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Berry’s phase that appears in adiabatically changed quantum systems can be derived, in many
cases, by considering locally inertial coordinate frames in classical mechanics, without having to
appeal to quantum mechanics. This derivation is applicable to light propagation in twisted optical
fibers and to other systems where the perturbation can be reduced to a coordinate transformation.
The classical nature of this derivation clarifies some nonquantum analogues of Berry’s phase.

I. INTRODUCTION

Recently, Berry! has shown that a quantum system
that is perturbed adiabatically and returned to its initial
state can acquire a phase, the Berry phase, that is of a
geometrical nature. This result has sparked several in-
vestigations? relating the Berry phase to other geometric
phenomena in theoretical physics. Along with the
theoretical interest there have been attempts to observe
this phase experimentally.® Some of the observations
have been carried out by measuring the rotation of po-
larization of light in a twisted optical fiber.* ¢

In this paper we will show that in many cases the ro-
tation by an angle equivalent to Berry’s phase can be de-
rived by using classical mechanics without appealing to
quantum-mechanical considerations. This derivation is
valid for cases where the adiabatic transformation can be
reduced to a coordinate transformation, and applicable
to both quantum and classical systems. As an example
we will apply our method to the rotation of polarization
in twisted optical fibers, an experiment which is essen-
tially classical.”

Rather than considering, as Berry does, what happens
to states in Hilbert space, we prefer to consider the coor-
dinates on which the system depends. An appropriate
choice of coordinates, those that undergo parallel trans-
port, will simplify the equations of motion. Coordinates
that undergo parallel transport define, at each point, a
local inertial frame.® If such frames are locally but not
globally inertial, the equations of motion will not be
modified except for the appearance of inertial forces,
such as tidal forces. When the problem is adiabatic, the
coordinates that undergo parallel transport are close to
being globally inertial and the tidal forces are small and
may be neglected. Then, the main effect of noninertial
motion is due to the parallel transport of the coordi-
nates. Note that we discuss parallel transport of coordi-
nates in configuration space, while the derivation of Ber-
ry makes use of the parallel transport of states in Hilbert
space. We consider a classical effect, while Berry deals
with quantum systems. When applicable to quantum
systems, our methods yields the same results as Berry’s.
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Many, but not all, results of Berry’s analysis can be de-
rived in by considering locally inertial frames.

Our derivation enables us to investigate several phe-
nomena in a closely related form. It gives us a recipe for
calculating corrections to the Berry phenomenon, and,
being a classical derivation, allows us to find classical
analogues to Berry’s phase. One of the simplest exam-
ples is motion in two dimensions with a central potential
when the plane of motion is slowly rotated. The
Foucault pendulum is a specific case of such motion.

In Sec. II we will discuss a simple classical example,
which will help us introduce the physical ideas in an
easily understandable case, and establish notation. In
Sec. III we consider the propagation of waves in a twist-
ed waveguide. Using the ideas outlined here we will be
able to investigate the problem in a general way, without
having to consider the nature of the propagating wave
and details of the waveguide. Conclusions will be
presented in Sec. IV.

II. A SIMPLE CLASSICAL EXAMPLE

In this section we will present a simple classical exam-
ple of our approach. It will serve a double purpose: (i)
to present a transparent physical picture of the problem
and (ii) to introduce a notation which will be useful in
other problems to be treated later.

Consider a point particle constrained to move in a
two-dimensional plane. We assume that the potential, in
this plane, is cylindrically symmetric, V=V (r). We
denote the orientation of the plane by a unit vector S
perpendicular to it. The problem to be investigated is
the motion of the particle in that plane when an external
force changes S slowly, along a closed path, so that after
some time it returns to its initial value.

The time dependence of S is characterized by the
quantities’
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4B _
dt
where the normal N and binormal B are unit vectors.
The vectors S, N, and B are orthonormal triad. X is the
curvature and 7 the torsion of a curve in differential
geometry. An adiabatic change implies that X and 7 are
small. The exact sense in which these parameters should
be small will be clarified later.
When S is time independent the equation of motion
for a particle with unit mass is

% dV(r)
dr ’

where x is a two-dimensional vector in the plane,
x-S=0, and X is a unit vector in the direction of x.

