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Estimates of (PP) in the quenched approximation for two-dimensional QCD (QCDz) are ob-

tained, based upon a continuum, infrared approximation previously developed for QEDi. Non-

trivial gauge-invariant extensions are devised for general SU(N), and computations are carried out
for finite N(=2, 3) and in the large-N limit. Specifically non-Abelian structure appears for finite

N, while the large-N limit displays an "effective Abelian" simplification. A nonzero value of (Pg)
is found in the chiral limit for all N; in the limit N~ oo, (fag)- gN—'~, independently of the

value g. (This generalized a previous result of Zhitnitsky, who found a similar combination in the

planar limit, with gN' fixed. )

I. INTRODUCTION

Introduced by 't Hooft' in 1974, two-dimensional
QCD (QCD2) has been extensively studied as a possible
source of information about non-Abelian dynamics. In
spite of the considerable simplifications found in two di-
mensions, there is some belief that its dynamical struc-
ture is not completely at variance with that of the
confining regime of QCD4. The bosonization of QCD2
has recently been achieved both by operator and path-
integral methods, while there exist several compelling
reasons ' to study massless fermionic theories as limits
of massive ones; this certainly is also of interest in stud-
ies of numerical simulations.

In this paper we consider the possibility of chiral-
symmetry breaking (CSB) in QCDi, by calculating the
order parameter (Pg) in the chiral limit, as the quark
mass approaches zero. This limit is relevant to the low-

energy behavior of the theory, and will be approached
by infrared (IR) techniques previously used in the Abeli-
an case ' and suitably extended to the non-Abelian one.
What is evaluated is the sum of all gluons exchanged
across a closed quark loop, with the (Euclidean) momen-
ta of the gluons effectively limited to a continuous spec-
trum of values less than or on the order of the quark
mass m. The analysis is carried out in the quenched ap-
proxiination, in a gauge-invariant way which is, howev-

er, not manifestly invariant; but it is separately justified,
using an argument that depends on translational invari-
ance. In the following payer we show the equivalence of
the calculations presented here with the results of two
different, manifestly gauge-invariant formulations of the
IR approximation. In this paper we follow a far simpler
and more intuitive route, which keeps the formalism to a
minimum while yielding specific, numerical answers.

As m vanishes we find that (fP) develops a finite,
nonzero, N-dependent value, indicative of explicit
chiral-symmetry breaking, and that this effect persists
even in the limit of large N, with no restriction on the
coupling constant g. Our work complements a recent
calculation of Zhitnitsky, who found in the planar limit
that (gg)~ „=N(g N/12m)' with g N fixed. .

One of the aims of this paper and the one to follow is
to illustrate what we feel is the proper way of perform-
ing an approximate calculation for any physical, gauge-
invariant quantity Q. One starts with a formal but ex-
plicitly gauge-invariant representation for Q, and ap-
proximates this in some desired and physically motivat-
ed way, all the while retaining invariance of Q under the
exact gauge group. Then, to perform the calculation,
one chooses a gauge, but once that choice of gauge has
been made no further approximations are permitted.
For us, in this paper, Q = ( gP), and the physical
motivation is the expectation that this order parameter
is mostly dependent on low-energy effects. Because g
and m have the same dimensions, the ratio glm is the
effective, dimensionless coupling of the theory, so that
the chiral and strong-coupling (SC) limits are the same.
Indeed, one has all the weight of decades of nonpertur-
bative, eikonal calculations to suggest that SC physics
may be correctly described in the continuum when virtu-
al photon/gluon momenta are suitably restricted to be
suitably small. But however one may view our motiva-
tion (see below), the essential gauge invariance of our
computation will be made clear, qualitatively in this pa-
per and explicitly in the one which follows.

Because the basic techniques of the IR method have
been discussed in Refs. 7 and 8, we here present in detail
only those parts of the analysis which are new and
specifically relevant to the gauge group SU(N). It will,
however, be useful to most readers to include a brief,
qualitative and physical description of the motivation
behind the techniques which define the IR method. Our
work represents an extension of the exact solutions for
the Green's functional G, [A]=S,(1 iey AS,—) ' and
the closed-fermion-loop functional L [ A ]=Tr ln(1

iey ~ AS, ) —which were found by Schwinger in 1951
(Ref. 10), for the special situation where the fields F,
are constants, independent of space-time coordinates.
(Solutions were also found for laser-type, single-
frequency fields of arbitrary strength; but those are of no
interest here. ) Schwinger's solution —a rare example of
an exact, SC solution in quantum field theory —has been
the starting point of many investigations, e.g. , those try-
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ing to estimate lepton pair production in intense electric
fields. "

Ever since the exact, formal, functional solutions for
the generating functionals of local quantum field theories
were first obtained (by Schwinger, Symanzik, Fradkin;
and in the form of path integrals by Feynman), there has
been a continuing search for a nonperturbative way of
approximating the intricately coupled n-point functions
which define any full theory. Applications to meson and
nucleon problems, and more recently to questions of
quark and gluon confinement have made the invention of
workable SC techniques a paramount question. The ad-
vent of modern computer technology has provided the
means for large-scale computer programs, such as those
of lattice gauge theory; and while their results have oc-
casiona11y been impressive, one continues to wonder if
there might not be another, analytic way to obtain esti-
mates of SC quantities, using pencil and paper, directly
in the continuum.

The IR method is one recent attempt to do just that.
It represents the first step in a systematic approximation
procedure which invokes a "perturbation theory" quite
different from that of ordinary Feynman graphs, a pro-
cedure that is designed to emphasize the coherent, or
large-scale aspects of any solution to a SC problem. The
method has generalizations to all topics in mathematical
physics which may be reached by a Green's-function ap-
proach, but such extensions will not be discussed here.

The simplest idea of what one intends to do can be
most easily conveyed by considering a function of a sin-

gle variable, call it f (t), which represents the exact, SC
solution to some nonlinear differential equation (DE).
Suppose that f (t) has the form of a slowly varying func-
tion upon which is superimposed some rapidly varying t
dependence, with both the slowly and rapidly varying
dependence strongly dependent on the nonlinearity of
the DE; one can then expect that a perturbation approx-
imation for the nonlinear part of the DE would generate
results completely different from the exact solution. '

How, then, is one to obtain an analytic, nonrnachine se-
quence of approximations to f (t)?

The answer given by the IR method is to generate a

systematic set of approximations such that in the sim-

plest, or zeroth approximation the high-frequency Auc-

tuations of f (t) are suppressed, and only in subsequent
"higher-order" corrections does one attempt to repro-
duce the "fine structure" of the exact f (t) (Ref. 13). In
the first paper of Ref. 12, dealing with SC approxima-
tions to ordered exponentials, this has been accorn-
plished in a somewhat more direct manner than those
which follow from the methods of this, and previous pa-
pers, in field theory. But the basic idea is the same: if
the essential, qualitative physics of a particular problem
is represented by relatively slowly varying dependence,
rather than by rapid fluctuations, the IR method should
be a sensible method of approximation.

