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Motion of massive bodies: Testing the nonsymmetric gravitation theory
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We derive the equations of motion for massive extended bodies in the first post-Newtonian ap-

proximation to the nonsymmetric gravitation theory. The results are applied to the problem of
the perihelion shift of Mercury and the periastron shifts of binary stars. We prove the equivalence

of gravitational and inertial masses in the theory at the first post-Newtonian level. Hence, the

theory predicts no Nordtvedt effect in the Moon's orbit about Earth. Other weak-field tests of the

nonsymmetric gravitation theory are discussed.

I. INTRODUCTION

Until 1960, no serious challenge to the general theory
of relativity existed. The philosophical beauty and sim-
plicity of the theory, together with the empirical basis
provided by the classical tests of gravitation theory, were
compelling reasons not to consider any alternative
theory of gravitation. Einstein, however, attempted to
extend his theory to unify gravitation with electromagne-
tism. He did this by introducing a nonsymmetric fun-
damental tensor g „. He did not succeed in unifying
gravitation and electromagnetism, but the new nonsym-
metric theories could be interpreted as purely gravita-
tional theories. One such theory, proposed by Moffat,
has been studied in detail. The theory is known as the
nonsymmetric gravitation theory (NGT) and its conse-
quences and predictions are the subject of this work.

Nonsymmetric theories have nonsymmetric connec-
tions. As a result, they may contain other tensor fields,
in addition to g„,. These additional fields may couple to
matter currents. Thus, not all matter may fall at the
same rate under the influence of gravity. The equation
of motion may not be the standard geodesic equation
when charges coupling to the new fields are present. In
NGT, there is a new coupling of the contraction of the
torsion to a vector current denoted by S". The charge
associated with this current is denoted I (though it need
not be positive) and has dimensions of [length] . Non-
symmetric theories also contain more than one connec-
tion: e.g., the full connection that appears in the curva-
ture tensor, the Levi-Civita connection which is compa-
tible with g~„~, etc. It is not apparent which connection
should be used to describe gravity in the equation of
motion. However, such theories are geometric in that
they are based on a Riemann curvature formed from a
specific nonsymmetric connection. They therefore con-
tain Bianchi identities. If the coupling to matter is
given, then application of the field equations to the con-
tracted Bianchi identities gives rise to matter response
equations. These equations are constraints on the
motion of matter. If the theory under study possesses a
conserved energy-momentum pseudotensor, the con-
straints may be integrated to give the laws of motion for

material bodies. ' These bodies may be of finite extent
and may have non-negligible self-gravity ("ponderable
matter").

If one can establish such laws of motion, then one can
apply them to a large number of examples in order to
test the underlying gravitation theory. In fact, theories
that couple to matter only through the (symmetric)
metric may be studied using the parametrized post-
Newtonian formalism. This formalism does not apply
to theories with more general couplings to matter
currents because it assumes the geodesic equation of
motion in the case of a falling object with negligible
self-gravity. However, we will find it useful to apply
post-Newtonian techniques such as the weak-field, low-
velocity (post-Newtonian or PN) expansion. '

In Sec. II the weak-field expansion is outlined. Sec-
tion III describes the solution to the first post-
Newtonian (1PN) approximation to NGT (Ref. 6) and
applies the results to the equations of Sec. II. Section IV
contains the equations of motion of massive extended
bodies at the 1PN level, which is our main result. It is
also shown there that inertial and gravitational masses
are equivalent in the 1PN approximation to NOT, un-
like, for example, the Brans-Dicke theory. Special cases
of the equations of motion are presented. In Sec. V we
discuss applications of the formulas developed in Sec.
IV. We consider the perihelion shift of Mercury and the
periastron shifts of several eclipsing binary stellar sys-
tems. Other tests of NOT are briefly discussed. Because
of our weak-field assumption, we do not discuss the
binary pulsar system PSR1913+ 16 (Ref. 9). The equa-
tions of NGT are outlined in Appendix A. Appendix B
contains Newtonian virial theorems used to simplify the
equations of motion.

