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Nontrivial relative-sign ambiguities are pointed out in previous statements of the Feynman rules
for field theories containing Majorana fermions. New graphical rules which resemble those for
Dirac fermions in their natural association of momentum and fermion flows are proposed that
have only those signature problems normally expected for fermions. The new rules utilize only the
conventional fermion propagator and involve vertices without appended charge-conjugation ma-

trices. The number of two-Majorana-boson vertices is reduced from six to two.

I. INTRODUCTION

Majorana fermions have long been of interest as possi-
ble facilitators of neutrinoless double-beta decay. More
recently it has been found that Majorana fermions ap-
pear in a number of proposed extensions of the standard
model. In view of this interest in the possibility of their
observation and special attributes, ' it is surprising that
there have been relatively few detailed discussions of
the unusual aspects of Majorana Feynman rules that re-
sult from Majorana fermion self-conjugacy.

The usual statements ' of Majorana Feynman rules
differ from those for Dirac fermions in the appearance of
three different propagators and a related multiplicity of
vertices. The self-conjugacy of Majorana fermions is re-
sponsible not only for these differences, but also for am-
biguities in the spinor assignments for external lines, in
the appropriate choices of propagators and directions of
momentum flows for internal lines, and finally, in the
relative signatures of the various graphs contributing to
a given amplitude.

All of these difficulties are addressed in Refs. 3 and 4.
Nonetheless, for amplitudes of sufficient complexity the
question of the relative signs of different graphs contrib-
uting to the same amplitude is not settled. For exam-
ple, in the photino bremsstrahlung calculations carried
out in Ref. 5 direct recourse to Wick's theorem was
necessary in order to resolve signature ambiguities. This
tactic, while unequivocal, plainly defeats the original
purpose in stating graphical rules. With this in mind we
develop a new set of Feynman rules for field theories
containing Majorana fermions that involves the standard
fermion propagator, fewer and simpler vertices, and only
the familiar signature-assignment problems that are en-
countered in theories containing only Dirac fermions.
This provides an interesting as well as a seemingly less
ambiguous alternative to previous treatments of Majora-
na fermions in perturbation theory.

For the sake of simplicity, as well as to allow us to ap-
propriate several examples already worked out in Ref. 5,
we use the model of Wess and Zumino for supersym-

II. WESS-ZUMINO MODEL

If the auxiliary gauge field is eliminated, the Lagrang-
ian for the Wess-Zumino model is

+WZ +G++Q++SY ' (2.l)

Only the photons A„and the photino A, , which is a Ma-
jorana fermion, appear in the noninteracting gauge-field
part of X:

XG = ,'F„„F""+—,'—iXBA. —. (2.2}

The charged-particle QED Lagrangian X& contains a
scalar (S), pseudoscalar (P), and Dirac fermion (P) con-
tributions

(D„S )(D"S)——+m S S+(D„P )(Dt'P)

+m P P+ttt(ig —m)g, (2.3)

where D„=t)„+iQ A „and F„=t)„A „—B„A„. The
remainder of X contains the interaction terms that arise
on account of the gauge supersymmetry,

CsY ig[p(S+i——yap }RA(S +iy5P.—)g]

+ i g2(StP SPt)2 (2.4)

namely, the coupling of the photino to the charged fields
as well as the quartic interaction resulting from the elim-
ination of the auxiliary gauge field. Whether the pho-
tino is massless or not is irrelevant to our considerations,
although it must be massless for the realization of super-
symmetry. Both the f and A, fields transform as four-
component spinors under the Lorentz group.

metric quantum electrodynamics (SUSY QED) in the
main body of the text. Most of the issues with which we
are concerned can be clearly addressed in the language
of this model. The generalization to more general Ma-
jorana couplings, including the boson —double-Majorana
couplings that are not present in the Wess-Zumino mod-
el, is outlined in the Appendix.
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We follow the conventions of Ref. 7 for the metric
and Majorana representation (y"'= —y") of the y ma-
trices except for our choice of phase for the charge-
conjugation matrix which we take as

(2.5)

pq

In the Majorana representation

c=—c'=c'=c-'= —c', (2.6)
P2 P4

v(p, ri)'=u(p, —ri), (2.7)

where g=kl is a polarization index. Equation (2.7) is
solely a consequence of the choice of the Majorana rep-
resentation for the y matrices and does not imply that u

and U are spinors that refer only to Majorana fermions.
The same spinors are employed in the plane-wave repre-
sentations of both the P and A, fields.