The n-point functions of quantum field theory may, in
principle, be calculated by a two-step process: one first
builds a representation for the various G, [ A ] and L [A]
entering into the problem; and one then calculates (typi-
cally Gaussian) fiuctuations over combinations of these

quantities, as appropriate to the n-point function under
consideration. The first step has traditionally been im-
possible, except for a perturbative development (in which
case the second step is always trivial), and except in cer-
tain model approximations.

Among the latter it is useful to focus attention on
those compactly described by the word "eikonal, "which
refers to a collection of approximations to scattering and
production processes that may be constructed, from first
principles, under the restriction of sufficiently small
momentum transfer q to the scattering particles. In any
Abelian theory, e.g., one may imagine the scattering of a
pair of fermions by the exchange of an infinite number of
virtual bosons, each of some virtual momentum k, , and
replete with closed fermion loops inserted in all possible
ways among the virtual bosons; then, the amplitude for
this scattering process takes the form of an eikonal ap-
proximation, with the eikonal function given as the sum
over all cross-channel, connected amplitudes. ' (Graphs
of high complexity can be included, such as the
"towers" of Cheng and Wu, ' which originally pointed
out the possibility of rising total cross sections. )

More precisely, if p denotes the magnitude of the c.m.
mornenta of the incident particles, the eikonal model fol-
lows under the restriction q &&p. The reason for this is
that typical values of k; are of the order of q; and hence
the restriction q &&p means that the virtual boson mo-
menta are restricted to "soft" values, k; &&p. All of the
relativistic eikonal models of the past few decades may
be thought of as IR approximations in which virtual mo-
menta are kept smaller than the asymptotic mornenta of
the scattering particles. And since the resulting eikonal
amplitude contains all powers of the coupling constant,
it may be considered as a candidate for a strong-
coupling approximation, a point of view which is rein-
forced by the more than qualitative success of such rnod-
els in atomic, nuclear, and high-energy physics.

Here, then, is the first hint of how to construct more
general, analytic, continuum, SC approximations in field
theory: the leading behavior in a SC limit of some func-
tion, or symmetry-breaking parameter, or quantity
strongly dependent on long-distance configuration-space
effects may be obtained by extracting the low-frequency,
or IR, part of the relevant, virtual processes. SC by IR
extraction is the basic idea of the IR method. Tests of
this idea were first carried out' in two relatively simple
attempts to reproduce the behavior seen in machine cal-
culations of renormalization-group P functions in the
large coupling limit; and the results were sufficiently in-
teresting to warrant the application of the IR method to
the SC problem of symmetry breaking in QED2, Refs. 7
and 8, and here, in QCD2, where one must face the com-
plexities of gauge invariance in a non-Abelian theory.

But what is to be done when the process under con-
sideration, such as the present one, does not contain
asymptotic momenta, and the conventional eikonal con-
struction cannot be used? For those situations, one must
arrange for the upper cutoff of the virtual momenta to
be provided in a natural way, and in particular, in such a
way that allows the possibility of systematic corrections.
(In the (PP) calculations, that scale is effectively pro-



948 T. GRANDOU, H.-T. CHO, AND H. M. FRIED 37

vided by the fermion-loop mass; but in other situations,
such as an application of these Green's-function tech-
niques to realistic fluids, ' that upper cutoff can itself be
a quantity to be determined dynamically. ) In every sys-
tematic approximation scheme one must identify an ap-
propriate small parameter with respect to which the se-

quence of approximations can be developed; and while it
may be introduced in an intuitive way, it must enter as
part of a formalism, so that corrections to the zeroth ap-
proximation can be defined. For this purpose, the
proper-time method of Schwinger, extended by the love-

ly representations of Fradkin, ' provide the natural
framework.

Detailed explanations of these representations may be
found in Refs. 7 and 8. Here, we comment only on the
motivation for the use of (2.3) below, and on the form of
the results which follow. In the situation where the
fields F„„(z) of (2.3) are constants, L [A] reduces im-

mediately (in QED) to the form originally given by
Schwinger. In our "lowest-order" approximation, where
a continuous range of suitably low frequencies are re-
tained, thereby replacing each component of F„„(z)by
the corresponding form of (2.14), the result is a simple
generalization of Schwinger's QED form in the sense
that the constant field entering into his expression is
here replaced by a field having "soft" frequency com-
ponents; in QCD, the results are somewhat more compli-
cated, but in fact quite similar. The upper cutoff to the
virtual momenta allowed in this initial approximation is,
by internal consistency, required to be on the order of
the loop mass; larger momenta appear in the systematic
development of "higher-order" corrections.

The details of these topics, with particular attention
paid to the requirement of gauge invariance under non-
Abelian transformations, appear in the text of this and
the following paper. In QED, these techniques yielded
an L[A] in IR approximation which was really no
surprise, for that result of necessity had to reduce to
Schwinger's constant field solution when the field F„„
was that most IR of all functions, a constant. In fact,
the IR approximation to L [ A ] for QED4 can simply be
obtained by writing Schwinger s constant-field solution
and replacing his F„by one containing only soft com-
ponents. Precisely this approximation to L [A] has just
been used' to discuss the new e+e resonances found
in the collision of heavy ions of large electric charge, in
a SC application to QED4.

The arrangement of these remarks is as follows. In
the next section we set up the calculation and discuss as
much gauge invariance as is necessary for the numerical
computations. In Sec. III the detailed calculation of
(gg)&a is discussed for N, =2 and 3, with all technical
details confined to the Appendixes. In the next section a
discussion of the limit N, ~ op is given, with emphasis
on the appearance of specifically Abelian and non-
Abelian structure. Understanding the latter, in particu-
lar the nature of the quantum fluctuations saturating the
order parameter, was one of the aims of this paper. Sec-
tion V contains a brief summary and some relevant com-
ments, while several appropriate appendixes complete
this paper. In all that follows we have restricted our-

selves to the case of only one quark flavor, since the
large-N, limit to which we shall pay particular attention
is flavor blind; then, with Nf ——1, N, will be written as
N, everywhere.

