
PHYSICAL REVIEW 0 VOLUME 37, NUMBER 4 15 FEBRUARY 1988

Non-Abelian gauge invariance and the infrared approximation
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Two constructions are given of infrared approximations, defined by a nonlocal configuration-
space restrictions, which preserve the local, non-Abelian gauge in variance of SU(N) two-
dimensional QCD (QCD2). These continuum infrared methods are used to estimate the quenched
order parameter (Pt(s) in the strong-coupling, or chiral, limit and are compared to a previous cal-
culation where gauge invariance was not manifest. Both constructions provide results which, in
the chiral limit, differ from each other and from the previous estimation by an inessential, multi-
plicative scaling factor.

I. INTRODUCTION

In the preceding paper' some computations of the
quenched order parameter (PP) in the infrared (IR) ap-
proximation were reported for the case of SU(N) two-
dimensional QCD, for finite N(=2, 3) and in the limit
N~oo. The method used was an extension of earlier
gauge-invariant techniques ' in two-dimensional QED
(QED2); and the claim was made that the calculation,
while not manifestly gauge invariant in its entirety,
could be understood as a trivially scaled version of the
output of one that is manifestly gauge invariant. It is
the purpose of these remarks to justify that claim by
showing how the computations of Ref. 1, here designat-
ed as method 1, are related to two other methods which
are manifestly gauge invariant. %e here discuss the
problem of enforcing rigorous gauge invariance in the
QCD sense on an IR method of approximation success-
fully used in QED, where the Abelian nature of the
theory posed no problem. Quite apart from justifying
the results of Ref. 1, the question is interesting and im-
portant in its own right, especially if these IR techniques
are going to be applied to other, more complicated phys-
ical problems.

The central question can be phrased in the following
way. Non-Abelian gauge transformations demand in-
variance under a local, configuration-space operation.
The IR method, on the other hand, limits the magnitude
of virtual rnomenta which enter into the computation of
any physical process; and that restriction, local in
momentum space, is nonlocal in configuration space.
How can local gauge invariance in configuration space
be preserved under nonlocal IR restriction?

Two answers to this question will be constructed
below, labeled methods 2 and 3. Before that, however, it
wilI be useful and most appropriate to remind the reader
of the methods and results of Ref. 1. There, one began
with the exact gauge invariance of the Fradkin represen-
tation for the logarithm of the fermion determinant
L [A] in the background field A„'(z), and approximated
the functional form of L [A] (the "multipole approxima-
tion") in a rigorously gauge-invariant way, using a non-
trivial generalization of a similar, Abelian technique.
The other half of the IR method, however, is the decom-
position of A„, or of F„, into parts containing "soft"

and "hard" momenta, and it is here that 'the real prob-
lem of maintaining gauge invariance arises when one re-
tains only the soft parts of every interaction.

The physical, gauge-invariant quantity desired in this
problem is

where the vacuum-to-vacuum amplitude is given by
(with all quantities in Euclidean space)

(0+
~

0 ) = I d [A]5(V[A])detM[A]
T

)&exp ——,
' F +L (1.2)

L [A]=—— s
e " ~Tr(e is[y (gA+is))')-

2 0 S

—(g ~0), (1.3)

where, whenever the analytic continuation s~ —i~ is
performed, r will be called the proper time [even though
its dimensions are those of (time) ]. The exact represen-
tation given by Fradkin, most useful in a variety of
problems where an IR approximation is contemplated,
rewrites (1.3) in terms of a Gaussian functional integral
over a four-vector P„(s), in the form

In (1.2) detM [A] is the measure corresponding to the
gauge condition V[A]=0; f d [A] is typically
represented by P, &,f d A „'(z; );

L [ A ]=Tr ln( 1 ig y AS, ) =—Tr( G, '[ A ]G,[0]);
and G, [A] is the causal quark propagator in the pres-
ence of the background field A, with G, [0]=S,.