The self-conjugate property of the photino field im-
plies that its spinor components are Hermitian with
respect to the adjoint operation on the full Hilbert space,
namely,

A, (x)=[A, (x)]

Consequently, we see that

(X').= —(y'Z). ,

(2.8)

(2.9)

where X=A, y and the transpose operation (T) is with
respect only to the spinor indices. Equations (2.7) and
(2.8) are consistent with the plane-wave representation3

A, (x)= f g [b„(q)u(q, r))e
1 d k

(2m )

where T, f, and s denote the transpose, Herrnitian ad-
joint, and complex-conjugation operation, respectively,
on the spinor space. With these conventions the
positive- and negative-energy, four-component, plane-
wave spinors are related by

FIG. 1. Tree graph for //ASS (or PP). The double
(dashed) lines refer to Dirac (Majorana) fermions. The solid
lines refer to either scalar (S) or pseudoscalar (P) particles.
The external momenta are p;. The vertices are labeled by a
space-time point and a spinor index, respectively.

that is represented graphically in Fig. 2(c). The vertices
appropriate to this propagator assignment follow im-
mediately from (2.4) and the standard algorithms' yield-
ing [Fig. 3(a)]

iQA—(l,iys)Q(S, Pt)-+Q(l, iys)5 it .

Similarly, we see that

iQQ( l, iys)A(S, P)- —Q( l,i y s)5 p,

(3.2)

(3.3)

corresponding to the vertex in Fig. 3(b). It is important
to keep in mind that there is a certain degree of arbitrar-
iness in the propagator and vertex assignments that re-
sults from the self-conjugacy of Majorana fermions. The
choices depicted in Figs. 2 and 3 are associated with a
possibility that we refer to as nonfermion-How perturba-
tion theory.

If the initial Dirac operators are taken" in (1,2) order

+b„(q)v(q, —ri)e'~'"], (2.10) (x —m+ ie j

where rok =
~

k
~

and here the plane-wave spinors refer
to zero mass.

III. PROPAGATORS AND VERTICES

In this section we sketch the development of what can
be regarded as the conventional form ' of the Feynman
rules associated with Xwz in order to indicate some of
the diSculties that accompany their use. The graphical
rules for the pure QED and quadratic parts of Xwz are
standard so that we need confine our attention to only
the Majorana Pieces of Xsv and XG.

We consider first the //ASS (or PP) tree graph de-
picted in Fig. 1. When Wick s theorem is straightfor-
wardly applied to the relevant four-point function one
encounters a fermion-number-nonconserving A, A,-type
propagator

(0
~
T[k(x) A(y)&]

~

0) = i [y Sz(x —y—)] &, (3.1)

(
. v I

~K —m+ i~

FIG. 2. Propagators for a Majorana fermion of mass m in
nonfermion-flow perturbation theory. The direction of
momentum flow (k) is from left to right as labeled by the
four-component spinor indices P and a, respectively.
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(a)

(c)

+Q(1,i'Ys )

-Q(1,ifs )

+Q 'Y (1,i'Ys)
Qf

Majorana fermions carry no superselective quantum
number such as lepton number there is no natural asso-
ciation of their fermionic and momentum flows. As a
consequence, the graphical rules depicted in Figs. 2 and
3 leave the overall sign of a graph containing Majorana
fermions indeterminate over and above the usual' signa-
ture ambiguity of any graph containing fermions. Gen-
erally this sign must be known relative to other coherent
amplitudes either of equal or higher order in the cou-
pling. The statements of the graphical rules in Refs. 3
and 4 offer what appear to be uncertain counsel in cir-
cumstances such as these. The principal problem is that,
in general, the direction of the momentum flow through
Majorana lines differs among graphs contributing
coherently to an amplitude.

