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Closed smooth strings on a torus
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The free energy of a gas of closed strings with extrinsic curvature (smooth strings) is evaluated
on a torus. This is compared with the free energy of a collection of free particles, and hence the
mass spectrum of excitations of the smooth strings is deduced. It is found that above a critical
value of the coupling constant of the curvature term the spectrum is free of tachyons. Further-
more, there are no massless spin-2 excitations. The absence of massless spin-2 fields is a conse-
quence of the fact that the smooth-string theory is not modular invariant.

I. INTRODUCTION

Recently, Polyakov' made the suggestion that for a
realistic string model of hadrons one must add to the
Nambu-Goto action a term that depends on the extrinsic
curvature of the world sheet. The curvature term
suppresses those string configurations which are sharply
kinked, favoring those that are smooth. The term

"smooth strings" has been used by many authors to de-
scribe this model and we shall follow this terminology.
The extrinsic curvature term has been known in the in-
vestigations on membranes in fluids by Helfrich and
others. The action for Polyakov's model of smooth
strings may be written in the form (in the first-order
formalism)

&=& f &gd o+ f d cr[&g (bx") +A.' (t),x "t) x„—pg, (r))],
2cxo

where the conformal gauge g,&
——pg, &(r) has been used.

g,&(r) depends on the Teichmiiller parameter r. The
string coordinate x "(o ) spans a d-dimensional space-
time. hx" is given by

The first term in (1) is the usual Nambu-Goto action and
the second term is the extrinsic curvature term. In the
third term, A,

' is a constraint field which fixes the metric
to be the induced metric: namely, g,b

——t),x "Bt,x„on the
surface. The coupling constant ao is dimensionless and
is asymptotically free. ' The action in (1) has
reparametrization invariance. The extrinsic curvature
term is, however, not invariant under conformal trans-
formations

gob p(cr)g b

where p(o ) is an arbitrary function of cr

Since Polyakov's work, there have been two main
directions in understanding the physics of smooth
strings. (a) To calculate the effect of the curvature term
on the static quark-quark potential. This involves
studying open strings with quarks at end points. These
calculations extend the results obtained for the Nambu-
Goto action. (b) To study the renormalization-group
behavior of the coupling constant ao (Ref. 6). In addi-

tion to these studies a number of authors have studied
classical solutions to this action. In studies quoted
above involving loop corrections, their authors have con-
sidered only flat two-dimensional topology. In this pa-
per we undertake the study of the partition function for
smooth strings on genus-one Riemann surfaces. For
simplicity, we consider only closed strings so the genus-
one surface is a torus. The open smooth string is con-
sidered in a separate paper.

Different tori are characterized by a complex
Teichmiiller parameter r=—(r&, rz). Our calculations fol-
low that of Polchinski with some important
modifications which will be specified in the following.
The Euclidean path integral over a string world sheet is
expressed as an integral over (Teichmiiller) parameter r.
From the path integral we calculate the free energy of a
gas of smooth strings. This is compared with the free
energy of a collection of noninteracting particles. We
find that there exists a critical coupling aoTL, where L
is the length of the string, above which the mass spec-
trum does not contain a tachyon. The fact that smooth
strings may be tachyon-free has been conjectured by
Braaten, Pisarski, and Tze (see also, Pisarski' ). Anoth-
er interesting property that we obtain is that there are
no zero-mass excitations of spin 2. This agrees with the
fact that the smooth-string theory does not have modu-
lar invariance" (see below). Curtright, Ghandour,
Thorn, and Zachos have previously conjectured on the
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basis of the shape of the classical Regge trajectory that
smooth strings may have no massless excitations.

The path integral we calculate is not modular invari-
ant. This implies that the region of integration over the
Teichmuller parameter ~ is not restricted to the funda-
mental domain' —

—,
' &r, & —,', Imrz &0;

~

r
~

& l. Instead
the region of integration is Im~2&0, ——,

' &v.
&

& —,'. The
restriction ——,

' «, & —,
' arises from the fact that the path

integral is still invariant under translations ~~v+1.
We now turn to the evaluation of the path integral

and free energy of smooth strings on a torus.