This work corrects and extends the previous work of
McDow and Moffat. ' They assumed a geodesic equa-
tion of motion for negligibly self-gravitating objects and
constructed massive bodies from large concentrations of
such particles. They imposed restrictive symmetry con-
ditions on the massive objects formed in this manner.
We instead derive our equations as outlined above, re-
moving the assumption of geodesic motion. We impose
no symmetry conditions. We also correct our previously
published periastron shift formula, " which was derived
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using the geodesic motion assumption. We use
6 =c =1, except where the constants have been expli-
citly included (in parts of Sec. V), and take
=diag(+1, —1, —1, —1). Parentheses around tensor in-
dices denote symmetrization and square brackets denote
antisymmetrization. Greek indices run from 0 to 3. Ro-
man indices run from 1 to 3.

8}Mv pa vp8

0""=n" ri" 0 p.

(2.1d)

(2.1e)

(2.1f)

We then solve Eqs. (A23) and (A24) iteratively in terms
of the metric potentials gz„and P„„:

II. WEAK-FIELD FORMALISM

Aa„='Aa. +2W„„+ ~ ~ ~,
'A„„=—,

' vPP( h „p „+h p„„—h „„p),
(2.2a)

(2.2b)

NGT possesses a symmetric post-Newtonian con-
served energy-momentum complex, ' comparable to
the Landau-Lifshitz pseudotensor' of general relativity
(GR). The post-Newtonian limit of NGT, therefore,
contains a full set of conservation laws for energy,
momentum, and angular momentum, and Newton's first
and third laws hold in NGT. We shall use the law of
conservation of energy to define the inertial mass (con-
served mass energy) of a body or system of bodies and
use the law of conservation of momentum to generate
Newton's second law for the motion of this body or sys-
tem. The technique is described in Ref. 5. We begin by
providing a brief derivation of the stress-energy complex
in the weak-field approximation.

The mass energy of a gravitational field must be
defined relative to some background metric since it is de-
scribed by a pseudotensor. We make the following
definitions:

A„„= rp—p(h(~) 'A„„+h(z&} 'A p+h(&„} 'Ap„), (2.2c)

a 1 a 2 aDa Da +Da +. . . (2.2d}

'D „„= SP(5„'q„p—5„rip„),

2 a 4~ A, 3 aP ~ aD„„= S ( —ri„„ri h(p„l ——5„hl„„l

(2.2e)

, 5„h—(„—)„}
—5„h(,g)

—5, („)„)). (2.2f}

These results can now be substituted into Eq. (A24) for
I and the expressions so obtained may be used to write
R„„(l ) in terms of the variables g„„and (I}„„through Eq.
(A10). If these results are then used in the field equa-
tions (A12) with the indices symmetrized, we obtain

(~pP gpv+~yvgp) gvgpA, ~ppgvil}16 (pv).

(2.3)

g~. =&"+h~-

h =g""h„

8 —h( ) g h,

(2.») where

(2.1b)

(2.1c)

(PV) T(PV) + t (Pv)

To bilinear order, the pseudotensor t'""' is given by

(2.4}

16~t (pv) g ( gpkvp+ gvA, pp gpv) p , glp pv
)
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y
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y

A p, vy, p SpS v
(A,,P) A.P 2 AP 3

8 8 g + —,'8 pg8 ' ——,'8 p~8 ' ——', 8~8' ——,'88'

32 2

+ 4
( ppyav g + avyppg 1 pvyapg ) g,p( gpss. , v+ gkv p gpv, k+ pvg, )j. pvglp[a.pl [a,pl I [a,p] 7l

' —7l

+—'(8 8'"+8 8' +28 "gp )+8(38 p'" —gp"'p ) —'ri" (3gg p —4g —g p ),p ,p ,pA, p p Y Ap ap (2.5}

Indices are raised and lowered with g. Following Krisher, we have split the torsion vector into a source term and a
term A„which will be shown to be nonlinear in the sources and potentials:

W„=A„—8mS„.

The left-hand side of Eq. (2.3) is explicitly divergence-free, implying

(2.6)
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&(pv) p, V

We now make the standard definitions of total momentum and center of mass for a post-Newtonian system:

(2.7)

P"„=f r( "'d x, m„=P„, x„= f r' 'xd x .
A m„A (2.[])

From (2.7) and (2.8), it is apparent that the center of mass of an isolated system is unaccelerated in the chosen coordi-
nates (take the boundary of the region of integration to be static and to lie far outside matter). We will differentiate
the center of mass twice with respect to time and obtain the equations of motion in the case that the system is not iso-
lated.