II. GAUGE INVARIANCE AND THE INFRARED
APPROXIMATION

We remind the reader that the IR approximation,
defined in Refs. 7 and 8, is supposed to produce an esti-
mate of the leading behavior in the SC limit of any phys-
ical quantity appropriately sensitive to low-energy
effects. Corrections to this IR estimate may be per-
formed in a systematic way, but will not be discussed
here. The exact definition of the order parameter (a Eu-
clidean metric will be used almost everywhere)

(qq)= —
g

1 (0 ~0 ) fd' (2.1)

may be rewritten in quenched approximation as

(2.2)

where Q& denotes a single quark loop with all possible
gluons exchanged across the loop:

We work in the fundamental representation of SU(N),
where the Gell-Mann matrices satisfy the relations

[A,', A,"]=2if,b, A.', [A,', A, ") =—5,b+2d, b, A,',
N

with tr[A.']=0, tr[A, 'A, ]=25,b.
We will use the approximation of quenching, neglect-

ing the fermionic determinant L ( A) everywhere except
as written in (2.2). In recent papers ' it was estimated
that corrections to the order parameter due to other
closed fermion loops in QED2 were on the order of
25 —30 /o, in non-Abelian situations quenching should be
even better, since one expects fermion loops to be
suppressed by a factor 1/N. In effect, the quenched ap-
proximation in our IR method appears to correspond to
a simple, finite rescaling of the coupling constant, al-

with L(A)=Trln(1 igy A—S, ). Here 2)„ is a linkage
operator given in terms of the gluon propagator of a par-
ticular gauge, chosen when it is time to actually com-
pute; we use this Abelian-type shorthand to represent
the effect of functional integration over all appropriate
variables, once a specific gauge has been chosen. The
more customary but cumbersome functional integral no-
tation will be used as needed, when one discusses strict
gauge invariance, in the paper to follow.

These forms follow from the original Lagrangian den-
sity

X= ——,'(F„' )'—P[m+y„(B„igA„'A—,')]g .
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though, because of the nonsmooth limit as m tends to
zero, other methods of calculation ' can display
different types of divergences in quenched approxima-
tion.

As in Refs. 7 and 8 we shall use the Fradkin represen-
tation to write an exact representation for the QCD
closed-loop functional L ( A ), in terms of Gaussian Quc-
tuations of a proper-tiine-dependent vector field P„(s}:

L [A]=——f" e ™fd x N(s) fd[P]exp —' f ds'P (s') 5 f ds'P(s') Tr[U(s) —I],
2 0 s 4 o 0

(2.3)

where

and

U(s)= exp ig— ds' P (s')A x — P ic—r g „x-s ,
'

,
' s' .

' s'

p 8 P p P P»
p '+

(2.4)

A„(z)=A,'A„'(z), cr„„=—,'[y„,y„], F„„(z)=A, 'F„'„(z)=A, '(B„A'„—B„A„'+gf, , A „A'„)(z),

and the normalization constant N(s) of (2.3) is given by

N(s) '= f d[&]exp —' f 'ds'P (s')

Under a subsequent continuation, s~ ir,—and r will then be called the proper time. [It really has the dimension of
(time) .] The trace operation Tr includes a summation over color degrees of freedom, which will be denoted by tr.

Before considering any approximation to the L ( A) of (2.3) we first show, explicitly, that trU(s) is invariant under
the general, position-dependent gauge transformations generated by the unitary operator V(x) =exp[i'.,v, (x)]:

A„(z) A„'(z)= V (z) A„(z)+—B„v(z), F„,(z) F„'„(z)=V (z)F„,(z)V(z) .
g

Under such a transformation, U(s)~ U'(s), where

I

U'(s) = exp ig f ds' P—(s') V x —fo 8 p
A„+—B„V i o &—V x —f P F„„V

0 +
(2.5)

ig P„(s—)V x —f P A„+—B„v
Bs " . o . " g"

—io„,V x — F„„V U' .
0

(2.6)

Setting U'(s)= V (s)W(s), substituting into (2.6), and
comparing with the corresponding equation for U,
yields, with V(s)—= V(x —fpP),

aw
Bs

ig P„(s—)A„x—f P

iver„g„„x—f—P W, (2.7)

where we have made the replacements

& (s)v (s}a v= —v'(s) av
p Bs

and where, for compactness, in writing (2.5) and similar
expressions, dependence on the common variable
(x —f p P ) is exhibited in only the first member of the

product. To understand the relation between U and U',
it is useful to consider the differential equation for U':

and

Bv Vt Bv
Bs Bs

If one takes into account the initial condition
W(0) = V(0), in comparison with (2.4} one can write the
solution of (2.7) as W(s) = U(s) V(0); so that, finally,

U'(s)= V (s)U(s)V(0) . (2.8)

But V (s)= V (0} if the (closed-loop) condition fp$„=0
is satisfied, as required by the representation (2.3).
Hence trU=trU', and (2.3) with (2.4), has been explicit-
ly shown to be gauge invariant. This is not a surprise, of
course, for the Fradkin representation is exact; but an
understanding of just how gauge invariance works before
any approximations are made is a useful preliminary
step for understanding the gauge structure of the ap-
proximations we are about to perform.

In Refs. 7 and 8 the IR method for @ED, the lowest-
order approximation of a systematic expansion in powers
of a "hard" (i.e., nonsoft} interaction, was introduced by
the following sequence of steps.

(i) The corresponding L ( A ) was rewritten (by means
of an elementary integration by parts on an s' variable)
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so that its complete dependence upon F„„=B„A,
—8 A„was made explicit. In (Euclidean) momentum

space, every component of F„was rewritten in the form

k2/ 2 —k /
F(k) —=e 'F(k)+(1 —e ')F(u)

Fs—(k)+FH(k),

where p, is a cutoff parameter specifying the upper limit
of the "soft" momenta included, and will be specified in
a manner that permits all steps of an estimation to be
performed. An expansion is developed in powers of FH,
of which only the lowest-order terms are retained;
effectively, F(k) is replaced everywhere by Fs
= exp( —k /p, )F(k).

(ii) Even with this step, the forms entering into L ( A)
are too complicated to permit the Gaussian fluctuations
over P„ to be performed; but with a judicious choice of
p, one could argue that a multipole expansion could be
made of the phase factor exp( ik f 0

—P ds" ), in the

integr and of the Fourier representation of
Fs(x —f0$ ds"), with the leading term given by replac-

ing this factor by unity. [The essential reason is that P
scales as I /v'r, so that 0 (k f Qds

"p) & p, r/v r. Hence
if p, is chosen as c/v'r, where c &1, the multipole ex-
pansion is sensible. Because ~ itself scales as m, this
effectively corresponds to p, -m; and indeed, one can
simply choose p, =cm. There is one reason for prefer-
ring the choice p, , =c/v r, for the functional averaging
over the photon fields then produces as an internal step
an exponentiated result whose form of scaling depen-
dence on ~ is exact; and this is later reflected in the fact
that our results, both quenched and nonquenched for
( gf ), contain the correct form of phase-space depen-
dence, a factor proportional to m

~ .]
(iii) After the replacement exp( ik fQuads—")~1,one

is left with an Fs(x) dependent on r, via the p, depen-
dence; but one which is independent of P. Hence the
Gaussian functional integration over P can be carried
through and a form obtained for LiR(F) in terms of an
integration over the proper time. The phrase "IR ap-
proximation" then denoted the result of keeping the
leading terms of two expansions, the multipole expan-
sion, and that obtained by the replacement of F by Fz,.
and corrections can be obtained in a systematic way.