II. PARTITION FUNCTION ON A TORUS

Following Polyakov, ' we split all fields into slow and
fast parts and integrate out the fast components:

X =Xp+X)

p=pp+p) ~

gab gab+ gab

where the wave vectors of fast quantities lie between A
and A. In the one-loop approximation, one obtains the
renormalized action in the form (for details, see Ref. 1)

S=T d crQgo+ d 0 ~ 1 — ln —Qgp(Exp) +Ao 8 xoBbxo —Pog (b}r 1 — apln-
2cxp 21T P P a P b P ab 4 0 (4)

D —2 A
z =1— apln-

4m

one obtains

S=T 0 gp

f d cr [Qgp(hx p }
2cxp

+ho (B,xpBbxo —)opg, b(r))],

where

1 1

CXp

D 1 Aln—
2 2'

After renormalization of the x field,

1/2 ab —1 ab
Xp ~Z Xp& Ap ~Z kp

(6)

gab =
7

ri+rz

where r = (r i, rz ) is a complex Teichmiiller parameter
that characterizes the torus.

Since the smooth string theory is not conformally in-
variant we introduce length scales (L„Lz) explicitly.
The volume of the torus is J g d cr=LiLzrz for the
metric (5). We shall, however, see later that the path in-
tegral depends only on the physical length of the strings
taken to be L]. So, without loss of generality, we set
L& ——L2 ——L. We proceed to treat A,p as a background
field ' in the form

Ao"= Tap&gogob(r) . (9)

work in d &26 dimensions and ignore the eft'ect of con-
formal fields that fluctuate on the world sheet. We shall
choose the space of metrics on a torus to be conformal
to the metric with pp

——1. The metric can then be set in
the form

go =Pog

The quantum theory of smooth strings involves evaluat-
ing the path integral over the space of all metrics of a
given topology and over all configurations XIp as in
Polyakov's proposal' for the Nambu-Goto theory.

The action in (6) is manifestly invariant under
repararnetrizations of the world sheet but not conformal-
ly invariant. We can nevertheless evaluate the confor-
mal anomaly in one loop by the method of Fujikawa. '

This has been done in Ref. 15. It is found that the Liou-
ville term has the form

The path over torus can be written as

[dg.b ][dx"]
w...„,= f exp( Sss)

GC
(10)

~~5x "[[ = f d harv'g 5x "5x„. (1 la)

We work in Euclidean space. VGc is the volume of the
general coordinate group. Integration over x~p may be
carried out as follows. The metric for small variations in
x" is defined as (we omit the subscript 0 from now on)

(c)„P) + —e
4g~ " 8v'2~~

where a =apT and e~=pp. In d =26, the LiouviHe
mode becomes nonpropagating. However, it has been
pointed out by Pisarski' that smooth strings may not be
stable for d =26 and, in fact, they will be stable for
d &26. In our evaluation of the path integral we will

g f [d5x~]e-~~'""~~'"=1 (1 lb)

Then a straightforward calculation yields

The measure for x" integration is defined in terms of the
Gaussian integral:
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[dg, b ][dx "] T 2 —,b 1
W„,„,= f exp ——f d o(/g g' B,x"Bbx„— (bx")

GC

L T/
~GC

det'( —6 )det'2~L

f d'o &g

1 5+1
exp T

—d/2

(12)

5g 5g (1)+5g (2) (13)

In Eq. (12) the prime on determinants implies that the
zero modes are to be excluded and L" ()u=i, . . . , d)
denote the lengths of the box in d dimensions.

In order to carry out the metric integration we have
to make a change of variables. For smooth strings, vari-
ation of the metric can be resolved into changes arising
from general coordinate and ~ transformations. (Weyl
transformations are omitted here. ) We write

f [d5g]e —llsi(ll'»

f [d5 g]e
—list ll'»

(18a)

(18b)

The term 5g,'b'5g' ' is dropped since it involves the
sixth-order operator.