The remaining vertex [Fig. 3{d)] of the two A,-reversed
vertices can be determined by considering the lowest-
order Majorana-exchange contribution to fS(P)
~PS(P) shown in Fig. 4(a) and again iinposing invari-
ance with respect to the choice of Majorana propagator.
Alternatively, Fig. 3(d) is the A,-reversed form of Fig.
3{b) so

iQQ( l, iys)A(S, P) = iQg—y ( l, iy5)A, (S,P), (3.6)

FIG. 3. Majorana-Dirac-scalar vertices in nonfermion-flow

perturbation theory.

in the underlying time-ordered (r) product and the con-
ventional (gg) ordering for the contraction is associated
with the Dirac propagator, then (3.1) represents the or-
der of the Majorana contraction when the overall per-
mutation signature is even. ' The momentum flow
through the internal Majorana line in this instance is
from vertex y to vertex x. Thus we obtain the amplitude

P) P3

from which one infers the correct vertex assignment.
The complete tree-graph contribution to QS(P)

~gS(P) provides a good example of the necessity of a
proper choice of the direction of momentum flow. In
this case the correct choice is in the direction
k =p4 —p2, if we adhere to the sign convention implicit
in the use of the standard Feynman rules for the
photon-exchange contribution Fig. 4(b). This last con-
vention is set by the ordering that is presupposed for the
initial and 6na1 Dirac particles in the associated four-
point function; we note that the sign of the amplitude

M(Fig. 1)= i Q u (p, —)—u (p2 ),1
(3.4)

where k=p2 —p4. In this calculation as well as in all
others throughout this paper we adhere to the standard
assignments of spinor wave functions to external fer-
mion lines. Thus, Eq. (3.4) is our first indication that
perhaps there is another way to think about the fermion
flow patterns in Fig. 1.

The vertex assignment depicted in Fig. 3(c) can be
determined by insisting that one obtain (3.4) using any
one of the three Majorana propagators shown in Fig. 2
provided the momentum flow is the same in each case.
Alternatively, since the vertex in Fig. 3(c) is a A,-reversed
version of the one in Fig. 3(a) and because

—i QA(1, iy )5$(S,P )= iQAy(l—,iy5)f, (S,P ),
(3.5)

P2

Pq

P2

P4

P4

we can immediately infer the appropriate vertex assign-
ment.

The overall sign of (3.4) changes if we reverse the
direction of the momentum flow k (Ref. 13). Because

FIG. 4. Tree graphs for PS{P)~PS{P). The wavy line
represents a photon.
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representing Fig. 4(b) is independent of the sign of the
exchanged momentum. We will have more to say about
implicit sign conventions in the next section.

This set of nonfermion-flow Majorana Feynman
rules ' is completed by assigning a factor of —,

' to each
closed Majorana loop because of exchange symmetry
and by extending the class of vertices to models that
have vector-Dirac-Majorana as well as boson-Majorana-
Majorana couplings. We consider these extensions in
the Appendix. We note that some ordering ambiguities
associated with two-Majorana vertices have been dis-
cussed in detail by Haber and Kane. Our rendition of
this class of vertices is quite different.

IV. SIGNATURE AMBIGUITIES

(b)

5
5

(c)

FICx. 5. Tree graphs for the process SS~PSA,. The com-
plete tree-graph amplitude is obtained by considering the
(1~2)-crossed graphs as well.

In the preceding section we encountered a familiar sig-
nature ambiguity in dealing with the graphs of Fig. 4
that is easily resolved by adapting a standard ordering
convention for the fermions and the usual association of
the direction of momentum and fermion flow with can-
traction order. A different kind of signature problem
appears in Majorana fermion graphs such as Fig. 1

through which it is not possible to trace a continuous
line of fermion flow without reversing the customary as-
sociations for Dirac lines. The tree graphs for the pro-
cess SS~/ST, shown in Fig. 5 provide richer examples
of the consequences of this distinctive feature of graphs
containing Majorana fermions. In the calculations asso-
ciated with these and all other graphs containing exter-
nal Majorana lines we always have the option of regard-
ing the Majorana fermion either as outgoing with
momentum p, (say} or incoming with momentum —p, .

The assignment of the external spinor wave function fol-
lows our general rule, for example, corresponding to the
outgoing [incoming] final-state external Majorana line
we have u(p, ) [v(p, )]. The vertex assignments are, of
course, different for each of the Majorana fermion direc-
tionalities.