One would like to proceed in much the same fashion
for QCD, but there are two distinct and fundamental
differences associated with its non-Abelian gauge trans-
formations which must first be resolved. First, what is
required here is invariance under local, configuration
space operations; but the IR approximation begins with
a local restriction in rnomenturn space. How can the IR
approximation, which is then nonlocal in configuration
space, be compatible with in variance under local,
configuration space transformations? Second, certain ex-
ponential factors of QEDz now appear as ordered ex-
ponentials; but before the Gaussian fluctuations of the
Fradkin representation can be computed one must have
in hand the appropriate and explicit P dependence.

We sha11 show in the following paper that the first

point can be answered by embedding the simplified
method of calculation used in this paper into two
different, manifestly gauge-invariant formulations; the
only difference between the three results for the order

parameter will be a rescaling of the parameter c by an
amount of —1, an effect of no practical importance.
The reason this rescaling is of no real importance is that
the value of c must be specified by some method external
to this computation. Rather like a constant of integra-
tion, or a subtraction constant in a dispersion relation, c
should be chosen by comparison with a known result.
For example, in the chiral limit of QEDz, one knows
(from bosonization) the exact result: (gP)

~ ~

= —ge~/2~, where y is Euler's constant. In compar-
ison, the quenched IR method yields ( gf )

~

= —gc/4n3~, with c/2 effectively replacing er. One
may then use the IR method to calculate other, c-
dependent Green's functions, and the choice c /2 =e r

should give a decent approximation to those functions.
Of course the exact answer, of which the IR method is
just the first approximation, is independent of c; but any
finite correction will depend on c. In the present SU(N)
case we can do the same thing, by choosing c (at least in
the large-X, chiral limit) to agree with the only known
answer, Zhitnitsky's, for (gi)'j). The essence of the IR
method is that c- 1, so that our calculations are really
only estimations; but even with this drawback, it is in-

teresting to be able to obtain the form and the order of
magnitude of a SC quantity directly in the continuum.

The simplified method of calculation used here, as
defined by (2.14) and (2.15) below, makes the same
division into soft and hard parts as used in the QED pa-
pers of Refs. 7 and 8. Although it is not manifestly

gauge invariant, it is in fact invariant, as we show in the
argument following (2.15). In the following paper, two
different, manifestly gauge-invariant constructions of the
IR method are outlined, and their results are shown to
be equivalent to those of the simpler calculations of this
paper.

The resolution of the second point, necessary for any
approximate calculation, is fortunately a good deal
simpler. In QED it was possible to perforin a rearrange-
ment of the factor

I

exp ig f ds—'P„(s')A„x —f
of (2.4), replacing it by its exact equivalent

I

exp ig f 'ds—'P„(s')f *
ds "P (s" )

0 0

x f 'dzzF„„x Xf*y—

In so doing one neglects an exponentia1 factor of form

exp ig f ds'—P„(s')A„(x)
0

because of the closed-loop restriction fDds'/=0. In
QCD, however, this factor lies inside an order exponen-
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tial (ordered in s'), and terms proportional to
jods'P„(s') cannot be discarded until the ordering pro-

cess has been completed; it is this manipulation which,
e.g., generates the [A„,A„] contribution to the non-
Abelian F„.One needs a simple way of extracting from
the exact form (2.4) explicit dependence on the A„
and/or F„;and for this one can use the following argu-
ment.

Rewrite the U(s} of (2.4} as Uo (adapting a notation
and a technique used long ago by Symanzik in his stud-
ies of generating functionals in quantum field theory),
where s and 0 refer, respectively, to the upper and lower
limits of the integral J ds'. We omit, for the moment,

the o"F dependence of (2.4), which will simply be added
into the final result. Calculate the variation of Uo with

respect to a small change in coupling g,

/Us —i f ds'U, 'P„(s')A„x —f P Uo, (2.9)

with

aU'o

Bg
= —iQ(g, s)UO, (2.10)

assuming for simplicity that A does not depend on g. (A
generalization of this construction for the case of arbi-
trary dependence of A and F on g is left as an exercise
for the interested reader. ) If so, F is linear in g; and sub-
sequent gauge transformations should be effected by uni-
tary operators V(x) which are independent of g, in order
to preserve the form of the g dependence of F.

Performing an integration by parts with respect to the
s' variable allows one to rewrite (2.9) as

g(g, s)= f ds' P„(s')A„x—f P +igP„(s') f ds"P„(s")U,' A„x—f P, A„x—f'y Ust t

S

In the subsequent IR expansion we are going to retain
only a quadratic exponential dependence on the P, and
the form that this approximation will take can be simply
inferred by retaining only quadratic P dependence in the

Q(g, s) of (2.10):

Q(g, s)= f ds'P„(s')A„(x)
0

——,
' Q„„(s) ( B„A '„—B„A„' + 2gf, , A b A; 9,',

for the L ( A ) was shown above to be rigorously invari-
ant, independently of the size of P; and this invariance
will persist under any expansion, or regrouping in
powers of P.

Our gauge-invariant form for the IR approximation to
the trU(s) of (2.5) is then given by

trU(s)=tr exp i f —dg'[Q„„(s) iso„,—]

where
X, [g'F„',(g', x )A,'] (2.13)

Q„„(s)=f ds'P„(s') f ds "P„(s").
0 0

(With p„replaced by dx„/ds, Q„„ is just the projection
of the area of a Wilson loop onto the p, v plane. )

Integration of (2.10) is given in terms of an exponen-
tial ordered in the variable g', not s',

Uo(g) = exp i f dg—'Q(g ', s )
0 +(g)

(2.11)

and hence the condition f ds'/=0 can be freely imple-
0

mented, leaving

Uo(g)= exp i f dg'—, [Q„,(s)g'A. 'F„'„(g')]
o Bg +(g)

(2.12)

where the F„(g} written in (2.12) is the exact field
strength, with its proper (linear) dependence on g. Be-
cause (2.12) is ordered in g' it is still a very complicated
object; it is not the same thing as the ordinary exponen-
tial exp( igQ„„A;F„'„).—Nevertheless, gauge invariance
of the trace of (2.12) is immediate for any unitary V(s)
(independent of g). That this is true is really no surprise,

F;(k)=e
(2.14)

F;(x)=fd z f(x —z)F'(z),

with

Pc —(x —z) p /4
2 22

x —z)= e
4n

(2.15)

will be used here, for simplicity, even though this pro-
cedure is not manifestly gauge invariant. It generates a
result in which all noninvariant pieces drop away, leav-
ing a gauge-invariant quantity, as can be seen from the

where we have included the simplest IR approximation
to the 0"F factor of (2.4). The fact that (2.13) is a com-
plicated object as it stands is quite irrelevant to the
gauge in variance of our procedure. After we have
resolved item (i) in a gauge-invariant way, we are, in two
dimensions, finished with simplifications or modi-
fications; when we choose a gauge withinnvhich to per-
form calculations, we shall make no further approxima-
tions.