It will first be necessary to expand the remaining NGT field equations in order to obtain solutions for P"" and A„.
To bilinear order, Eqs. (A13) and (A27) produce

$I'(', =4~S(" ,'g—,ct—)' +4~8)'~S, 4~—8S"+8 (' ct, +P)"' 8, (2.9)

Then the skew-symmetric part of Eq. (A12), together with Eqs. (2.2) and (2.9), gives an equation for (]]" to bilinear or-
der:

c))'c) P""=——'c])'c) (8(t)"")+8mS 4'" 'A —"—'" —16m T "'
P 2 P 3

+ (SP, [Pg«] S 8P[P, «] S[Pg,«] S[P, ]8«)+ 16~(gP T[«P] g«T[PP]+8T[P«])8~
3 P P P P

2gi[N «by —28 '[) y«]& ( 28[v y«]i I +28" y«]kp+8 (t)).«, ip 8 [py«]k 8 (ti ""«+47TS ),«]8
kp Ap A, ,p p~A, A,p

(2.10)

An equation for A" will be obtained later from the
post-Newtonian approximations to Eqs. (2.9) and (2.10).

po(x')u "(x')
V V"= —4mpov", V"(x)= f d x', , (3.3b)

fx —x'[

III. POST-NEWTONIAN FLUID APPROXIMATION

Equations (2.3) and (2.10) may be solved using stan-
dard post-Newtonian methods. We choose coordinates
in which

gpV p (3.1)

g =1—2U+2(U' —4)+VA, VA,

d x'S (x')V'A, '.
/x —x'/3 (3.2a)

and adopt the standard post-Newtonian gauge. We
now assume that material objects are comprised of fluids
described by the tensor (A17) and current (A21). To
necessary order we obtain the metric

So
V' k.= —4mS, A,(x)= f d x'

/x —x'

V a"=—4mS u", a"(x)= f d x', S (x')u "(x')
x —x'/

po(x')v (x')
4,(x)= f d'x'

(
x—x'[

po(x') U (x')
cp2(x)= f d x'

/x —x'
f

p&(x')11(x )
43(x)= d x'

/x —x'
f

4~(x)= f d x'
/x —x'/

4=24)+242+ N3+ 344,

(3.3c)

(3.3cl)

(3.3e)

(3.36

(3.3g)

g 7 P'I+ ) CQP

g(;, )
———5;~.( 1+2 U),

g[oi) ~ i

gl'Jl f& Jl

We define the potentials as

p()(x')
V U= —4mpo, U(x)= f d x'

/x —x'/

(3.2b)

(3.2c)

(3.2d)

(3.2e)

(3.3a)

2m. S S 2m.

3 po
'' 3

po(x')v'. (x—x')(x"—x'")
'N"(x)= f d x'

/

x —x'
i

'

(3.3h)

(3.3i)

Iteration was required to obtain the solution (3.2a).
Note that the metric has the same values for the post-
Newtonian parameters as the general-relativity metric
(a =y = 1, etc.), but that it also refiects the new coupling
to the S" current, e.g., in (3.2a).

We may now calculate ~ to post-Newtonian order:
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=p*(1+II+—,'v ——,'U) — V (UVU} mA —— p* l+H+ —,'U ——,'U d x . (3.7c)

——,'V (S'VA, ),
where we define (to this order)

(3.4) From (2.7) and (2.8), we have

p*=&—g pou =po(1+3U+ —,'v ),
S*=v' —g S =(1+2U)S

(3.5a)

(3.5b)

dmA =0.
dt

(3.8)

The fluid variables (p, po, II, etc. ) are defined in Appen-
dix A. The densities p' and S' are called conserved
densities because they obey the continuity equationsap*, aS'+V.(vp")=0, +V (vS')=0.

t
(3.6)

Using (3.4} in (2.8) and differentiating twice, we obtain
an expression for the acceleration of the center of mass
of an extended object relative to the center of mass of
the system

We choose to call mA the inertial mass of body A. The
integrals V; P, etc. , are defined in Appendix B. Virial
theorems listed in Appendix B have been used to simpli-
fy the integrals. We also define

v =v(t, x) v„(t)—, xG A, (3.9)

and split any potentials (generically denoted 4) into self
and external parts

dxA dvA

di dtA

d xa„= p'(1+II+ —,'v ' —
—,
' U) d'x

mA A dt

vg f pjvd x+ f ppvd x
A A

(3.7a)
%(t,x}+ g 4s for xE A,

B~A

otherwise,
B

(3.10)

—f, Vpd'x
A p~

+ (&q Tq
& WA + —,'P„+—,'0'„+—,'t„),

mA

(3.7b)

where O'B denotes the potential generated by sources
with support contained within volume B.