The overall signs of the amplitudes corresponding to
even the relatively simple graphs shown in Figs. 5(a) and
5(b) obviously depend upon the ordering of the A,(5) and
g(4} operators in the appropriate time-ordered product.
On the other hand, the standard QED rules along with
the vertex assignment of Fig. 3(d) imply definite overall
signs for these contributions to the amplitude. The
reason for this is that a signature convention is always
implicit when the customary vertex assignments are uti-
lized. This convention takes as a criterion for the posi-
tivity of the parity of any permutation a certain standard
ordering of the fermion operators. This is the order ob-
tained after all of the fermion operators have been con-
tracted into what may be taken to be naturally ordered
pairs. In such a pair the right-to-left ordering of the
operators corresponds to an order of points on the graph
in the direction of momentum flow. ' It is with such a
convention that the propagators on the external lines are
pulled off the tree-level three-point function in order to
extract the point vertex. We refer to this as the even-

parity convention (EPC).
In connection with Fig. 5(a) the EPC corresponds to

the ordering A(5)f(4) in the r product which must be
retained for the remaining graphs in order to ensure the
correct relative signs among the different amplitudes.
This is obvious for Fig 5(b), b.ut less so for Figs. 5(c}and
5(d) where one must deal with the problem of the direc-
tion of flow through the Majorana internal lines.

It is evident from Fig. 5(c) that contractions with the
fermion operators appearing in the interactions
represented by the points x and y are consistent with the
EPC if the fermion flow coincides with the momentum
flow from the point z through the external line 4 so that
standard fermion propagators can be assigned to the
directed lines z ~x and x ~y. With the EPC the
momentum associated with the internal Majorana line in
Fig. 5(c} therefore must be p4 —pz and must fiow in the
direction x~y. This is, by the EPC, consistent with a
definite direction of momentum flow through the Ma-
jorana internal line in Fig. 5(d) but this direction is not
graphically obvious. One finds that the correct momen-
tum in this case is p2 —p4, namely, the reverse of what is
in Fig. 5(c).

Our final example involving the tree-level graphs for
gg~gSA, that are shown in Fig. 6 contains a more fa-
miliar signature question resulting from the crossover of
ferrnion lines. Here the EPC is consistent with a
(5,3)(1,2) ordering of the fermion operators. The calcula-
tion of the amplitudes represented by the graphs of Figs.
6(a) and 6(b) is routine. This is because the fermion lines
trace a continuous fermion flow, as indicated in Figs.
7(a) and 7(b), and also because the direction of momen-
tum flow through the photon line is immaterial to the
sign of the amplitude. We refer to diagrams such as
shown in Fig. 7 as fermion skeleton graphs.
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(a) (b)
5

5

3

(c) (d)

FIG. 6. Tree graphs for the process PP~fSA. . The com-
plete tree-graph amplitude is obtained by considering the
(1~2)-crossed graphs as well with an overall negative relative
phase.

would the flows 2~1 and 3~5, provided we associate
no rules for determining amplitudes from these graphs.
Our objective in the next section is to formulate such
rules; it is with this in mind we have taken the EPC to
correspond to fermion flows with the same senses of ini-
tial and final states on each of the lines as in Figs. 7(a)
and 7(b), whether or not they cross. We do indeed en-
counter crossing in representing the fermion flows in
Fig. 6(d) in a similar manner [Fig. 7(d)]. This means, as
in any fermion-containing amplitude, when a change of
the standard ordering takes place we pick up an overall
sign onto the amplitude one obtains by applying the
standard graphical algorithm to Fig. 6(d) assuming the
EPC which obviously implies a momentum flow p2 —p4
through the internal Majorana line. For n crossings of
the fermion flow lines one evidently picks up an overall
factor of ( —l )" onto an amplitude that is calculated us-

ing an EPC-implicit set of rules.
In this section and in the preceding one we have illus-

trated by several examples the signature uncertainties
that are peculiar to graphs containing Majorana fer-
mions when the usual set * of Feynman rules is used. In
the next section we develop a new set of rules wherein
sign problems are reduced to the familiar type that are
encountered in dealing with any graph containing fer-
mions.

In Fig. 6(c) we encounter the archetypical graph in-
volving Majorana fermions where there are lines of
discontinuous fermion flow, at least in the usual sense.
The ordering of contractions implicit in the EPC can be
represented as in Fig. 7(c). A depiction with the flows
1~2 and 3~5 would be equally representative, as

(a —b)

(c)

(d)

FIG. 7. Fermion-Row skeleton graphs corresponding to the
tree graphs in Fig. 6.