We must now define just how the F components of
(2.13) are to be replaced by their soft approximations.
The immediate generalization of (i), written for each
component of F„',

2/ 2'F '(k),
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following argument.
The behavior in configuration space of F&, as given by

(2.14), depends on the relative size of the Fourier com-
ponents k of F compared to p, . For distances x &p, ',
I'~ is essentially given by an average of I' over a sphere
of radius (p, ) ', while for large x, that is, x &p, ', it is
essentially the same as that I' which would be construct-
ed by keeping only frequency components k &JM, . But
since larger frequencies are not going to enter the Auc-
tuation calculations, one may suppose that for such large
x, F& is equivalent to F. One can then imagine calculat-
ing quantum effects in a configuration-space volume of
finite radius R from which a hole of radius (p, )

' has
been excluded. If, for such large x, F~ is equivalent to
F, then the gauge invariance of (2.13) will be preserved
for R &x &(p, ) . Finally, using translational invari-
ance, one passes to the limit R ~ oo before any other pa-

rameter limit (such as m~0) is taken, and the results
for ( gg ) will be exactly the results obtained in this pa-
per. By this qualitative argument, it is not that gauge
invariance is manifestly preserved by the choice (2.14) as
that the gauge-variant pieces of the amplitude generated
by (2.14) are excluded from the final result.

An analogous fact is well known in perturbative
QCD4 where the planar graphs' leading contributions
[the so-called leading-logarithmic approximation
(LLA)] can be shown to be gauge invariant.

III. FINITE-W CAI.CUI.ATIQNS

In this section we outline the salient points of our es-
timation of (PP) in quenched approximation.

We adopt (2.14), where each F„' is replaced by its soft
part, and write

trU(s)=tr exp i f—dg'[Q„„(s) iscr„—„],[g'F„'„(g',x)]
+(g)

(3.1)

and

F„'„(g',x ) = fd'z f(x —z )F„„(g',z ),

I

where we use

M =Qp~ —iso p~, (3.6)

e "trU(s)
I „ (3.2)

Indeed, the dependence of U(s) upon the F„„fields only
suggests that one pass to a field-strength formulation of
the theory. After the recent work of Durand and Men-
del it is difficult to avoid using the coordinate gauge
specified by the condition

x„A„(x)=0, (3.3)

and in which one has a unique reconstruction of the po-
tentials from the field without constraints on the latter in
the sense of the Bianchi-indentity restrictions appearing
in higher dimensions. One has, simply,

1

A„(x)=f adax, F„„(ax) . (3.4)
0

with the function f specified in Eq. (2.15). The next step
is the explicit evaluation of the Q, of (2.2),

Q'i=e "I'[A]
I ~=p

which involves the evaluation of

—2iM)48) A 4(x)
Xtr(e )

A~0
(3.7)

with the above properties holding in that gauge as well.
As demonstrated in Appendix C the expressions (3.5)
and (3.7) are identical, and can be recast into an
equivalent form independent of the spatial coordinate x;
one has

e "trU(s)
I „p—— g exp ——f (5'")

I+.—I

a two-by-two matrix in the external p, v space-time in-
dices. We do not find any evidence of the lack of
translational invariance using this gauge, as alluded to
elsewhere. Had we carried out the calculation in an
axial gauge, e.g. , A, (x)=0 we would have found the
same structure exactly:

e trU(s)
I g p=exp —— (5' 5, )

A i 5,i, 2 5

S~; S~b

In addition this gauge enjoys the following properties, in
common with axial gauges.

In two dimensions, F„(g',x)=F„(x) independently
of g', so that the g'-ordered exponential of (3.1) becomes
an ordinary exponential. Taking advantage of these
properties one can now write

e trU(s)
I „p=exp —— (5' )

A i 6,b 5
gF~ gFb

with

and

—i+iq A+F
X tr(e —

)

dZX —Z=P~
8m

F=0
(3.8)

(3.9)

—igM F'
X tr(e " "") (3.5)

A+=g(0, 4+s) .

The trace in the right-hand side (RHS) of Eq. (3.8) sums
only upon color indices. It is the relatively simple struc-
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ture of two dimensions and of the gauge choice which
permits one to pass from the complicated object defined
in (2.13) to the explicit forms of this section. In (3.8) we
can observe that any spatial coordinate dependence has
disappeared; this is an expression of translational invari-
ance.

Even though the problem has been given a much
simpler form, the computation of (3.8) is not at all trivi-
al. In particular, a direct summation of its series expan-
sion is hopeless as soon as N & 3. But omitting inessen-
tial constants, for clarity, one can show (Appendix A)
that (3.8) admits the following series expansion:

l 5 5 (FA. )
exp

2 bFa fiFa X ~I»„,.»„I~ "-
F =0 n =o 2n!n!2" Ib, . . . , b „ I P&s „ I =11' ' ' ' ' 2n 2n

(3.10)

in which the reader will have recognized the explicit
form of Wick's theorem, where [b, , b2, . . . , b2„I is a
2n-piet of indices chosen among the (N —1) possibili-
ties.

S2„ is the group of the permutations (the P's) of 2n
elements. This structure suggests passing, by the aid of
a path-integral treatment, to the so-called Mehta-Dyson
representation. The following set of remarks is useful
in order to make this application possible.

(i) We first change to the functional integral version of
(3.8); that is,

r '2

tr( (F9~)
)

F=0

fd [6]exp —f6

with

N —1

Ob(e)= g tP'„(&),
n=0

(3.15)

where

y (g)=(2"n!v'n) '~ e e ~ H (g) (3.16)

XLI™(—2y')

are the normalized oscillator wave functions, and H„(8)
the nth Hermite polynomial.

The series (3.15) entails few terms for N =2, 3 and
hence can be used directly. [This allows one to check
that (3.14) is correct (Appendix B).]

But alternatively, by making use of the relations

dx e '" 'H x H„x =2" mm!y"

X f d[G]exp —fG tr(e' '), (3.11)
2

where 6 is a (N 1)-compone—nt field.
(ii) For any N, a Gell-Mann-type basis of SU(N) can be

constructed explicitly, with the normalization

and

g L (x)=L„+'(x),
m=0

(3.17)

(3.18)

.
[1Lagb] 2gab (3.12)

and one therefore has, for SU(N), 2G =Tr(69.') .
(iii) We pass from the measure d(G) to the measure

d (H)(trH), where H is a N XN Hermitian matrix, and

d[H]=dp, dp~

relating Hermite and Laguerre polynomials, a general
expression can be worked out for (Pg) valid for any N
(Appendix B),

m 1 2N
1 —N ag

X g (p; —p, )'dp, dp~2 Nf(p) .
1&i &j&N

(3.13)

1 N
ln

p g(N —1)

1/2

' 1/2'

The p s are the N eigenvalues of H, whereas the P„are
N(N —1) angular variables and f (p) is an unspecified
function of these variables whose integral cancels out in
the normalization.