We cannot yet evaluate (3.7b) because we do not as
yet have an expression for the acceleration d xldt of
the fluid element at (t, x). This may be obtained by sub-
stituting the form of the fluid tensor into the matter
response equation (A19) and applying the post-
Newtonian approximation. The result is

2 kp~pOUp 1+3U 11 1 v2p+vk(pit Up)p4(4Uvk7+k 1 cjpk)
dt

,'p"vjv'„———,—'vJW „+p'v U „+p'4 „—B„S'S'v +4nS'S'U

S"O' A,
' S* a,'U' —2 "a,'X——,'p'B„(VA, VA, )+—,'S'B„(VU VA, ) ——,'p'8 8„f, d x' —S'8 8„ f ', d x' .J k I xt J k

(3.11)

In order to evaluate the matter response equation (A19), we had to determine the field W(„„}.To do this, we first
used Eq. (2.6) to replace W(„„) by A(„„) in (A19). We solved for A(„„) by taking another gradient on the post-
Newtonian approximation to Eq. (2.10}and antisymmetrizing to eliminate A„. The resulting equation was integrated
to find a solution for the totally antisymmetric combination P(""' 1. From this combination and the divergence P""
given by Eq. (2.9), the d'Alembertian of P" was constructed by differentiation. Thus, (2.10) becomes an algebraic
equation for A ~j" ~. This is the standard technique of first solving what is called the "weak system" of equations for a
nonsymmetric theory, meaning the system in which the antisymmetric derivative A "'" is eliminated. To required or-
der, we need only A ', which actually reduces to A ' to necessary order. We obtain

S 'V'U' —2 '7'A, '
VA =V 16m.US —3VU. VA, +3V f ix —x'/

(3.12)
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This result was used in (A19} to produce (3.11). Finally, substitution of (3.11) into (3.7b} yields the equation of motion
for the center of mass of object A:

~2 ~k k1
1 —2 1 4 2 dUp*U «(1+—'u ——'U+II)+p U «u +p(3U «

——'U «) —p*U
m AA

2 2 7 2 dt

—p ( —,u'V «+ —,'u tl «+u"v VU 2C—', «
—242« —4'3« —34'4«)

+ f —
—,'p'a„(VX VX)+-,'S "a„(VU VX}—,p'a, a„ fmA Ix —x'I

——SBJB« t, jdxdxS"O' U' —2p"O' A.
'

I

x —x'I

mA

„dPAu„u "8 P d x +u'„u 'B«p d x —u„" + V"„—V"„" 'V'„""—+—'P "„+—'—0 "„"+' t„.—(3.13)

IV. EQUATIONS OF MOTION

We now have to simplify this equation. This is done
by splitting all velocities and potentials into their inter-
nal and external parts using (3.9) and (3.10). Then the
virial theorems (Appendix B) are used to simplify in-
tegrals over purely internal quantities. These integrals
would lead to self-accelerations if it were not for the viri-
al theorems, in violation of the conclusions drawn from
(2.8}. In fact, the occurrence of self-acceleration terms
in exactly the combinations required for cancellation
through use of the virial theorems is a useful check of
(3.13}.

Let us assume the separations between objects to be
large so that potentials due to one object but evaluated
at the position of some other object may be expanded in
inverse powers of the separations (i.e., a multipole ex-
pansion). Self-accelerations will be independent of the
separations (generically denoted by r), while Keplerian
terms will go as 1/r . We now define the gravitational
mass tensor in terms of the coefficient of the 1/r term
in the force law when the centers of mass of the objects
comprising the system are all taken to be (momentarily)

I

at rest. Precisely, we assume that the force law comput-
ed from (3.13) takes the form

jk r'
k YAB rAB

m~&~ = —X &'~a+, +o(1«~a)
B~A rAB rAB

(4.1)

——'p'8 (VA, VA, )

x—x'I (4.2)

In this case, the integrated equations of motion would
yield

and check to see that a'„B=0. Since NGT possesses a
full set of post-Newtonian conservation laws, y„B will
be symmetric in A and 8, in order that the sum of all
the forces on the system vanish.