The Jacobian appearing in (16) can be evaluated fol-

lowing Ref. 9. We define

5gnb =Dn5(b+Db5(n+gob, id';,
5gnb =B(Dohgb+Dbh5(o) ~

(14)

(15)
2 Lf [d 5~]exp 5r, 5~—; f d. crag /2
d'o &g

[dg, b ]= (d g )'d'r J(~) .

We now define the metric for small 5g,b as

5g ii2 f d2o~gngcg(b5dg(1)5g( 1)+5g(1)5g(2)

+5g (2)5g (1)
)

(16)

(17)

where we have introduced an arbitrary dimensionful pa-
rameter 8. That the term 5g,b in the variation of
metric should be added to 5g,'b' is due to the higher-
derivative term (curvature term) in the action (1) or (6).
It should be mentioned that the total change 5g,b given

by (13), (14), and (15) belongs to infinitesimal general
coordinate transformations on the world sheet. There-
fore, the actions (1) and (6) are invariant under this
transformation simply because they are covariant sca-
lars. It will be seen later in the paper that the term 5g,„
in the variation of the metric plays the crucial role in
canceling the longitudinal modes of the string.

The Jacobian of these restricted transformations
(13)-(15)is defined by

(18c)

A straightforward computation leads to the result

J(r)=—&det'( —h)det' — 5+11, , 1

~2 QpT
(19)

where we have chosen 8 =1/2aoT.
In (19) the first determinant factor is well known and

arises from gauge fixing the repararnetrization invari-
ance. The second determinant factor arises due to the
generalized reparametrization defined in Eqs. (13)—(15).
However, it is shown' that there is a deeper reason for
this determinant. The action for the extrinsic curvature
in (1) is invariant under so-called H variations on sta-
tionary surfaces. H variations are normal variations in
which the norrnals are in the direction of the mean cur-
vature vector of the world sheet. Fixing the gauge asso-
ciated with H invariance yields the second determinant
factor in (19).

The path integral now takes the form

d2
W„,„,=T g L" f (2m~ )

' " det'( —i5, )det'
4+~2

1
1 —d/2

5+1
cxpT

(20)

The determinant det'( —5) has been calculated in Ref. 9:

det'( h)=rze —'
i f(e "")

i

where

(21)

f (e2nir) p (1 e2 in')n
n=1

(22)

The determinant of [—(1/aoT)5+1] is evaluated in the Appendix:
T

det'
2

i5+1 =exp +2nr2I(a)
i f (e +

)
i

(1—e '
)

apT 4~
(23)
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where
' 1/2

(24)

and

W+ ——nr(+ir2(n +a /4' )' (25)

Q =cxpTL

I(a) has the limiting values

I(a) = ——,
' as a ~0,

=0 as a —+00 .

(26}

Substituting (21) and (23) into (20), we find

d2~Td/2 'ALP ' f (2 )) d/2 ~f—( 2nit)
~

2(2 —d) ~f(e
' +)

~

2(2 —d)(1 2 )2 —d

4n.w2

~+2 3Q
X exp ——1 1 — —6I(a)

4m
(27)

Equation (27) is invariant under the transformation r~r+1. This invariance requires that r( is restricted to the re-
gion chosen to be ——,

' &~1&—,
' and ~2&0. In the usual string theory the path integral is also invariant under

r + —1/r— This .makes the path integral modular invariant where modular transformations are of the form
r~ar+P/'yr+5, a,P, y, 5 are integers, and a5 —Py= l. This requires that r be chosen to be in the fundamental
domain defined by —

—,
' &r, & —,', rz&0, and

~

r &1. The extrinsic curvature term breaks modular invariance of the
path integral. Note that (27) is not invariant under r~ —1 lr. The free energy F(13) for a gas of strings is given by