V. NEW MAJORANA FEYNMAN RULES

The root of the various unusual aspects of the preced-
ing Majorana Feynman rules is, of course, Majorana fer-
mion self-conjugacy. For more elaborate models this
can result in a picturesque assortment of propagators
and vertices at least an order of magnitude more
numerous than if there were only Dirac fermions carry-
ing superselective quantum numbers. A new and incon-
venient problem attendant to these Majorana rules is
that of distinctive relative signature ambiguities among
coherent amplitudes that apparently cannot be resolved
graphically within the context of the rules. In this sec-
tion we show that with an alternative and simpler set of
Majorana Feynman rules, the relative sign problem
reduces to the usual one encountered with fermions.

The plurality of Majorana propagators (Fig. 2) is ac-
commodated in the nonfermion-flow version of the Ma-
jorana Feynman rules by introducing the A,-reversed ver-
tices appearing in Figs. 3(c) and 3(d). There is an alter-
native to this which is to insist that Majorana internal
lines correspond only to the conventional fermion propa-
gator depicted in Fig. 2(a) along with the stipulation that
all articulated fermion segments represent a continuous
line of fermion flow. One then encounters formal' ver-
tices where both the Majorana fermion and the Dirac
fermion are reversed such as the one implicit in the fer-
mion flow skeleton graph of Fig. 7(c) that is abstracted
from Fig. 6(c). The important question is whether this is
a useful thing to do.

In place of Eq. (3.5) we note that

iQA(l, iy—~)f(St,Pt)=+iQA(l, iy, )(g'). (S,P ),

(5.1)
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where f'= C—P so that with our choice of C and in the
Majorana representation we have

Similarly, in place of (3.6) we can write

igg(l, iy5)A. (S,P)= —ig(g') (l,iy~)A. (S,P), (5.5)
c (5.2)

C(x)PPV ) =y'.Ai(V )4.(x)yii3 (5 3)

so the contraction of P;(x)f&(x) is [SF(x —y)],&. Also
we recall that u = —(y v) and v = —(y u), .

A straightforward way to determine the correct vertex
assignment corresponding to Fig. 8(c} and the EPC is to
calculate the amplitude corresponding to Fig. 3(a) with
both fermions on shell and then rewrite the result as in-
dicated in the preceding discussion. This leads to the
vertex assignment shown in Fig. 8(c). Interestingly, this
result is identical to what one would naively infer from
(5.1) if the fermion fields commuted, rather than an-
ticommuted, so that the right-hand side would be

+igg'(l, iy5)A(St, Pt) . (5.4)

The standard algorithms' can then be applied to (5.4)
with respect to the conjugate fields.

+Q(& i~s)
p

(.) ~— -Q (1, i'V5)

(c)
p

-Q (1,i'V )

for each of the spinor indices a. Once we reverse a
Dirac fermion line within a graph, it will either stop at a
Dirac-Majorana-vertex or continue its way out on an
external line. Its progress at each step of the way is
represented by normal Dirac propagators, with a re-
versed sense, that represent contractions of the g' and P'
operators. The various factors of y that occur in the
previous propagators and vertices are absorbed in this
turning of the Dirac lines along with changes in the
external-line assignments from u and u to U and U, re-
spectively. In this connection we note that (sums over A,

and a.)

to which we associate the vertex depicted in Fig. 8(d) by
the same procedure that led to Fig. 8(c). The "normal"
vertices, shown again in Figs. 8(a) and 8(b), represent the
left-hand sides of Eqs. (3.2) and (3.3), respectively, just as
they did before.

We next reconsider the processes in Fig. 1 and Figs.
4-6 using the fermion-flow graphical rules for Majorana
fermions. We notice that the fermion-flow skeleton
graph corresponding to Fig. 1 and the EPC with the ini-
tial order again taken as (1,2) is simply the line on the
left-hand side of Fig. 7(c). Figure 1 is redrawn in Fig. 9
to further illustrate the new rules and the association
with Eq. (3.4) is then immediate. In the case of fS(P)
~gS(P) (Fig. 4) the obvious line of fermion flow from
the initial out through the final Dirac legs is consistent
with the EPC; we note the congruence of the fermion
flows in Figs. 4(a) and 4(b).