An example serves to illustrate the point. In earlier
studies concerning motion in NGT (Ref. 10), it was
thought that "test particles" should follow geodesics of
the symmetric metric g~„,~. If one imposes this addition-
al constraint on (3.13), the NGT contribution reduces to

rAB
a„"~=— f d'x p'8« f d'x'S*', . f d'x'S""

2 rgg A A Ix —x'I " Ix —x

as„ f x —x" (4.3a}

jk j«3 2 3 3
p*S" ~«(x~ —x'J}(x"—x'")

AB ™AmB5 +—lB d x d x
3

5 —3
A

I
x —x'

I

' Ix —x'I' (4.3b)

where m A and mB are the inertial masses defined by Eq.
(3.7c). Thus, unless the integrals in (4.3a) vanished due
to symmetry of object A, the object would suffer a self-

acceleration. In addition, the parameter appearing in
front of the Keglerian term in the force law is not
mqm~P" but y„z as given in (4.3b). We may interpret
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y„B as the product of the active gravitational mass ten-
sor ' of object A with the passive gravitational mass
tensor of object B and thus (incorrectly) conclude that
NGT predicted self-accelerations and violations of the
equality of inertial and gravitational mass.

In a previous study of this problem, ' the massive-
body equivalence principle was found to hold but only
under the assumption of spherical symmetry of the ac-
celerated object. That calculation also used a model for
matter that constructed objects from a gas of infinite-
density point masses. Self-interactions of the point
masses were ignored. In the present calculation, we do
not make these assumptions and observe that inertial
and gravitational masses are equivalent in NGT because
the full conservation laws ensure cance1lation of
equivalence violating terms at 1PN order. The interest-
ing point is that metric theories guarantee the validity of
Dicke's weak equivalence principle {WEP) when self-
gravity is not important but appear to violate the
equivalence of inertial and gravitational mass at 1PN or-
der unless their post-Newtonian expansions are
equivalent to (or differ only very slightly from) that of
general relativity theory. Here we have an example of a
theory with a nonmetric coupling which in general will
not be expected to obey WEP. However, we will see
that it does preserve the equivalence of mass at 1PN or-
der.

We now proceed to write the equation of motion of
the object under consideration by integrating (3.13). We
do not require new virial theorems to simplify the NGT
parts of the full equation of motion. We do however
find that the fluid variables p and II are replaced by P
and II in the existing virial theorems. We carry over
from (3.13) all terms to 0 (1/r ) inclusive, as we must do
in order to check the equivalence of inertial and gravita-
tional mass. However, our formalism allows us to calcu-
late higher-order terms and this we shall do. At
O(1/r ), one obtains three different classes of terms.
We classify terms at a given order in I/r according
to their order in the post-Newtonian and multipole
expansions. For a bound system, Us(x„)-v„ for B&A
so we may define an expansion parameter
=SuP(v„, Us(x„)). The first class of O(1/rs) terms is
the EIH [Einstein-Infeld-Hoffmann (Ref. 15)] terms and

k k + k
A AGR + ANGT

where

{4.4a)

is post-Newtonian, since their coefficients are reduced in
size from the coefficient of the O(l/r ) term by e .
These terms depend only on the masses of the objects
and not on their higher mass multipole moments. The
second class of terms is obtained by multipole expansion
of terms such as f „d x p'UsB„U. In other words,
they are past-Newtonian but the parameter is not e . It
is instead 5 —U. Now 5 )e, but these terms are also
reduced by some parameter of the multipole expansion.
We expect the only terms of this class that do not vanish
("efface")' will be "relativistic tidal force" terms. Such
terms are usually taken to be small in any case and are
ignored since they contain both post-Newtonian and
multipole parameters. Since we are interested
specifically in NGT, we will not study these terms here.
The third type of term is similar to the latter type,
though it consists of NGT contributions. We keep them
because they are the leading NGT terms in the I/r ex-
pansion. The first terms depending on monopole mo-
ments of the NGT l charge parameter do not occur until
O(1/r ). We include both the above-mentioned NGT
contributions because it may be difficult in some situa-
tions to determine which type of term should dominate.
This situation arises because NGT contributions to phys-
ically measurable quantities must come from terms bilin-
ear in the l parameters. This condition is a conse-
quence of transposition invariance, which is a general-
ization of the condition in GR that g„„and the connec-
tion coefficients be symmetric. Hence, a monopole field
such as VA, = 1 r/r must —be squared to contribute.
After squaring, its gradient must be taken to produce a
direction. Only then can it contribute to a force. How-
ever, a product such as BJBkk,s f „d x S"8,U has direc-
tion, is bilinear in the NGT current, and is O(1/r ).
Terms such as f „d x p'A. s dkA. ~ would produce
O(1/r ) monopole forces if they existed in the metric
(say, if g(; )-A, ), but they are not present there (and have
the wrong dimension).