F(&)= II ~ +connected
P

(2g)

Following Polchinski's procedure we find that

F(P) Td/2 f f y (2 )( d/2 ~f(e2~—r)
~

2(2 —d) '~f(e
' +)

~

2(2 d)—
2777 2

—1/2

—y P T/2r~
)& (1—e ) exp 4rrr2 1 — —6I(a) pe

4m 24
(29)

In order to understand the content of (29) we compare it with the free energy for a collection of free particles whose
energy spectrum is co„=+k +m:

dd —1

F(Pm )=—f ln 1 —e
P (2m)

i —d/2 ~ —m s/2 —y P /2s (30)

In terms of occupation numbers of transverse oscillators N„"', N '„",N„' ', N „' ', and N ', the spectrum is given by

3 2

m (a)=4m. T —2+ +12I(a) + g g (Nn„+.(X(")+ g g n(N„+X„')+
2m2 i=1 n=1 i=1 n=1 i=1

(31}

subject to the closed-string constraints
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d —2

d —2

where

g n(N„'" —N'„")=0,
n=1

g n(N' ' N'„—')=0,
In=1

(32)

' 1/2

n= n+ a

4n
(33}

Summing (30) over oscillator spectrum (31) subject to
constraints (32) yields exactly the free energy given in
(29). The r, integral enforces (32) while vz sT. ——Thus
(31) and (32) replace the usual spectrum for the Nambu-
Goto theory. There are several interesting features to
take note of.

From (31) we see that there are only transverse modes
in the mass spectrum. The longitudinal modes of N„'"

and N'„" have been canceled by the factor det'( —6) in

the Jacobian (19) while those of N' ', N„' ', and N, ' ' by
l

the factor det'[ —(1/aoT )b +1] in (19) which comes
froin the term 5g,'b' in (13).

In Eq. (31} the number operators N„'" and N„' '

I

represent independent right movers while N„'" and N'„'
are the corresponding left movers. These are commut-
ing operators. N ' arises due to zero-point fluctuations
of the smooth string. The constraints (32} are the usual
ones: namely, the number of left-moving degrees of free-
dom coincide with those of the right-moving degrees of
freedom. Consider first the tachyonic state. The (mass)
for this state in the presence of extrinsic curvature is
given by

We wish to evaluate det'[ —( I/aoT)6+1]. The
metric and its inverse are

gab =

and (A 1)

2

So the operator is

should be remarked here that our expressions for the
path integral and the free energy are not valid for
a ~oc. The reason for this lies in our regularization
scheme. As explained in the A.ppendix, it is valid as
long as a is finite.

Turning now to the excited states, we note that there
are two sets of oscillator states described by N"', N "',
N' ', and N' '. This is reminiscent of the situation in
classical nonrelativistic stiff strings. ' In the non-
relativistic case the equations of motion are fourth order
in space and each normal mode, for a clamped string, is
twofold degenerate. According to (31} we see that for
the quantum relativistic stiff string, this degeneracy is
lifted as n and 8 have different values. It can be seen
from (31) that there are no zero-mass spin-2 states in the
excitation spectrum of the smooth strings. This agrees
with the fact that smooth string theory does not have
modular invariance. " Finally, we note that the operator
N ' denotes the zero-point excitation of smooth strings.

APPENDIX

m (a)= d —2 3a
4n T —2+ + 12I(a) . (34)

2m.2

As a~0 and 1(a)~——,
' and m (a) =[(d —2)/

24]( —16m T) is just twice the mass square of the tachyon
of the Nambu-Goto theory. As a ~0, the extrinsic cur-
vature term dominates and in this case the theory has a
tachyon. For nonvanishing a, clearly, there exists a crit-
ical value of a for which m (a, )=0. This implies that
the smooth strings can be free of tachyons for a )a, . It