Figure 5(a), although devoid of the complications of
fermion propagators tests the EPC. As drawn the
Majorana-Dirac-scalar vertex in Fig. 5(a) is associated
with Fig. 3(d) in the nonfermion-flow rules. In the
fermion-flow case, either the vertex of Fig. 8(b) or of Fig.
8(d) seems to apply, and in fact, in all three cases we ob-
tain the factor Qu(ps)v(p4) as the contribution to the
amplitude from this portion of the graph. However, the
EPC for this graph corresponds to the ordering (5,4)
which is represented graphically by Fig. 8(b}. We can
deduce the EPC for this process graphically by noting
that in situations where an external Dirac fermion and
an external Majorana fermion, both in the initial or final
state, are connected by an internal fermion line contain-
ing no Majorana propagators [such as in Figs. 5(a} and
5(b)] the EPC corresponds to reversal of the external
Majorana line. While the direction of flow is irrelevant
in determining the correct amplitudes for this process, in
many cases it is crucial that the EPC be employed
correctly. Thus we state a general convention that for
vertices with an external Dirac fermion and an external
Majorana fermion both going into the future, we will al-
ways choose the vertex shown in Fig. 8(b), and for both
coming froin the past the vertex in Fig. 8(a) will be used.

The remaining graphs in Fig. 5 will also correspond to
the same fermion flow in through the line 5 and out

(d)
p

+Q (1,i'V )

k
(e) ~- ——— ——-o

p o.

i

aP

FIG. 8. Vertex and propagator assignments for fermionic-
flow Majorana Feynman rules. FIG. 9. Fermion-flow counterpart of Fig. l.
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(a)

3 1

5 2

(b)

3 1

x5
(c)

5

4 2

,5
parent. Using the general convention stated earlier, we
choose a (5,3) ordering for the final-state fermions (fer-
mion fiow from 5 to 3), which immediately requires a
(1,2) ordering for the initial-state particles. This result,
depicted in Fig. 11(c), leads to the correct signature for
this contribution to the overall amplitude.

VI. CONCLUSIONS

FIG. IO. Fermion-flow counterparts of Figs. 5(a)-5(d).

3 1 3 1 3 1

through the line 4, consistent with the EPC, as shown in

Fig. 10. The simplification over our earlier treatment
should be evident.

Figure 6 presents an interesting challenge. The cru-
cial aspect is to be consistent with the EPC to within an
overall sign on all of the amplitudes in drawing the fer-
mion flows. This can be done in a number of practical
mays. Our original ordering of fermion operators was
(5, 3, 1,2) where we have used an overbar to distinguish
the quantities referring to the initial state. Figures
6(a) —6(d) correspond to the subgroupings (5,2)(3,1),
(5,2)(3,1), (5,3)(1,2), and (5,1)(3,2) respectively. Only the
last one is an odd permutation from the standard order
which accounts for the ( —1)', c =1, crossover parity.
The general rule we have been developing amounts to
the requirement that each graph be grouped into EPC-
consistent fermion lines, the revised Majorana rules are
then applied, and finally, a crossover parity is supplied
to each graph. The EPC-consistent fermion-flow lines
are indicated in the redrawn graphs of Fig. 11.

The apphcation of the rules to Fig. 6 is immediately
clear except for Fig. 6(c). The EPC-consistent ordering
deduced from Figs. 6(a) and 6(b) could equivalently be
either (5,3)(1,2) or (3,5)(2, 1). The equivalence of these
two orderings in the Wick expansion is seen graphically
in Figs. 6(a), 6(b), and 6(d}, where the flow is unambigu-
ously from initial to final particle states. In Fig. 6(c),
however, the flow is between two particles in the same
(either initial or final) state. Here the two orderings are
not equivalent graphically. As pointed out above, the
amplitude of the graph is independent of the direction of
fermion flom between 3 and 5. On the other hand, the
overall sign of the graph certainly depends upon the
direction of fermion flow between 1 and 2. The need for
caution in applying the EPC to graphs containing ver-
tices such as the 3-z-5 vertex in Fig. 6(c) is now ap-

We have established that there is a simpler alternative
to the Feynman rules for Majorana fermions previously
proposed in the literature. ' The present rules more
closely resemble those for Dirac fermions in that they in-

volve only a single type of propagator and a reduced
number of vertices that are free of any appended charge
conjugation matrices and, moreover, have well-defined

graphical fermion flows. Other proposals for Majorana
Feynman rules allow nonfermion-flow graphical struc-
tures.