Our integration of (3.13) yields, after application of
the virial theorems,

GR
B~A

rABJ 3m~Q„jk
mAmB5"—

rAB rAB

'k i I
A Qk 15 AB AB .

I i;I+, & {m.Q'+m. Q')
rAB 2 rAB

k k k
2 rAB rAB 2 rAB

+4m AmB +SmAmB —2m AmBVB
rA rAB rAB

2

2 rAB—mAmBVA
rAB

k k k
rAB rAB VA

+4mzmsvz vs + ,'mmmm (rsvp& —vs) +4m&m&rzz vz
rAB rAB rAB

k k k
VB VB

m A B AB B 3 A B AB A 3 + A B AB B 3
AB rAB rAB

k k k
rAB 7+ g m„msmc 4 +

C~A, B AB AC AB BC AB BC

k
1 rAB rBcrAB

3 3 7

AB BC
(4.4b)
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k

a„= g [2m „la + 2m a IA
—2(m A +ma )IA la ]k 4 4 AB

mA rAB

r'
,'(—malA lc —mA laic }

1 2 2 AC

B~A C~B, A rACr AB

rAB
J

+ 3
rABrAC

rk
AB AB

2
rAB

rj r'
gjk 3

AC AC

2
rAc

roc
+

rBC"AB

rj r'
AB AB

2
rAB

+ 2 2 z(malAIc mcIAIB)
1 2 2 2 2 kc

A B~A C~A, B rBC "AB

rj rk
5jk 3

AB AB

2
rAB

2 B~A rAB

r~ fk
5J"—3 (I XJ l2XJ—)2

rAB
(4.4c)

From (4.4}, we see that y~„a=5~"mAma so that the
equivalence of inertial and gravitational masses is ob-
tained at the order of this calculation. We define the
mass quadrupole moment QJ and mass-NGT dipole in-
teraction term X~A of some body A to be

QA I„,'5——"I—„—,

IJ = d x p'(x)(x~ —»~A )(x"—x„"),jk
(4.5a)

k rk

X"„=f d x d x'p'S"
A ix —x'[' (4.5b}

m =m1+m2, p=m1m2/m,

(x J —x J2 )(x ", —x 2 }
P,2

=5'—
X1—X2

(4.7}

I2
1

d 12
m1

I2

m2

Perhaps more useful for the analysis of the motion of ob-
jects in terrestrial laboratories is the "test-particle limit. "
This result may be obtained from the above by putting
both m1 and I1 to zero, though not the ratio 11/m1.
The ratio X1/m1 probably can be ignored in this limit
since it scales as m, )& (I, /m, ) =I, . We obtain

We have kept X-type NGT terms only to leading (1/r )

order, though we have written the leading monopole
NGT terms, which are 0 (1/r ).

There are several relevant special cases. In particular,
we choose to concentrate on periastron motion in binary
stellar systems (excluding systems with sufficiently strong
gravity that the 1PN approximation is invalid), peri-
helion motion of a planet in solar orbit, and test-particle
motion near Earth's surface. The two-body NOT ac-
celeration, expressed in terms of the relative coordinates
x» ——x, —x2, is given at the 1PN level by

r~2 3 P, 2 I&Xz —l2X
a )2 ——2m (I (

—I2 )d (2 +-
r6 2 r3 p12 12

(4.6}

We use the definitions

k
k 2 st

st =2ms ls dstNGT rst

(4.8)

where C is the moment of inertia of the body about the
symmetry axis and A is the moment of inertia about an
orthogonal axis. The calculation of the periastron shift
is straightforward' and yields

m p R1 R22 2

Acg)0= 6m' 1 + J2 +J2
p 2m (1) p (2) p

(I, —I2)d, 2 (1+e /4)
mp

(4.11)

where the relative orbit is approximated by the ellipse

where s denotes the source and t denotes the test body.
This is in agreement with previous results. '