The only properties of the measure which we assume
are (i) it is gauge invariant, corresponding to an invari-
ant value of (1.2), and (ii) in any axial gauge, or in the
coordinate gauge x„A„(x)=0, detM[A] is a field-
independent constant which can be absorbed into the
normalization of ( 0+ ~

0 ), with physical quantities
such as (1.1) independent of that normalization. The
closed-loop functional L [A], where all the dynamics re-
sides, has a familiar representation first given by
Schwinger in terms of a proper-time variable s:
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L, [A]=——f" e " ' f dzx N(s) f d[p]exp —' f'ds'p (s'} S f'ds y(s ) TrU(s),
2 0 S 4 0 0

(1.4)

with

U(s}= exp ig—f ds' (t)„(s'}A„x—f P i—a„g„x—f

N(s) '= f d[P]exp —f ds'Pz(s'), e„„=—,'[y„,y„], A„(z)=A,'A„'(z),
4 0

F„„(z)=A,'F„'„(z)=A,'(B„A;—B„A„'+gf, , A~A'„) .

Here, the A,
' are the Gell-Mann (fundamental representation} matrices of SU(N), satisfying

[A,', A, ]=if,b, A, ', tr[A, ']=0, Tr[A, 'A, ]=25,b .

An explicit demonstration of the gauge invariance of trU(s) under the transformations

A (x)~A'(x)=V (x) A„V+ —B„V, F„(x)~F„'„(x)=V(x)F„„V, V V=1,
P P P g P & Pv (1.5)

was given in Ref. 1. This invariance is independent of the magnitude of P&(s}, and can be expected to hold for any ex-

pansion or regrouping of trU in powers of P. In particular, a simple method of generating the approximate form of
L [ A] corresponding to the retention of quadratic P dependence in (effectively) the logarithm of U(s) was explained in
Ref. 1; this produces for a non-Abelian theory the equivalent of the "rnultipole expansion" in QED, and replace trU
by the simpler expression

I

trU(s) =tr exp i f dg—', [g'F„,(g', x)]M„„(s)
0 Bg +(g)

(1.6)

where

M„(s)=Q&,(s) i cr„„,—

Q„(s)= f ds'P„(s') f ds"P„(s"),
0 0

F„'„(g,x)=a„A; a„A „'+igf.„—A'„A'„,

and the symbol +(g) denotes an ordering with respect
to the variable coupling g'. Equation (1.6) is strictly
gauge invariant under the transformations (1.5), which is
to be expected in view of the invariance of the exact
(1.4). Equation (1.6) is still a rather complicated
object —it is not the same as exp[ igF„„(g,x)M„„]-
but in two dimensions it wi11 reduce to a relatively sim-

ple form in any axial gauge, or in the coordinate gauge,
when the time comes to calculate.

The second half of the IR method, the separation into
soft and hard parts and the insertion of the soft F„„into
(1.6), must now be accomplished. The method adopted
in Ref. 1, here ca11ed method 1, was the simplest possible
generalization of the Abelian prescription: every color
component of F'(k) =F;4(k}was rewritten in the form

/ 2/ 2 /c2/ 2

F(k) =e 'F(k)+(1 —e ')F(k)

Fs(k)+FH(k), —

and an expansion developed in powers of FH. We dis-
cuss below, in detail, what is apparently wrong with this
procedure, how to correct it, and why the results of Ref.

I

1 are nevertheless appropriate; but it will first be useful
to describe, very briefly, the motivation behind this
second part of the IR method.

As in QED, the intuitive idea here is that strong-
coupling (SC) limits should be given by the Fs depen-
dence only, while corrections to that limit are defined by
the sequence of terms of the FH expansion. The upper
cuto6' p, to the virtual-gluon momenta is chosen to be
clv r, where c is a real, positive constant on the order
of unity; this choice of p„ in turn, justifies the multipole
expansion. A11 necessary functional integrals can then
be evaluated, yielding a function containing all powers of
g. In two dimensions g and m have the same dimension,
so that the true dimensionless coupling is g /m, and the
chiral and SC limits are the same. In the chiral limit of
QEDz this approach agrees very nicely with the known
exact answer' for (PP), even when the approximation
of quenching is partially removed. " The IR calcula-
tions are really estimates, for they depend multiplicative-
ly on the parameter c (in the combination gc). Any ex-
act answer, of course, would be independent of e; but
this will not be the case when an approximation is made.
(Rather like a constant of integration, or the value of a
scattering amplitude at the subtraction point of a once-
subtracted dispersion relation, the constant c must be
specified in a manner external to our approximate IR
computation. ) Nevertheless, the agreement between the
exact QEDz chiral result (E is Euler's constant)

(gg) = —ge /2m.
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and the corresponding quenched IR estimate

(Pg) = —gc/4'
is so close, including the same phase-space factors ~
that the IR method is probably a very reasonable way of
estimating SC effects directly in the continuum. To the

I

best of our knowledge, no machine calculation as yet has
produced values of (fP) for SU(N) QCDz, for all N and
arbitrary g, in the chiral limit, as computed in Ref. 1.

