A=(m], m2, . . . , m„)=m]A]+m2A2+ m„A,„.
where the compact space has the dimension
4m =4(k —1). Because traces of Yang-Mills F appear
only as even-order ones in the index for the compact
space, we have

index (A, )K ——index(A )K .

A. D=4

The Yang-Mills constraint is given by

TrF =c TrF . (4.1)

which implies

n]/2(A, ')=n]/2(A, ') for D=4k theories, (3.2)

n, /2(A, ') = n]/2(A ),—
provided that A, is a complex rep, since only odd order
traces appear in the index for the compact space. Thus,
we do not have to use a complex rep for the original
group G, but we must use a complex rep for both H' and
H . Note that the famous superstring theory in D =10
uses the rep (248, 1)(1, 248) of E]]&&E]], which is not
complex, and uses SU(3) and E]]XE6 for H and H',
which have complex reps. This fact is one of the major
differences between theories in D=4k and theories in
D=4k —2. Note that in either case, four-dimensional
gauge group H' must be those which have complex reps.

IV. SOLUTIONS

In this section, we fill find solutions to two constraints:
(1) an anomaly-free property and (2) chiral four-
dimensional theories. For simplicity, we assume that all

provided that A" exists in the decomposition of A. Con-
sequently, in order to have a chiral four-dimensional
theory, the original rep A must be complex, since other-
wise the decomposition always contains both (A,',A;)
and (A,.',A ). Therefore, we must use the group 6
which contains U(l), SU(n) (n &3), SO(4n+2)(m )2),
or E6. Note that we do not have to use a complex rep
for A, of H . Summarizing, we have proposition 3.

Proposition 3. In order to have a chiral four-
dimensional theory from a (D =4k)-dimensional theory,
both the original gauge group G and the four-
dimensional gauge group H' must contain U(1), SU(n)
(n )3), SO(4n+2) (n &2), or E6. The rep must be
complex in both G and H'.

However, in the case of D =4k —2 theories, we always
have

(n+f )!
Q (fA )=("+ f)(f 1)i(„+2)f '

(4.2)

Therefore, for these reps, there exist no complex rep
solutions satisfying Q2 ——0. Note that n =2f corre-
sponds to a self-contragredient rep, which is not com-
plex. In general, all Q (Af) (p: odd and &3) contain
the factor (n —2f). Thus, we look for other reps. As
can be seen from Appendix A, a systematic search for
solutions of Young tableaux made of up to six boxes
yields only self-contragredient irreps. We found two
complicated and extremely high-dimensional single irrep
solutions A=A2+A2] of SU(32) and A=SR]+k2+8k3
+4)].4 of SU(5). The first one is the only solution up to
SU(300) of the type A=)(,, +A,„(j+k&n ).

For a rep made of two irreps, it is easy to find solu-
tions: Since Q3 for an irrep is always a rational number
(actually integer) we can always find two integers
(m „m 2) such that m, Q3(A, )+m 2Q3(A2) =0 where both
A, and A2 are both complex and irreducible. Then,
A=m, A&mzA2 is a solution. A special type of two ir-
rep solutions occurs when m, =m2 ——1. We found that
there exist two classes of such solutions For
A=A, .ik,

This means that the third-order index Q2 must vanish.
In the case of G being semisimple, we have TrF =0.
Solutions of this constraint have been discussed in the
context of grand unified theories in the past. Only SU(n)
(n &3) has to be discussed. For E6 and SO (4n+2)
(n & 2), any complex rep is a solution, since these groups
do not have a genuine third-order Casimir invariant.

First, we look for a single irrep solution for SU(n)
(n & 3). For a totally antisymmetric Young tableau of f
boxes, Af, and a totally symmetric Young tableau of f
boxes, fA], we have'
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(1) j=—,'(n+I —&n —1), k= —,'(n+1+&n —1),

(2} j=—,'(n+2 —&n }, k= —,'(n+2+&n ),
(4.3)

where n, j, and k must be integers. One of the solutions
is the famous SU(5): 5'8 10.

B. D=S

For D = 8 theories, we have two constraints: (1) both
G and 0' must be one of complex groups and (2)
TrF =0 and TrF =c TrF for G. The second constraint
means that the fifth-order index Q5 must vanish (see Ap-
pendix B).

Among irreps of SU(n) (n & 3) with up to six boxes of
Young tableaux, we have found the following single-
irrep solutions (see Appendix A).