Now the exploitation of the Mehta-Dyson method is
lengthy but straightforward (Appendix B), and leads to
the following result:

e 'tr U (s)
~
„0=exp — (A+ )a lg

4N

A iq (A+)

1 N

p g(N —1)

g(N —1)
2 N

1/2

p=l
(3.19)

gCP=
m &8m.

With

(3.20)

where P is the Euler g function and p is an effective cou-
pling constant previously encountered in similar QEDz
studies:
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W —1 N!LN, (x)= ( —1)
(N —m —1)!(m +1)! m!

(3.21)

1 N
ln

p g(N —1)

' 1/2
0(N —1)

N

' 1/2

(3.22)

Acting upon (3.22} by

2N
1 NB(—

and setting (=1 at the end of the computation, one finds

X(N),
2 (2~)'"

with X(N) the series

(3.23}

the relation (3.19}can be used to calculate the chiral lim-
it of & PP) for any N. There p~ oo, and the quantity in
curly brackets in (3.19), is first replaced by the expres-
sion

N=2: &qq)i&ay)„, =2,
N=3: &yq)i&qq)„, =4. (3.26)

Of course, there is no reason why the constants c need
be chosen the same in different theories, and (3.26) is just
the simplest way of representing these results. To the
best of our knowledge, these quantities have not yet been
machine calculated, and so our results represent predic-
tions. Again, we emphasize that our results are only es-
timates, because of the need to fix c. If the result of our
nonquenched QED calculations is any guide, we would
expect the magnitudes of these order parameters to be
diminished by a factor on the order of or less than 25%
(the smaller as N grows) when the quenched approxima-
tion is removed.

pare them to the quenched QED2 estimate, in this chiral
limit, which was also proportional to a similar constant
c. Taking both constants to be the same, one can ex-
press the QCD2 order parameter in terms of that of
QEDz', and thus the predictions (3.25) can be translated
into pure numbers:

X(N)= 1 ——1

N

- 1/2N

g( —1

p=0

N!(2p)!
(N —p —1)'.(p +1).'(p!)

'1 1
(3.24)

2~ 1 —2p

N
X

N —1

These expressions (3.23) and (3.24) are valid for any N as
long as the chiral limit m =0 is taken first.

For SU(2) and SU(3) the series for X(N) is readily
evaluated:

N =2: &itjg) = —
3&2

N =3: &gf) =—
(3.25}

As the soft/hard separation depends on the numerical
constant c assumed to be on the order of unity but oth-
erwise undetermined by our analysis, a more meaningful
way of representing these order parameters is to com-

IV. THE LARGE-N BEHAVIOR

+2N —8 i—f 8 (2N,

0 if8 )2N. (4.1)

With this limit, the full expression for the order parame-
ter reads

In the limit of large N, QCD is thought to simplify
considerably' and this can be clearly seen in our calcu-
lations. In order to see this, one might be tempted to in-
vestigate the large-N behavior of X(N) in Eq. (3.24). But
indeed, not only is the series X(N) difficult to handle, but
this way of proceeding would prevent us from gaining
interesting insights into the dynamics.

We will instead resort to the so-called "semicircle ap-
proximation" introduced by Wigner; that is, perform
the following replacement in Eq. (3.14):

&6)= ,.f,~
-""-f, -", ""N( -} fd' fd[s]-p —,

'
f, O' f,";-p p. f, C

exp a
t+.—

I

—lg

4N

1/2

—+2)V'
(4.2)

A subsidiary integration (over a) has been introduced in order to get quadratic dependences only upon the P„ fields;
then the two quadratures over P„and p„can be carried out exactly as in the Abelian case, where one found a result of
the form

f da( ) f "
e "[(ap&u )coth(apv'u ) —A] .

2~ 0 Q

For the present case of SU(N) QCD2 the result becomes

&gtp) = — f " —e f e "f d8&1 —8 [(p&Zv'u )coth(p&Zv'u ) —1],
7T —ao 2V ~ 0 u —i

(4.3)

(4.4)
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where in both (4.3) and (4.4) we have passed to the prop-
er time r by means of the continuation (s~ i—r), and
then to the dimensionless variable u =~m .

But here, in (4.4), one has

Prv = &'P&N (4.5)

and Z =H&8+iaIN; that is, a qualitatively new feature
appears, related to the complex nature of the argument
of the function (x cothx —1). Thus Eq. (4.4) appears as
generalizing (5.3) to the non-Abelian case, for large
enough N so that one can use the replacement specified
in (4.1). But at finite N, such as N =2 or 3, the forms
(4.4) do not entirely express the order parameter; and a
new term enters the integrand, which then exactly reads

2
P, =ptv-')INg Im (4.11)

Quantum (chromo)magnetic fluctuations saturate the
CSB phenomenon in the large-N limit.

(iii) Once N has been supposed large enough for (4. 1)
to hold, then the sequence in which one considers first
the N = oo limit or the chiral one is irrelevant; i.e., they
commute; and (4.10) is obtained in the chiral limit, also
at N &&1 fixed. We will return to the interpretation of
this fact below, in Sec. V.

(iv) We had three parameters as input. The dynamics
leave us with two basic combinations of them, which
therefore are the relevant parameters in term of which to
describe the SU(N)-QCDz vacuum as probed by (Pf).
They are

a
aw+b

Ba
[( a ) coth( a ) —1] and

P2 =p„ IN —g I)INm
(4 6)

and is therefore no longer proportional to the
(x cothx —1) function of the Abelian case (4.3), for the
new (btv) part does not vanish. In the chiral limit,
m =0, one efFectively ends up with the expression (Ap-
pendix C)

' 1/2

(QQ) = — —1 —— (a~+b~ I4), (4.7)
4n V'2~ N

which can be used to derive the previous finite-N results.
Returning to (4.4) we write, for short,

h(p&Z&u )=[(P~Z&u ) coth(pnZ&u ) —1],
(4.8)

h (p&Z&u ) =Reh +i Imh .

Then, upon performing the 61 and a integrations, only
the real part of h survives, whereas Imh vanishes be-
cause it is odd in both variables (Appendix C); that is,
one is left with

Z, coshZ
&
sinhZ,

Reh (p&Z u ) = —1+
sinh Z, +sin Z2

X[sinh (HP, &8u )+ sin (aP2v u )]

and can be traced back to what may be thought of as
small, effective chromoelectric fluctuations of the F&4.
At Pnite N this is one rather striking difference between
Abelian and non-Abelian physics.

One can now proceed to the evaluation of the large-N
behavior of (1(1(). In whatever order one considers the
limits N~ao, m ~0, P& tends to infinity. Then, previ-
ous experience shows that the replacement

h(P, H u )~ ~P, H&u
~

(4.12)

preserves entirely the definiteness and leading behavior
of type (4.3) integrals.