In any axial gauge, or in the coordinate gauge, this
simplest procedure of (1.7) generates, ' for the order pa-
rameter in the quenched approximation,

where

f e ™gf d [F]exp —
—,
' f F tr{[grA, Fs(x)]coth[grA, Fs(x)]—I],2' 0 7

'= f d(F)exp —
—,
' fF, Fs(x)= f d z f (x z}F'—(z},

and

f (x —z)=(p, /4m)exp[ —(x —z) p, l4] .

This can be rewritten so as to disentangle the spatial and color variables, in a form somewhat different from that of
Ref. 1, but useful for subsequent comparison with methods 2 and 3,

dL
(gg) = — f d u tr[(A, u)coth(A, u) —1] f z e '~" f" e ™1[J],2' (2m} 0 r

with

I [J]=rt f d [F]exp —
—,
' f F +i f d u J(u) F(u) (1.10)

where J(u ) =g rf (x —u )Q, and L =N 1. —
The functional integral of (1.10) is trivial and yields

I [I]=exp —
—,
' f d u J (u) =exp( gr Q p, /—16m) .

Then, the I dg is easily done, leading to

(Pg) = — (2') f —e ' f d z e ' trI [p&2t (A, .z)]coth(p&2t A, z}—1I,2' 0 t
(1.12)

where p=gc/4m&rr, and some obvious variable rescalings have been used. The tr operation on the color coordinates
may be written as

g I [pz&2t gt(z)]coth[pz&2t gt(z)] —1I,
I

(1.13)

where gt(z) is one of the N eigenvalues of 1, z, with z=z/z, z =+(z )' . In the SC/chiral limit where p »1, (1.12)
can be brought into the relatively simple form

(fP) I q „~— (2m) &2 f e ' f d ze ' ~ lz I g Igt(z)l
2m 0 I

gc I L+1 L
2

4~m I
2

(1.14)

where (
I g, I

) denotes an average over the solid angle
QL of an (L =N 1)-dimensional sphere, —

(
I k (z}

I
) = f «, Ik(z) I

/&

This is not a particularly easy expression to evaluate, in
comparison to the more powerful Mehta-Dyson methods
used in Ref. 1; but its advantage is that it allows a

straightforward comparison with the output of methods
2 and 3. From (1.14) one can also write down simple
upper and lower bounds on the SC limit of (gP), as in-
dicated in the Appendix.

The only difficulty with the prescription (1.7) of
method 1 is that one loses the manifest gauge invariance
maintained through (1.6), where L[A], which we now
call L [F], is invariant. For if F„ transforms under (1.5)
by means of the unitary operator
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V(x)=exp ig A, 'v'(x)
a

and if F &(k) =exp( —k /p, )F '(k), then the transforma-
tion (1.5) generates a nonlocal transformation of Fs(x),
and the manifest, local gauge invariance of (1.6) is not
sufficient to undo the nonlocality. In detail, suppose
that an infinitesimal transformation V =1+ii..5v is per-
formed on

F(z)= g A, 'F'(z)=A, F(z) .

The change 5Fs(x) is then given by

g f,&, f d z f (x z)—5v (z)F'(z)=5u'(x) .
bc

But because of the invariance of (1.6), one could always
adjoin to V a gauge transformation W(x), inside L [Fs],

L [W (x)Fs(x)W(x)] =L [Fs(x)] .

In infinitesimal form, this would generate a total change
in Fz (x ) of an amount

5F'(x)= g f,„,5W (x)F'(x)+5u'(x);
bc

and if 5W' could be chosen so that this 5Fs vanishes, in-

variance under the V transformation of (1.5) would be
manifest. Unfortunately, such a choice of 5W' is not al-
ways possible, for the vanishing of 5Fs requires that

Q, Fs(x)5u'(x)=0 as well, a condition which need not
at all be satisfied. The difficulty is easily traced to the
form of such a transformation, which rotates F(y) in
color space, in a manner dependent on configuration
coordinates, but leaves unchanged the magnitude of
F(y): if A, .F~l(, F'= V l(, FV, then F =F .