(i) Any complex irrep of SU(3} and SU(4).
(ii) Two boxes: (010. . . ) =120 of SU(16}.
(iii) Three boxes: (110. . .) =240 of SU(9); (0010. . . )

=2925 of SU(27).
(iv) Four boxes: (020. . .)=3185 of SU(14); (1010. . . )

=7140 of SU(16).
(v) Five boxes: (10010. . . ) =263 120 of SU(25).
(vi) Six boxes: (030. . . ) =41405 of SU(13);

( 0020. . . ) = 1 163 800 of SU(24}.
In Ref. 7, solutions made of more than two irreps are

found with a stronger gauge anomaly cancellation con-
straint, i.e., TrF =0. The solutions given above do not
satisfy this strong constraint, but a weaker constraint,
TrF ~ TrF TrF, which is required for the Green-
Schwarz mechanism.

For E6, the only nontrivial odd-order index is Q, . For
a complex irrep A, we have Q5(A)= —Qs(A*}&0, since
otherwise independent Casimir invariants cannot distin-
guish A from A*. Thus, there exist no single irrep solu-
tions for E6. It is easy to find two irrep solutions of the
type A=m, A, emzAz, since Q, is a rational for an ir-

rep. For example, the following two are solutions:

A =(010000)—11(100000)=351—11X 27,

A =(200 000) —4(010000)=351' —4)& 351 .

However, we have failed to find two irrep solutions with
m

&

——m2 ——1.
For SO(4n+2)(n &2), the only nontrivial odd-order

index is Q2„+, and Q2„+,(A)= —Q2„+,(A')+0 for a
complex irrep A. Thus, any complex irrep of
SO(4n+2)(n )3) is a solution (see Appendix B). For
SO(10), it is easy to find two irrep solutions of the type
m&A&em2A2. However, we have failed to find two irrep
solutions of the type A =A, @A2 where A is an irrep.

C. D =12

The trace constraints are

TrF =TrF =0,
TrF =c TrF

which requires that Q3 Q7 0.
For SU(n)(n & 3), we could not find single irrep solu-

tions among those irreps with up to six boxes of Young
tableaux. For two irrep solutions, two classes of solu-
tions, Eq. (4.3), do not satisfy Q7

——0 either, by using

n(n +42n +119n —42) —60f(n f )n(n+7)+—360f (n f)—
(n —3)(n 4)(n ——5)(n —6)

For E6, we have Q3
——Q7=0 for any irreps. Thus, any

complex irrep of E6 is a solution.
For SO(4n+2)(n &2), any complex irrep is a solu-

tion, except those of SO(14) which have nonvanishing

Qz. For SO(14), we have not found a two irrep solution
of the type A=A&A2 where A, is an irrep.

D. Global anomalies

So far we have looked at only local anomalies. The
global gauge anomalies may exist, if the homotopy group
HD(G) does not vanish for the D-dimensional space-
time. In this case, we have to investigate the global
gauge anomaly-free condition carefully. ' ' That is, it
so happens that a theory can be globally anomaly-free,
even though the homotopy group is nonzero. Therefore,
we define safe gauge groups as those which do not have
nontrivial homotopy groups. For the table of homotopy
groups of various Lie groups, see Ref. 16. In the follow-
ing, we discuss only those possibilities. Global gravita-

tional anomalies are more subtle' and are left as a fu-
ture project.

For D=4, we have

H4(SU(n ) ) =0 for n )3,
H4(E, ) =0,
H4(SO(n)) =0 for n )6 .

Thus, we are safe.
For D=8, we have

H, (SU(3))=Z„, H, (SU(4))=Z„,
Hz(SU(n))=0 for n &5,

Hs(E6) =0,
Hs(SO(n))=Z2 for n ) 10 .

Thus, SU(3), SU(4), and SO(4n+2) (n )2) are not safe
groups.
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For D =12, we have

H, 2(SU(3))=Z60, H, 3(SU(4))=Z6o,

H„(SU(5))=Z, , H„(SU(6))=Z„, ,

H&2(SU(n))=0 for n &7,

H»(E6) =Z

H, (SO(10))=Z, , II, (SO(n))=0 for n &14 .

Thus, SU(n)(n (6), SO(10), and E6, are not safe groups.
Note that for higher dimensions, SU(n } with suitably

high rank and SO(n) with both suitably high rank and
D=4 mod 8 are always safe, while, even with suitably
high rank, SO(n) is not safe for D —=0 mod 8. This con-
clusion follows from the Bott periodicity theorem for
classical groups

HD(SU(n))=0 for n & (D: even),D+1
2

0 (D =4mod 8),
H (SO(n)) (n &D+2)=

For E6, we have'

H, (E }=0, II (E )=Z, ,
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APPENDIX A: INDICES FOR VARIOUS YOUNG
TABLEAUX

We tabulate odd-order indices (up to six boxes of
Young tableaux and up to seventh order) where n is the
dimension of the single box, using the formulas given in
Ref. 12. Indices of various orders are normalized to the
one-box Young tableaux: Q (Cl)=1. We denote the
pth-order index for the Young tableau (f, ,f2,f3 )
by Q [f, ,f2,f3, . . . ], where f denotes the number of
boxes at the jth row of the Young tableau. Note that
the relation between the Young tableau I and its conju-
gate tableau I'

Qp(l *,n)=( —) ' Qp(l, —n) .