Gathering Eqs. (4.12), (4.10), and (4.4) one eventually
finds

Then, typical non-Abelian effects do appear linked to
this new parameter (Pz); they are the + sin (Pza&u ) in
the second term on the RHS of (4.9) and, more clearly,
the third term on the RHS of (4.9), which is

(aP2&u ) cos(aP2&u ) sin(aP2&u )

Z2 cosZ2 sinZ2
+ 2 . 2sinh Z&+sin Z2

(4.9) lim (gg) = —
i N

P )
- ')I g N /m ~ oo

6m.
(4.13)

lim Reh(p&Z&u )=h(Zi) .
N~co

(4.10)

This is obviously an Abelian-type result, as can be seen
by comparison with (4.3). Moreover, referring to the
analysis of Ref. 8, it forces the following conclusion:

with Z& and Z2 the real variables:

Z, = Hptv &8u, Z2 = ptv &u
N

At this stage, some physical interpretations can be read
off from (4.9).

(i) First, one can easily check that the integral (4.4)
with h (p~Z&u ) replaced by the RHS of (4.9) does ex-
ist.

(ii) We started from N »1; let it now tend to infinity
and one simply finds

where the symbol P& ——oo stands for both large-N and
chiral limits, while expressing their commutivity once N
is large enough. Because of the IR separation point c
and of the replacement (4.12) [(4.1) can be shown to be
quite accurate] one should pay no particular attention to
the constant 6m. in the denominator of the RHS of
(4.13), other than to observe that the large-N limit
changes the effective phase space entering into the com-
putation of (PP). (This can be observed also in the re-
sults of Ref. 9.) In our calculation there has been no re-
striction placed on the value of the coupling g. But if
one wanted to restrict g to be of the order (N) ' the re-
sult (4.13) would be Zhitnitsky's (modulo a factor c).

We end this section by discussing one aspect of the re-
sult (4.13). In the Abelian case, one simply used the
differential statement
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exp

2

exp i F
F=0

= exp — f
2

The most natural extension of it to a non-Abelian situa-
tion where one has (N 1)—generators for SU(N) would
clearly be the replacement

exp ——' f exp ii' f I''f
F-0

= exp —6&

which is just equivalent to (4.13). This is still another
way to look at the Abelian character of the large-N lim-

it.

V. SUMMARY

Chiral-symmetry breaking (CSB) in a two-dimensional
massive SU(N)-QCD theory is a low-energy
phenomenon for which the infrared techniques here
developed have appeared most useful, in gaining infor-
mation from both a qualitative and quantitative point of
view. Quenching was used as a description consistent
with our infrared analysis, and the estimations of Sec.
III should be comparable with future numerical simula-
tions with or without quenching.

Some interesting properties were seen while investigat-

ing the large-N limit of the order parameter.
Of the three input parameters, m, g, and N, two basic

combinations of them appear:

P, -g &N Im, P2 -g Im &N

P, appears to control the leading large-N behavior of
(fP) in a typically Abelian way, and the fluctuations
saturating the order parameter are chrornomagnetic in
character. This corresponds to a great simplification of
the non-Abelian dynamics, generally expected in such a
limit. We observe that because of the very form of its
dependence upon N and m, P

&
renders irrelevant the or-

der in which one considers first the large-N limit or the
chiral one. This constitutes an additional simplification
of the large-N limit that we interpret below.

with 6 i
——g, , '(A,, } the first Casimir operator of

SU(N).
But this exactly corresponds to assuming commutivity

in the series expansion (3.10), and hence can be con-
sidered as the Abelian part of the much more complicat-
ed LHS.

Then one can follow every step of the previous calcu-
lation, using exp(iG, ) instead of the RHS of (3.14) (re-

storing, of course, the q and A+ dependences), and the
result comes out to be

1/2
N (N2 1)—

( P4 ~QCD ( (i(i )QED
2

P2 breaks this cornmutivity of the two limits and sug-

gests a more complicated substructure of the SU(N)-
QCD2 vacuum as probed by (gg) which can be depen-
dent on the manner in which one approaches the point
N =0, m =0. The combination P2 appears related to
typical non-Abelian effects which one can think of as in-
duced by small chromoelectric fluctuations of the F„'
fields. These always remain subleading effects.

Our large-N estimate of the order parameter in the
chiral limit comes out to be (p1it) — gcN— irrespec-
tive of the magnitude of g, which is left a free parameter
[as it perhaps should be in any (super)renormalizable
quantum theory of elementary fields]. Thus by supplying
for g a restriction of the type g —1/N, one recovers the
recent result of Ref. 9, which was obtained in the large-
N limit with (g N) fixed. Our result is somewhat more
general, and suggests that the CSB continues to happen
at larger values of the coupling constant than those re-
stricted by the planar-graph condition.

In a planar gauge, one has a result of the form

(gg) = —N(g N)' [const+0(1/N)+ ],
where the leading-N contribution (the const) is carried
by planar graphs (ladders). In our case, the functional
operations involve all kinds of graphs. As our calcula-
tion can be viewed as carried out in a planar gauge also
[cf. Eqs. (3.5) and (3.7)], we have, in symbolical form,

(lit/) —X(planar graphs)+X(nonplanar graphs)

-X(most IR parts),

and the fact that both results coincide shows that the
leading infrared contributions are carried by the planar
graphs. In our calculation, this ambivalence of planar
graphs with respect to both IR and leading (1/N) con-
tributions gets nicely translated into the commutivity of
the two limits, m ~0 and N~ oo. Here again, the same
property is well known in four-dimensional QCD (Ref.
23}. Though not discussed in the preceding sections, we

mention here the form of the subleading corrections to
the chiral leading limit; this, for any N, is based upon
the subleading terins of the series expansion (3.24), and
one finds the following sequence of orders:

(fP) =O(g)X(N)+O(Nm)+O(m)

+O(m &N /g)+

%'e end this section by noting that the m =0 chiral limit
is really not smooth, in either the Abelian or non-
Abehan cases. This is why, by first restricting the
gluon's maximum rnomenta to be roughly on the order
of cm and then, second, by letting m tend to zero, it is
possible to find a nonzero result in our method of calcu-
lation. The theoretical reason is most easily transparent
on the bosonized versions of the theories, where one can
see that a nonzero mass m defines a sine-Gordon interac-
tion, which completely disappears when I is exactly
zero. Our result is, in addition, finite in the quenched
approximation, and (effectively) gauge invariant (modulo
an unimportant rescaling of the product gc).
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APPENDIX A

We here examine how one can pass from (3.5) and
(3.7) to (3.8) where all space-time dependence has disap-
peared.