It may well be that method 1 possesses a gauge invari-
ance which is simply not manifest —in two dimensions,
e.g. , it generates a result that is independent of the
choice of axial gauge —but it is unsettling not to be able
to ascertain at a glance whether or not this is true. (A
rough argument was given in Ref. 1 to suggest that
translational invariance could be invoked to show that
non-gauge-invariant components are suppressed in a
final step of the calculation. )

In the next two sections we outline two methods for
the construction of manifestly gauge-invariant IR ap-
proximations, which should have application beyond the
simple estimates of (PP). These two methods, labeled 2
and 3, are quite different; but they have as output, in the
chiral limit of (gP), the feature that the multiplicative
constant c (appearing in the combination gc) is merely
scaled, for all N, by a numerical factor on the order of
unity, in comparison with the results of Ref. 1. In this
sense the calculations of Ref. 1 can be considered as
"embedded" within an estimation that is manifestly in-
dependent of gauge. Based on (1.14), or on the results of
methods 2 and 3, we mention in a brief Appendix simple
upper and lower bounds for (gf), for all N.

II. METHOD 2

+i Ju Fu 2u

=exp —
—,
' f d uJ(u)~,

L

(2.2)

with the definition of J(u) given following (1.9). For the
present method 2 calculation, one will need

r) f d [F]exp ——,
' f d u F~+i f d2u J(u)F(u)

(2.3)

with the magnitude J(u) defined as g~ F(x)f(x —u).
This seemingly small difference, however, harbors a
singularity which must be understood and removed.
The variable x, incidentally, is that of the fermion loop;
and because, by translational invariance, it drops out of
the final answer, we have omitted numerator and denom-
inator factors of f d x in these expressions, as well as in

those of the previous section.
Imagine subdividing all of configuration space into a

dense set of very small volumes 6, centered at the points
x, . The Fl volume element

d[F]= g dF'(, )

x,. ,a

may also be written as

P dn F' 'dF-
where dQ; denotes an element of solid angle in an
(L =N 1)-dimensional vecto—r space, and F; represents

It was noted above that F=F/F is rotated under a
gauge transformation, while F = ++F is left un-

changed. This suggests a different way of defining the
soft/hard separation,

Fs(x) —=F(x)Fs(x),
(2.1)

Fs(x)= f d z f (x z)F—(z);

that is, F is untouched while the soft/hard decomposi-
tion refers only to the magnitude F, F(x)=Fs(x)
+FH(x), with

Fs(x)= f d'z f (x z)F(z) —.

It immediately follows that A, F& is transformed in ex-
actly the same local way as A, F under the gauge trans-
formation (1.5), and hence the original, manifest gauge
invariance of L [AF] is preserved for L [AFs].

There is, however, a price to pay for this simple, if
somewhat asymmetric, resolution of our problem. When
a gauge is chosen, and the computation attempted, one
finds that instead of performing a functional integral (Fl)
over a vector in color space, one is faced with the same
Fl over the magnitude of that color-space vector. That
is, in method 1 one required the elementary Fl

I[J]=ri f d [F]exp —
—,
' f d u F
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the magnitude of the vector F(x;). The exponential fac-
tor

Fd u= ——,'6 F;

is independent of solid angle. Denote the x coordinate
of J(u) by x, ; then, for that cell i =j, one must evaluate

single 9' vector associated with J dQ, the field depen-

dence is on magnitudes only.
To calculate the Fl of (2.4), return to the dense set of

discrete points u;, cancel from numerator and denomina-
tor all factors of dA, , and rescale each F, magnitude

variable by F; =G;/&b, ; one is then left with a product
over all i of the ratio

where

d&jexp igvF&xjFj —G2/'2+i V b J-G.

0 0

F~(x/)= f d uf (xj —u)F(u) .

This solid-angle integration will always generate some
function of (grF&(xj )) Q, which can be rewritten as

f dQ exp[igrQFs(xj )9' v],

(2.5)

where, for the moment, we suppress the final integration
over J dQ. Anticipating the limit b, ~0, one may ex-

pand each factor exp(i&AJ, .G;), retaining the first two
nonvanishing, 6-dependent terms:

where Q =++Q, v is a fixed but arbitrary unit vector,
and 9 is the unit vector which ranges over all the solid
angle Q. Multiplying and dividing by a factor of 0, and
returning to the continuous limit, one can then replace
(2.3) by