—B,(g' &g 8„)v'g

=g"a.a, =—'(( ('a', +a',—2,a, a, ) .
7-2

2

The eigenfunctions are

1 2 mo. no1 2

U „(cr,o }=exp 2mi.
1 2

Therefore

(A2)

det' — b, +1 =det' — [(r,+r 9,+B —2r, B,B ]+1
clp T CKpT7 2

1

Exp T$2

2 '2
2m. im 2 2 2+in . 2 m-n

71+12}+ +2tl(217') + 1
1 2 1 2

m, n ~9 OT Ll
%1777

L1

'2 — 2apT&2
+

4m
(A4)

and

Indet' — 6+1 = g ln xi+
1 4m m 2 n

apT m, n S2tXpT L
1

'2 — 2
T1m CKp TX2

4 2
(A5)
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We use the g-function regularization without introducing any scale to find the finite part without additional subtrac-
tion. Thus, for finite apT, define

1 d 4m m 2 n
ln det' — b, + 1 = —lim g r2+

aoT o ds &2aoT

7.1m

L1

'2 — 2apT72
+

4m

—S

d 4m'= —llm
s-o ds ~zapTL,

—S 2+L2
2 2

X
m, n

2 2 2 —s
+1L2 aOTL 2+2

m +
1 4m

(A6)

The sum over n is converted into an integral using the Sommerfeld-Watson transformation

ln det' — b, + 1 = —lim
1 . d

apT S~O ds

4m e l7Tz

dz
2l sln7TZ

28 7

m r 2+(z —mr&) + +H. c.
4m

+ lim
d

S~O ds

4m.

7 Q2

2 2 s

dz 0 72
m 7. 2+ z —mi, + +H. c. (A7)

where we have set 7=7L2/L1 and a =apTL1. The contour passes above the real axis, from + Co+is to —ap+ie.
The first term in large square brackets converges at s =0 and gives

2 g lnil —e +~ +21n(1 —e ')
m=1

with

(A8)

W+ ——mr, +i r2(m +a /4m )'

The second term converges for s ) 1. It reduces to

d 4n sinns I (1—s) | 2, 1
ion 2'2s-o ds r a' costs 1(2—2s) (m'+a /4'')'

(A9)

(A10)

1 el'
dz

(m 2+a 2/4rr2)' 'l2 a 2i sinn. z

We use the Sommerfeld-Watson transformation once again to convert the m sum to an integral

2
' 1/2 —s

dZ Q

' 1/2 —s

z'+ +H. c. — z'+
24m 4a

+H. c. (Al 1)

The contour passes above the real axis from + co+i e to —~+is. The first term in large square brackets convcrges
at s =0 and gives

' 1/2 —s

4
oo dP 1/2 s 0

e 2m(y+a/2n )
sinn(s —

—,') . (A12)

The second term converges for s ~ 1. Its value is

2sin n.(s ——,') I ( —', —s)

(a/n )
' sinn. (2s —2) I (3—»)

Substituting (Al 1), (A12), and (A13) into (A10), we find

1/2
72a

+

(A13)

(A14)

Finally, we get

lndet — b, +1 =2 g ln
~

1 —e +
~

+21n(1 —e ' )+8mr2 f y' y+—
apT n=1

or

1/2
2a

+

(A15)

1 s&[a /4ss+2ssl(a)] 2ni W+ 4det' — 6+ 1 =e '
apT

(A16)
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with (A6) is valid only for finite aoT. As aoT tends to infinity

p l e Qy +a /271. ) 7T

1/2

lim lndet' l
b, + 1 ~ln(1) =0 .

CXp T

and

tV, =nr, +i~,(n'+a'/4~')'",

L2v'r—
Li

(A17)

It should be noted that the g-function regularization

Therefore the extrinsic curvature term does not contrib-
ute to the path integral.

From (A 15) or (A 16), we see that by redefining
r=rL2/L „det[—(1/aoT)b + 1] depends only on a
which just contains L& as a parameter. So we see that
the path integral [see (20)—(26)] depends only on the
physical length of the string taken to be L, .
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