Once we consider S to be time dependent we have to
pick a set of transverse coordinates. N and B do not un-
dergo parallel transport, since the vector N(z +6¢) has a
component parallel to B(z), and a similar statement
holds for B. This is obvious from Egs. (2.2) and (2.3)
since

—7N, (2.3)

(2.4)

dN dB
B—= = =T
a7 and N it T
Since N and B do not undergo parallel transport, they
do not constitute a locally inertial frame and the equa-
tions of motion in such a basis will be complicated. In-
stead, we prefer two basis vectors defined by

(2.5)

U, cosp —sing | [N
U, sing cos¢ | |B 2.6)
and take
4 _ ) @7
dt
so that
dU, S dU, in6 S ’g
ar =—Xcos¢ S, a =—Xsing S . (2.8)

The vectors U, and U, undergo parallel transport and
define a locally inertial frame since

dU;
U," 1 =0 . (2-9)
dt
In this frame, the position x is given by
X=ulU1+u2U2 (210)
and the equations of motion are
" d 2 2 .
iy =— ;u—V(r)—X (1 cos“d +u,sing cosd) ,
1
d (2.11)
iiy=— Tu. V (r)—X*u cos¢ sing +u,sin’p) ,
2

where r’=u?+ul. The transformation is adiabatic

when S changes slowly and the curvature X is sufficiently
small so that terms proportional to X? in Eq. (2.11) are
negligible. These terms are the inertial forces which we
discussed in Sec. I. When the inertial forces are neglect-
ed, Eq. (2.11) becomes identical to Eq. (2.4) when the
coordinates x; are replaced by u;.

When the direction of the plane S is transformed into
itself along a closed smooth curve the basis vectors U,U,
at the end of the curve differ from the vectors N,B by a
rotation angle ¢, which by virtue of Eq. (2.7) is given by

¢=fr(t)dt . (2.12)

It is this phase which is the classical analogue of Berry’s
phase.'°

The result given here can be used in a special case: a
two-dimensional harmonic oscillator. The best known
case of a two-dimensional harmonic oscillator whose
plane is slowly rotated is the Foucault pendulum. From
the derivation here it is obvious that the phase does not
depend on the rate of change of S but only on the
geometry of the curve traced by S. Since S is a unit vec-
tor, its tip traces a curve on surface of a sphere and the
angle ¢ is equal to the solid angle of the section of the
sphere traced by that curve.

Whenever dealing with a quantum-mechanical system
where the adiabatic perturbation is reducible to a coordi-
nate transformation, one can repeat the above pro-
cedure. There are many systems where this can be done.
As an example we prefer to discuss the case of the twist-
ed wave guides. Although this system is classical, the
derivation presented here will work for quantum systems
as well.

III. WAVE PROPAGATION IN
A TWISTED WAVE GUIDE

A phase similar to the one discussed in Sec. II appears
when we discuss the propagation of waves through a
twisted waveguide, provided (1) the waveguide has circu-
lar symmetry, (2) it contains an isotropic medium, and
(3) the radii of curvature and twist are large compared to
the radius of the cross section and the wavelength. As
we shall see, the phase depends only on the parallel
transport of the transverse coordinates. It is therefore
independent of the nature of the wave, be it sound
waves, electromagnetic waves or others, or the mode
propagating along the waveguide.

Consider a waveguide with circular cross section, its
center defines a curve xy(s). We choose s to correspond
to the length of the curve so that dx,/ds =S is a unit
vector. In addition to S we can define two unit vectors
N,B as in Egs. (2.1)-(2.3) except that time derivatives
are replaced by derivatives with respect to s. The three
vectors S, N, and B form a triad on which we can base
our calculation. As in Sec. II this is not an ideal triad,
and we choose, instead, to define the transverse basis
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vectors U,,U, in terms of N and B as in Egs. (2.6) and
(2.7) where again a derivative with respect to s replaces
the time derivative in Eq. (2.7). The fact the vectors U;
undergo parallel transport will play a crucial role in this
case as well.