1+iJ; &2h

L+1
2

Lr
2

QJ + e ~ ~
L

l (2.6)

f der) f d [F]exp ——,
' f F +i J J(u)F(u)

(2.4)

where, now, J(u)=grQ9' vf(x —u). Other than the

I

Because we are dealing with magnitudes, the &2A term
of (2.6) does not vanish, as it would by symmetry if we
were calculating a method 1 Fl over exp(iJ F) Its c. on-
tribution here is that of an infinite phase factor, since the
product over all such points u, is equivalent to

g exp id&2/6

L+1
2

Lr—
2

L+1
' 1/2

' J, —CbJ2 ~exp —C f d u J (u)+i
Lr—
2

J duJ(u) (2.7)

with C =L/2 —[I ((L +1)/2)/I (L/2)] . This is clear-
ly unacceptable for nonzero f d u J(u), as is the case

here.
One way of avoiding this trouble is to require a

redefinition of the Fl which removes the offending imagi-
nary part of (2.6); that is, one retains only the real part
of each cell's integration,

f d[F] f Red [F] . . = /Re f d F,
l

exp ——fd uJ(u)
2

=exp[ —g'r Q'(9 v)'p2L/16m] . (2.8)

This differs from the corresponding method 1 result by
the inclusion of the factor L (V V) . In the chiral limit,
in comparison with (1.14), one sees that the (1(p) fol-
lowing from (2.8) is proportional to the additional, con-
stant, multiplicative factor g, with

g=(&L /fl) f dQ
i
7 v

i

=(L/n)'~ I (L/2)/I ((L +. 1)/2) .

This sort of prescription has been used, with some suc-
cess, in quite another context' (where it was necessary
to remove successive errors made in a white-noise
Gaussian Fl over an approximation to an ordered ex-
ponential). It can be defined here as a kind of "renor-
malization" prescription, defined to give an unarnbigu-
ous, gauge-invariant meaning to the Fl over magnitudes
only; and it provides, directly from (2.6), the result

For large N this is just a constant independent of N,
g~(2/m)'~ . The result of this method 2 calculation is
then just an extra factor g multiplying the gc depen-
dence of the result of method 1. Since the IR estimate
does not specify c, and the multiplicative factor g is of
order unity, the two computations are effectively
equivalent. When one is not in the SC limit the relation
between the two results is more complicated than multi-
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plicative; but, then, the IR estimates should not be taken
seriously.

While perfectly gauge invariant, this way of introduc-
ing the soft-hard decomposition is asymmetric, treating
F differently from

~

F
~

. Further, the necessary Fl over
magnitudes will develop an infinite phase factor, depend-
ing on the cell size 5 used in its evaluation; and a special
(although simple and gauge-invariant) method of evalua-
tion must be adopted to ensure a finite, real result. It
would therefore be useful to have available an alternate
method of calculation, one which avoids those un-
pleasant features of method 2.

III. METHOD 3

The method sketched in this section for the construc-
tion of a gauge-invariant IR approximation is intrinsical-
ly different from that of method 2 in the sense that it
will involve transformations of the same, basic field
A (x) appearing everywhere in the exact FI's, rather
than the previous formulation which replaces F by F& in
L [F] only, but one which will involve the soft Fourier
components of the A (x} in a very definite way.

We return to the expression for &0+
~

0—) of (1.2),
and note that there is another way of writing the func-
tional volume element

d[A]= g dA'„(;)
a, jM, X,.

in terms of momentum-space components A „'(k), if one
is careful to include a summation over the real and
imaginary parts' of each A „' (which, for ease of nota-
tion we henceforth suppress, as we do all color and
Lorentz indices). For clarity, imagine a finite space-time
volume of quantization given in terms of a denumerably
infinite number of momentum modes k„=2~n/L, where

L, here, denotes the length of each side of the quantiza-
tion volume. One can then characterize the variables by
g„dA„. The total number of modes summed upon
cannot be limited —even if they are to be divided into
soft n, and hard n& modes, they must all be included-
but one can invent a method for suppressing dependence
on the nI, modes sitting in the gauge-invariant coefficient
functionals.