Some of the new vertices [cf. Figs. 8(c) and 8(d}] seem
to violate charge conservation as a consequence of our
reversal of some Dirac lines into their charge conjugates,
but this presents no dif5culties in practice. The vertex
and wave-function assignments along with the reversal

of momentum flow through the propagator always com-

pensate for what may appear to an incorrect flow of
charge. In a sense, we have traded the usual depiction
of charge flow for the preservation of the articulated fer-
mion flow typical of graphical rules involving only Dirac
fermions.

The loss of the usual charge-flow feature is inconse-
quential. On the other hand, there seems to be a definite
gain from insisting on the fermion-flow characteristic in
resolving some of the unusual relative signature ambigui-
ties that appear in problems with Majorana fermions. A
few of these signature problems seem to have been unno-
ticed previously. They are related to the lack of a con-
served quantum number carried by the Majorana fer-
mions and to the linearity in momentum of the inverse
of any fermion propagator. Therefore, these ambiguities
are not resolved by regarding the Majorana fields as
four-dimensional versions of Weyl fields.

The new rules involve only the re1ative signature prob-
lems one expects in any process involving fermions. A
key tool in our analysis of these signature problems is
what we have referred to as the euen-pariry convention
which sets a permutation parity standard for vertex as-
signments involving any types of fermions, Majorana or
noi.

This investigation provides some interesting insights
into the graphical associations that are made in formu-
lating Feynman rules for fermions. Our principal result,
however, is a set of rules for Majorana fermions with
which practical calculations appear to be considerably
simpler and less ambiguous than other alternatives.
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APPENDIX

The Wess-Zumino model does not involve vertices
with two Majorana fermions or vertices with a vector
boson coupled to a Dirac fermion and a Majorana fer-
mion. A more comprehensive model is provided by the
generic Majorana-interaction Lagrangian

+Mt ggabc ~a ~i ~b4c +Tgabc ~b ~i ~a ( c

(b) c
Ma,a

b,P

FIG. 12. Fermion-flow Majorana-Majorana-boson vertices.

+k,'b, X, I; /bitt, +k,'b, gb I;A,,((), . (A 1)

We have followed the conventions of Ref. 4 in writing
out (A 1). The fermionic kinetic energies, ,i Aa—(iiiI,

—M, )A,, and P, (iB m, )—P„corresponding to the vari-
ous Majorana (A,, ) and Dirac (p, ) fields, respectively,
are added onto XMt in addition to the bosonic and
boson-Dirac-interaction pieces to form the complete La-
grangian. The indices a, b, c, which are summed when
repeated, refer to distinct particle types and, for the vec-
tor field, a Lorentz index as well, that is implicitly con-
tracted with the index i which arises in connection with
the linearly independent combinations of gamma ma-
trices and their products represented by the I;,
i =1, . . . , 16. Generally, C 'I;C=g; I;, where

g; =+1 for I, =1 i y5yy5 and g, = —1 for
r;=yp ep.. The g.'b, are constrained by fermion an-
ticommutivity to be either symmetric or antisymmetric
in a and b.

A full set of Majorana nonfermion-Bow Feynman rules
predicated on the use of the three different Majorana
propagators shown in Fig. 2 and XM, is given in Ref. 4.

There appear six different P-A, -A, vertices. The four
different kinds of i'-A;tti vertices are identical to those de-
picted in Fig. 3, although the vertex assignments of
course correspond to more general gamma-matrix struc-
tures.

The fermion-Sow Majorana Feynman rules entail only
the two vertices of Fig. 12. Again it is important to
keep in mind the EPC implicit in all vertex assignments
involving fermions. This sort of ambiguity was noticed
by Haber and Kane for A, -A,-)-type vertices who then an-
alyzed a nonfermion-Bow vertex with two outgoing Ma-
jorana fermions for which the problem is particularly
striking.

Finally, let us deal with the generalizations of the ver-
tices appearing in Fig. 8 corresponding to the
Majorana-Dirac-boson terms in (1.1) and the associated
1'-reversed forms. The depiction of the vertices is exact-
ly as in Figs. 8(a)-8(d), but now with the more
general vertex assignments, ik,'b, (I, ),t), i (k,'b, )'(I', )p,

ik,'b, g; (I—; )tt, and —i(k,'b, )'tl, (I ),tt, respectively.
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