Here, a conjugate tableau means that the tableau which
is obtained from the original by the mirror reflection
along its diagonal. That is, (3,1, 1, 1) is conjugate to
(4, 1, 1). Note that for SU(n), the Young tableau
(f&,f2, . . . ,f„) corresponds to the irrep,
(f, fz, f2 f3, . . . ,f„, f„)—of D—ynkin no—tation. A
self-contragredieut rep (noncomplex rep) of SU(n )

satisfies the relation: f, f2 f„, f„, f—2 f3—— — —
=f. 2 f. —

Two boxes:

Q3[1, 1]=n —4, Q5[1, 1]=n —16, Q7[1, 1]=n —64,

(n —6)(n —3)
2

(n —27 }(n —6)
2

Q [1 1 1]
' —129n +1458

2

Q3[2, 1]=(n —3)(n +3),
Q5[2, 1]=(n —9)(n +9),
Q7 [2, 1]= (n —27)(n +27),

(n +3)(n +6)
3 2

(n+6)(n+27)
5 2

n +129n+1458
7

2

Four boxes:

Q [1 1 1 1]
(n —3)(n 4)(—n —8)

6

(n —8)(n —43n + 192)
5 6

(n —8)(n —187n +3072)
7 t ! t 6

Q3[»1 1]= (n 4)(n —n —8)—

Q5[2, 1, 1]= (n —16)(n n —3—2)

Q7[2, 1, 1]= (n —64)(n —n —128)

Q3[2, 21=

Q5[»2]=

Q7[2 2]=

Q3[3 1]=

(n 4)n (n +—4)
3

(n —14)n(n+14)
3

n (n —1996)
3

(n+4)(n +n —8)
2

(n+16)(n +n —32)
5 2

(n +64)(n +n —128}
7 t

2

(n+3)(n+4)(n+8)
3 6 5

(n+8)(n +43n+192)
5 6

( n + 8)(n + 187n +3072)
7 6

Q3[2]=n+4, Q5[2]=n+16, Q7[2]=n+64.
Three boxes:
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Five boxes:

Q3[1,1, 1, 1, 1]= (n —10)(n —5)(n —4)(n —3)

(n —10)(n —5)(n —55n +300)
5 24

5

(n —10)(n —252n +7007n —37 500)
7 t t t

24
5

Q [2 1 1 1]
(n+2)(n —3)( —5)

6

Q5[2, 1, 1, 1]= (n 5—)(n —25)(n —Sn —30)
6

n —131n +2189n +2315n —93750
7 t t t

6

(n —5)n(5n +3n —50)
3 t t 24

5(n —5)n (n 9n ——202)
5 24

5

n (Sn 262n ——7985n +89 050)
7 24

Q[3 1 1]n 17n—+100
4

Q[3 1 1]n —65n+ 2500
4

Q [3 11]=n'-257n'+625M
4

n (n +5)( Sn —3n —50)
3 t

24
7

5n(n+5)(n +9n —202)
5 24 7

n(Sn +262n —7985n —89050)
7 24

(n —2)(n+3)(n+5)
3 t

6
7

(n+5)(n+25)(n +Sn —30)
5 6

n +131n +2189n —2315n —93750
7 6

(n + 3)(n +4)(n + 5)(n + 10)
3 24

(n+5)(n+10)(n +55n+300)
5 24

(n+10)(n +252n +7007n+37500)
7 24

Six boxes:

Q3[1, 1, 1, 1, 1, 1]= (n —3)(n 4)(n ——5)(n —6)(n —12)

Q5[1, 1, 1, 1, 1, 1]= (n —5)(n —6)(n —12)(n —67n +432)

(n —12)(n —318n +12719n —140442n+466560)
7 t t t t t 120

Q3[2, 1, 1, 1, 1]= (n —3)(n 4)(n ——6)(n —Sn —12)

Q5[2, 1, 1, 1, 1]= ( n —6)(n "—48n +467n —228n —5184)

n —198n +6227n —48 966n —55 368n + 1 119744
7 t t t

24

3n (n —6)(n 3 —24n —89n + 1096)
5 40

3n (n 6)(N 24n ——89n +—1096)
5 40 7

3n ( n —110n +215n +26 990n —180 816)
7 t 40

(n+4)n(n —1)(n —3)(n —6)
3 t t

24 7

(n + 13)n (n —1)(n —6)(n —24)
5 24 7

n (n —1)(n —65n —2598n +37 872)
7 t t

24 7
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Q3[3, 1, 1, 1]= (n —3)(n —3n —16n +36n + 144)

n —18n +65n +600n +324n —15552
5 12

n —66n +1073n +4824n +2916n —559872
7 t I t

12

2(n —4)(n —3)n (n +3)(n +4)
3 !