To this end, note that L [A] is itself given as a sum
over all proper-time values, L [A]=f drL [r; A],
which we now think of as a summation over neighboring
values of a discrete proper time
L [A]=Erg,. L;[A]. This suggests rewriting (1.2} as a
product over all "diferent worlds" each characterized
by its own v, ,

A division into soft and hard (Euclidean) momentum
components can now be defined by the w;-dependent re-
strictions

y2 2 . y2 2s' n &Pi $' ~n &Pi (3.2)

&(A. , A.„]=gf 'e ' 'g f2' 2K
s h

x 9;[p„,p„„]. (3.3)

The functional soft/hard approximation may be intro-
duced by rewriting the products

mph An +ipn An
s s h h

n nh

as

Ip A + 1 E'p A
s "s h h

n, , nh

or as
P

exp imp„A„1+@ exp i gp„A„—1

n,

or by any other convenient method (convenient, that is,
for the calculation of corrections), and then expanding in
powers of e. (As in the Abelian calculations and as in
methods 1 and 2, this is supposed to be a sensible ap-
proximation only in a SC limit, with the leading behav-
ior of that limit estimated by the e=O terms, and correc-
tions defined by the subsequent terms in the e expan-
sion. ) The leading, or purely soft dependence of (3.3) is
then given by

'p ~ dpn
n f,.' '' ''rl f,."",[p...p.„]=~,[A. ,O].

s nh

(3.4)

where JM; =p, (r; } =c /r; N. ote that there is a "sharp"
distinction between soft and hard momenta, for each v.;
and that the decomposition (3.2) is made simultaneously
everywhere in the coefficient functional 0;[ A ].

We now rewrite 9;[A] as t, [A„„A„I,], using the no-
tation of (3.2), and imagine that a Fourier transform of
9; can be rewritten for all modes, soft and hard,

&0 ~0 )=g p f dA„S, [ A]

i n

where

(3.1)
Inserting (3.4} into (1.2) yields

&0 ~0 },=P g f dA„g f dA„Q, [A„,O]
n, nh

0;[ A ]=6( V( A ) )detM [ A ]

=+&0, ~0 &, , (3.5)

Xexp ——,'tr F A +67.L,
where all the multiplying coefficient functionals depend
only on soft momentum components. In any axial
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gauge, in two dimensions, it is clear that the "hard" part
of the FI variables will provide an infinite but unimpor-
tant rnultiplicative constant, which cancels out of the
computation. When we pass to the limit of an infinite
configuration-space volume, there will be an infinite
number of the soft k„modes; the configuration-space

S

A (x) variables, which we now call A, (x), may be imag-
l

ined to be given in terms of the nondenumerably infinite
spread of k frequencies within the upper cutoff p;. We
rewrite (3.5) in terms of configuration-space variables as
9[A, ].

If we suppose that each unitary V(x) is limited to
maximum frequency components p;/3, then any gauge

transformation of form (1.5) will produce an A, (x) in
i

the same ~, world. But even if that restriction is
dropped, and V is considered to have arbitrary frequency
dependence, there will be no change in the 9[A, ] enter-

s

ing into the computation of (0+
~

0 ), for that 9[A, ]
l

is invariant; by definition and construction it is indepen-
dent of V. Each (0+

~

0 ); maintains a manifest gauge
invariance under the transformations (1.5) for arbitrary
V, and the sum of such (0+

~

0 ), over all r; is similarly
invariant.

The construction of (0+
~

0 ) in our two-dimensional
problem is now quite simple. From (1.1) and (3.5) we
have

(PP) = — 1 f d'x ghr f d[A]JV[A, ] f d[A]2)[A, ] (3.6)

with

BL,[A, ]
%[A, ]=5(V[A, ])detM[A, ) exp ——,

' trF, +hzL, A,
i

and

Xl[A, ]=5(V[A, ])detM[A, ]exp ——,
' f trF; +b,rL;[A, ]

In quenched approximation one omits the exp(L;[A, ]) factors, observes that the "hard" f dA„& components cancel

away for each ~;, and then passes to the limit of continuous w;. Again choosing an axial gauge, or the coordinate

gauge, and with the same analysis which led to (1.11), one finds that one must perform the FI

g f dF'„exp —
—,
'

~

F'„~ +—(J„'F„"+c.c. )

n, ;a
n p 2 n (3.7)

where IV. SUMMARY

We have shown how the estimation of ( fg ) in

quenched, IR approximation of Ref. 1 is related to two
other, gauge-invariant methods of calculation. In each
case the invariant computations are just a multiplicative
factor away from the result of method 1; and since the
IR construction cannot specify the constant c (other
than the requirement that it be of order unity), these are
all equivalent estimates. In the Appendix we mention
simple bounds on the chiral limit of these (Pf), for all
N, using the form (1.14), which are then valid for the
gauge-invariant methods as well.