We will omit the M„„matrix for a while, and restore
it at the end. We thus simply focus on the expression
(3.7) (RHS):

( 5
~ 2 5 —2(s) A 4(x)

5 A ' 5 A '
4 4 A =0

and -will be factored out, as a constant, n times as j
varies from 1 to n. Thus we get an overall

d k
with 7= e

—2iak

(2' )

and any space-time dependence is removed.
As there exists no mixing between the I(M, vj and [i,j j

degrees of freedom, the full trace Tr is given the mean-

ing of

Tr= tr tr
I p, vI Ii,j I

Thus, denoting by A the (N, XN, ) matrix [8)A 0'(x)V],
one has

—ig(0&41+is@5 )A —ig 0&4A gs y5A
tr e =e tr e

p, vI

e
—lgSA+ e lgSA

=2e
2

—ig AA+
e

s, b,
with A4 '(x) given by

A4' '(x)= f d z f(x —z)A4'(x)

(Al) with
I

A+ ——f d s'P ()s') f ds "$4(s")+s .
0 0

This completes the proof for the passage from Eqs. (3.5)
and (3.7) to Eq. (3.8).

e ik. (x —y)

k

5

5A 4(y)

X X"a f e-' "'+'"'"A "(k )
(2m )

(A2)

Now with

and

A "(k)=e'"'i'5
5A4(b)

f d2 eiv (k —k') (2~)25(2)(k ki)

and upon performing the y, x-, kb, , kbi integrations,
one sees that this factor just amounts to

d k
e

—iak —ia( —k)
( k )( ik )gk 2

(2n. )

ik x —iak2 —bf elk x —iak A i(k} & &+
—2

(2m )

In the axial gauge [A) (x)=0] in which we will do the
calculation, there is a term in the series expansion of
(Al) which will typically read

Relative to Eq. (3.10)

Equation (3.10) is basically obtained by first replacing

any i) 'k '+'
by —,

' [A, ', A, '+'j (one sums upon the b s),
and then by observing that the functional differentiations
will pair any two elements of the 2n-piet
(b, , b2, . . . , b2„} into a Kronecker delta in all possible
ways.

Thus the reader will have noted that, modulo the
correspondence

(2t —l''2i )5 " ' "
—,
' [Ab, kbj ~ ,'G[P,(x2, —,) —P(x2, )],

b ~x, a space-time point, Eq. (3.10) expresses nothing
but the explicit forms of Wick's theorem for a scalar
field.

From Eq. (3.10) and the use of the Mehta-Dyson
method, one can deduce an arithmetic identity which is
presumably very difficult to establish directly.

Understanding a sum over repeated indices

L
5 = g 1=L,

a=1

one can prove the identity

P(b) )P(b2) P(b3)P(b4) P(b2 ) )P(b2 ) b)b2 b3b4 b2 )b2 bb.
~ ~ ~

PES
(A3)
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which may find fruitful applications in other related
problems.

APPENDIX B

We here mention the steps leading to Eq. (3.14). The
expression we have to cope with (written in symbolical
form) is

where JV ' is the same expression as its multiplying
factor in (Bl), except for the final factor
[ g exp( —&iq g A+)], and where a representation for
the 5(TrH) has been introduced.

Then, using the standard definitions

P)v( g), . . . , g)v ) =C)v exp
1&i & j&N

where

(B1)
N —1

C —) 2 N(N ——) )/2N t~x/2 y k )

k=0
JV '= f d[H)e""' '5(trH)

is a fairly complicated object. But the point is that we
have only to calculate its trace over color degrees of
freedom I =TrJ:

and the property that

o)v(fl ) =N f d(2 dr)v~)v(kl

I=Ã f d[H]5(trH)e''"' 'tr(e +—), (B2)

so that I is entirely expressible in terms of the eigenval-
ues of H, the angular variables disappearing in the nor-
malization:

N

I =JV f d A, P dg„P(g, —g, )'exp ~ g fk
i &J k

g =&i 8 —A/2 . (B4)

[which is conserved by Wigner s semicircle approxima-
tion (4.1)], one straightforwardly can derive Eq. (3.14),
using a convenient change of variables

X exp ikg( g, e
CT

(B3)

I

About Eq. (3.19)

By using Hermite and Laguerre relations (3.12) and
(3.18) one can write

e tr U(s)
~ o —— g NL~, exp[ —,'A+(iq)(1 —1/N)g]A 2N 8

1 —N ag
T

=(2 m) L~, g dae exp aA+e--) ) 2N a + 00 2/4

. I+ —
}

1 ——1 iq
N 4

1/2

(B5)

Using this, one can express the order parameter as
T

(PP) = —™L~, f da e ~ f ds e " g N(s) f d(P) exp —f ds'P (s')

X5 f P(s')ds' exp aA+
0 N 4

1/2 '

—(g~o) . (B6)

In this form, the integrations can be carried out as in the
Abelian case, yielding Eq. (3.19).

APPENDIX C

Equation (4.1). This form of the finite-N result can be
obtained in the following manner.

One starts from Eq. (3.14):

iq 2 +~ equip W+I~= exp — A+ dOe —o)v(8),
4N

I =exp —A
8

2+ E' —A+ for SU(2), (Cl)

I3 ——exp ~A+ ( —", + 3iqA~) for SU(—3) .

Now by introducing a representation which leaves only a
linear A+ dependence, that is,

and for N, =2 and 3 replaced o)v(0) by its relevant ex-
pression; the 8 summation is easily carried out and
yields, respectively,
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N —1
exp lg A+

from (Cl) and (C2) for SU(2) and SU(3), respectively.
Then the b~(B/Ba) term can be integrated by parts,
leading to the following intermediate step:

+co da a 2 N —1—exp — +aA+ iq
2 tr

one sees that (Pg ) can be written as

1/2

where

m bN a
p J(p),

ap
(C4)

'2
+ oo da ~&/4 a

~N +~N
2&m Ba

X e ™J~aN, C3
0 7

which is Eq. (4.6), with

and

j(p)= J e "~(u cothu —1)
0 Q

' 1/2
gc N —1

2m 8~N

J(a, r, N)= (Q cothg —1),1

2'
In its turn (C4) leads to Eq. (4.7).

It is worth noting here that the simple SU(2) formula
' 1/2

agc r(N —1)
2 8mN

e' ' =cosIF I+i sinIF
I

0.F
IF I

(C6)

and where the az and btt coefficients are to be identified allows one to check the correctness of Eq (3.1.4), because

tre' 'e'
I

=tr e' ' cosIF
I
+i sinIF

IF=0 IF
I F=0

r

=e'~ (s2 +i/2)~ exp ~A~ 2+ —(qA~)

of Eq. (Cl).
We give here the expression for Imh (pNZ&u ). With Z, =(Hp~&gu ), Z2 [(a/N)ptt ~——u ], one has

Imh (p„Z&u ) = [—Z& sin(Z2) cos(Z2)+Z2 cosh(Z& ) sinh(Z& )][sinh (Zt )+sin (Zz)]

from which we see the oddness in Z, (or 8) and in Z2 (or a).
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