For simplicity consider a first scalar wave equation in
a straight tube with cylindrical cross section. Any point
in the tube is defined by a vector

x=2%r cosO+§rsinf+2z , (3.1)

where X, §, and Z are unit vectors. The wave equation
for a scalar field ¢ is

¥ 1

- |5 (3.2)

=Evy .
or adr y=EY
We could have added a potential with arbitrary depen-
dence on r to the problem but this would complicate the
discussion without adding new insight. This equation
can be solved introducing various m states so that

Y=e™f (r,z). (3.3)

In case of the twisted waveguide we could use the coor-
dinates
x=Nr cosf+ Br sinf+xy(s) . (3.4)

We prefer to simplify the equations by using a locally
inertial frame:

x=U,r cosB+U,r sinB+x(s) , (3.5)
where

B=0+¢ (3.6)
and

4 _ 5. (3.7)

ds

In terms of these coordinates Eq. (3.2) can be rewritten
as

@18 1

)
357 + 2 op + 3 (3.8)

V+Dy=Ey .

.9
or

For constant X and 7 D is given by

Do |=2Xrcosd+X’r?cos’® _ai+ Xr7sin 3
- d? ds2 d> s
1 Xrsinf 0 X cos@ 9
2 4 o + 7 o (3.9
and
d=1—Xrcos0 . (3.10)

Note that the set of coordinates we have used is singular
when Xr =1 as can be seen from the vanishing of d in
the denominator of Eq. (3.9). This is of no importance
when we are dealing with an adiabatic case where X is
very small and only regions where Xr << 1 need be con-
sidered.

In the adiabatic case the contributions of D are negli-
gible. The best way to see this is to use perturbation
theory as in the Schrodinger equation. Note that pertur-
bation theory does not imply quantum mechanics, it
holds for any wave equation. We note that some terms
in D are of order X? or X7. Other terms are of order X
but they always contain terms such as X cos(B—¢).
When these terms are taken as first-order perturbations
between states of well defined m they have only contri-
butions with Am ==+1 and the diagonal terms vanish.
Thus D contributes only to second order in perturbation
theory. Some care should be exercised to check that no
small energy denominators appear to promote the
second-order perturbation contributions but this is
indeed the case.

We have thus shown that when written in terms of the
triad U, U,, and S, the propagation of waves in a twist-
ed waveguide, is identical, to first order in X,7, to the
propagation along a straight waveguide. Thus we have
no need to solve the twisted waveguide case, all we do is
read off standard solutions of a straight waveguide.
When we transform back to the coordinates based on the
triad S, N, and B the only difference is the appearance
of a phase ¢:

¢=f512 ds (s) .

It is now immediate to read off the difference between
the propagation of different modes when we work in a
coordinate system defined by N and B. A wave with az-
imuthal quantum number m will have phase e™” rather
than ™% and thus a phase difference e™ 98 =¢™?¢ will
appear.

Our derivation was carried out for a scalar field ¥ but
it is simple to get the same results for a vector field A as
when dealing with electromagnetic waves. The angle ¢
depends only on the parallel transport and not on the
nature of the propagating wave. Neither does the phase
¢ depend on the exact boundary conditions of the
waveguide. All we have assumed that in a straight
waveguide polarization is preserved. The twisted
waveguide results follow from this assumption only.

The system we have discussed above is a classical sys-
tem, it is however clear that the identical method could
have been applied to quantum systems such as the one
discussed in Ref. 3. The adiabatic perturbation is, in
this case, reducible to a rotation of coordinates. The dis-
cussion of such cases is almost identical to the one we
presented here, and since no special insight is to be
gained from further examples of this kind we will not
present them here.

(3.11)

IV. CONCLUSIONS

The extra phase we have considered here in dealing
with twisted waveguides can be derived in a method
analogous to that of Berry’s.” The derivation is not im-
mediate, since Berry considers slow time changes in a
physical system whereas here we have to treat slow spa-
tial changes.
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The derivation offered here has the advantages that (i)
the derivation is valid for many systems, and indepen-
dent of the details of the system, (ii) it is clarified that
the underlying source of the effect is the use of locally
inertial frames, (iii) classical analogues of Berry’s phase
can be found, and (iv) the method is useful in finding
corrections to the adiabatic approximation which gives
rise to Berry’s phase, by using D in perturbation theory.

The method outlined here is not valid for the study of
all systems perturbed adiabatically. Adiabatic changes

in a potential which are not reducible to a coordinate
transformation are an obvious exception. Many systems
however, have as a source of perturbation a transforma-
tion of coordinates. These are, of course, amenable to
our treatment.
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