In this paper we have found two different ways of per-
forming IR approximations for (Pf) in a gauge-
invariant manner, and these two approaches are quite
different from each other and from that of Ref. 1. In the
latter case, faced with the difficulty of assuring gauge in-
variance of tr[F j and of L [F&[Fj ] simultaneously, the
simplest choice was made for F&, so that L [Fz IF j ] was
not invariant under the transformation which left trIF j
invariant. This situation is rectified in method 2, using
an asymmetric definition of Fz I F j such that L [Fz IF j ]
is invariant under the same unitary transformation as is

F =g +ll J = ~ en n n n /LT Q

[that is, J(u) is here given by g~5(u —x)]. For simpli-
city, the space-time volume LT has been kept finite.

The result of (3.7) is just exp( —
—,
'

~

J„'
~

), so that sum-
S

ming over all soft modes in the infinite-volume limit pro-
duces

(3.8)

of the same form as the corresponding step of method 1.
The only difference is an additional factor of 2 in the ex-
ponent of (3.8), so that the product gc appears to be
larger than that of method 1 by a factor of &2. Again,
we find the result of a manifestly gauge-invariant estima-
tion to be just a trivial rescaling of the result of method
1.

2%2~2 ~c 7 d2
exp —g ~ f =exp[ gr Q p, (r)/—8m], ,

.
2 o (2n)
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trtF~I; but the price one pays for that manifest invari-

ance is the necessity of redefining the FI expressing

(0+ IO ), in order to avoid an infinite phase factor.
Method 3, on the other hand, arranges the soft/hard
separation so that Fs Fs——(r), and all the F dependence
of each ~-dependent FI is expressed in terms of the same

Fs(v); each FI is manifestly invariant, as is their sum

over all proper-time values, under the full gauge trans-
formations (1.5). In contrast with method 2, the result-

ing is simple and finite and yields a result which differs
from that of Ref. 1 by a constant factor of v'2.

There are undoubtedly other, perhaps simpler ways of
introducing a gauge-invariant IR approximation, which
could be useful for other physical problems. It is in-

teresting to see just how little difference the preservation
of manifest gauge invariance makes. This is undoubted-

ly due to the situation, illustrated by an independent ar-

gument in Ref. 1, that the calculation performed there
really is gauge invariant, if not manifestly so, with its
noninvariant pieces canceling away (in a manner made
possible by translational invariance). Even so, it is re-

markable to see how little difference exists between the
results of all of these computations. Such questions will

be of some practical concern, as the IR approach to SC
turns to the continuum estimation of physical effects
more complicated than that of ( PP ).

Note added in proof. Instead of the asymmetric
scheme of method 2 where gauge invariance under local
transformations of the fields F is maintained, or that of
method 3 where invariance is preserved under local
transformations of the I„ for realistic problems of
QCD~ there should be another way, in which quarks do
not play an essential role. One may ask the question: in
the absence of a quark mass, where can one find the
scale parameter with respect to which an IR approxima-
tion may be defined? One possible answer appears to be
dimensional transmutation, in the context of a field for-
malism, and work on this approach is under way.

APPENDIX

6+1
2

I.
2

y& I/i(z) I
&,

where the N real eigenvalues g&(z) are obtained from the
diagonalization of (A, z), with z a unit vector in the
(L =N 1)-di—mensional space whose solid angle is QL .

(A2)

Because

and

X I 4~ I
'&2k

one has the immediate lower bound

g( I g, (z)
I

) &v'2. (A3)

An upper bound is easily found, assuming that the solid
angle average (

I g&(z) I
) is independent of I, an expecta-

tion that is certainly in agreement with the form of the
Mehta-Dyson method. ' One uses the inequality, for any
1,

so that, summing over all /,

The result of Ref. 1 for the quenched, IR (ff) in the
chiral limit was expressed in (1.14) as proportional to the
factor
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It then follows that (
I g, I

) & v'2/N, or that

(A4)

Substituting (A3) and (A4) into (Al), one finds, to within
an unimportant multiplicative constant, that

gN &( —(1ijf))&gN ~ (A5)

The explicit calculations of Ref. 1 show that the actual
result tends, in the large-X limit, to the upper bound of
(A5).
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