15

2n(n —205n +4284)
5 15

7

2n(n —1825n +113544)
7 t

15

(n 4)n—(n + 1)(n +3)(n +6)
3 24

(n —13)n (n + 1)(n +6)(n +24)
5 24

n(n+1)(n +65n —2598n —37872)
7 24

(n+3)(n +3n —16n —36n+144)
3 t t

12

n +18n +65n 600n—+324n+15552
5 12

n +66n +1073n —4824n +2916n+559872
7 t t

12

3(n —3)n(n +3)(n+4)(n+6)
3 40

3n ( n +6 )( n +24n —89n —1096)
5 40

3n(n +110n +215n —26990n —180816)
7 40

(n+3)(n+4)(n+6)(n +Sn —12)
3 24

(n+6)(n +48n +467n +228n —5184)
5 24

n +198n +6227n +48966n —55 368n —1 119744
7 24

(n + 3 }(n +4)(n + 5 )(n +6)(n + 12)
3 120

(n + 5 }(n + 6)(n + 12)(n +67n +432)
120

(n+12)(n +318n +12719n +140442n+466560)
7 120

APPENDIX B: ODD-ORDER TRACE IDENTITIES

In this appendix, we give odd-order trace identities for
simple Lie algebras, which will be useful for the full con-
struction of theories at D =4k. Our notation is

X„: generators for an irreducible rep A;

F=@X„:arbitrary eletnent of a Lie algebra;

D (A}=g ' ~TrX . X
P) p
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D (A)
Q (A) = [provided D~(U)&0];

Q =Q (adjoint rep);

C: some constant;

dp: dimension of an adjoint rep

(i) p =3[useful for SU(3 ) ]:

TrF =Csfs(g)Ds(A) .

(ii) p =5[useful for SU(n)(n & 3),E6, and SO(10)]:

TrF =Csfs(g}Ds(A)

10 do 1 Q2

6+do d(A) 4 Q2(A)

This equation is especially useful for SU(3) and SU(4),
since Ds(A}=0.

(iii) p =7 for SO(10), SO(14), and Es where
Ds(A }=D4(A)=0 identically:

TrF =C7f7(g)D7(A)

below. See also Ref. 12.
Define f (j =0, 1, . . . , 6) for an irrep A=gj. ,m~Its

as

f, = —,'(m, —mz —3ms —2m4 —ms }——,'m6,

f2 ———,
'

( 2—m, rn 2
—3m s

—2m 4
—m s ) ——,

' m 6,

fs ———,'( 2—m, —4m2 —3ms —2m4 —ms) ,'—m—6,

f4
——

—,
'

( m t +2m 2 +3m s +4m 4 +2m s ) + —,
' m 6,

fs =—,'(m t+2m2+3ms+m4+2ms)+ —,'m6,

fs= —,'(m, +2mz+3ms+m4 —m, )+—,'m6,

1fo=,—m6,~2
where f4&f, &f6&f, &f2&fs and f, +f2+fs+f4
+fs+f6 ——0. Using these f's, define I (j=0,1, . . . , 6)
by

I, f, ——'„ I2—fq
——„—ls f-—

I4=f4+ ,' Is =fs+-,' Is=f-e+

21 do
+

10+do d(A)
TrF TrF' .

12 Q2(A)

1Io=fo+ v'2 '

Note that D7(A) =0 for SO(10) and E6.
(iv) p=2n+3 (n &1) for SO (4n+2) (n &1):

Then, we still have It+I2+Is+4+ls+I6 ——0. Now, the
fifth-order Casimir invariant for E6 with Ds(A)
=d(A)Js(A), is given by

+3 (2n+3)(n + 1) o

(2n+1)(4n +3) d(A)

gTrF TrF "+'

2n+1 Q2

12 Q2(A)

6

Js(A) = g (IJ )'

6

g (IJ)
j=l

with TrF =TrF =TrF =. . . =TrF " '=0.
In order to use formulas given above, we must know

odd-order indices. General index formulas for simple
classical Lie algebras are given in Ref. 12. Among ex-
ceptional Lie algebras, only E6 has the odd-order index

Qs, whose explicit expression for any irrep is given

By the way, the second order Casimir invariant for E6
with D2(A)=d(A)Jz(A}, is given by

6

J2(A) = g (Ij ) + (Io ) —78 .
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