We now derive the periastron shift formula for objects
in binary orbits. In fact, because of the presence of X
and Q'1 terms in the equations of motion, the accelera-
tion of an object will, in general, not be confined to the
orbital plane. In this case, not only will the periastron
position change in time, but so will the eccentricity of
the orbit, its inclination angle, its semimajor axis, and
the position of the line of nodes. The formulas for the
changes in these orbital elements have been given in
terms of the components of the acceleration by Smart. '

Let us consider the case of two bodies, each with cy-
lindrical symmetry about an axis normal to the orbital
plane and each symmetric with respect to reflections in
the orbital plane. Then, if the objects' centers of mass
are x1 and x2, respectively, we have

p' =p& ((» —x
~
)'+(y —

y& )', (z —z& )')

+p2((x —x2)'+(y —y2), (z —z2) ),
(4.9)

S =S& ((x —x&) +(y —y&), (z —z&) )

+S2 ((x —x2) +(y —y2), (z —z2) ) .

Therefore, 2~=0 for each body and the quadrupole mo-
ment of each body takes the form

1 0 0
Q'J= —,'(C —A) 0 1 0 (4.10)

0 0 —2
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p
1+e cos(r0 —coo)

(4.12) Rosenwald, indicating the controversy existing in this
field. From these numbers, we obtain

V. ANALYSIS

Let us begin with an analysis of the periastron shift
formula (4.11). There are three arenas in which we shall
work: the Sun-Mercury system, low-mass eclipsing
binary stellar systems, and high-mass eclipsing binary
stellar systems.

The anomalous perihelion shift of Mercury was initial-
ly considered to be irrefutable evidence for the general
theory of relativity. However, Dicke ' pointed out that,
if the Sun has a nonzero quadrupole moment, then this
will induce a classical perihelion shift. The observed
shift may then be less than the sum of the calculated
classical and relativistic contributions. We write

m
Lakco 677 Ass Merc

2
&OR O &O Merc

~o Merc=l+ —
2 2

(1+e'/4}.
2mp m ~2

(5.1)

We cannot extract l values from this equation so we
define

The J2 parameter is the dimensionless measure of the
(a)

quadrupole moment of body a and is given by
J2 ——(C, —3, )/m, R„R, being the radius of the

(a)

body. The quadrupolar deformation in a star is attribut-
able to tidal and rotational effects. Therefore, one often
sees the classical part of the periastron shift formula
rewritten to exhibit explicitly the dependence on rota-
tional velocity and chemical composition (see Ref. 20
and citations therein}. We note that this corrects our
previously published periastron shift formula" and
reduces to the GR result if l is strictly proportional to
mass. We comment qualitatively on this in the con-
clusions.

Ko M„, —(1.2+1.3)X 10' km (5.5)

This value is marginally consistent with GR
(Ko M„,——0) at the lo (one-standard-deviation) level,
though no conclusions can be drawn without a resolu-
tion of the Jzo controversy.

We now turn to low-mass binary stars. The periastron
shifts of many such systems are dominated by classical
effects and depend upon the density distributions of the
stars. From studying such systems, a good understand-
ing of stellar structure has been developed, allowing us
to calculate with confidence the classical part of the
periastron shift in systems where relativistic effects are
important. We choose two such systems for further
study, V1143 Cyg and EK Cep, which are 2.62 and 3.15
solar masses, respectively. Gimenez and Margrave
quote both the observed periastron shifts for these sys-
tems and the calculated (GR+ classical} values. For
EK Cep, they quote

hco», ——(8'. 8+2'. 6)/100 yr,

bcooR+, 1

——(7'.9+3'.Q)/1QQ yr,

while for V1143 Cyg they quote

(5.6)

he@,» ——(3'.37+0'.20)/100 yr,

bcoo„+„——(4'.2+1'.4)/100 yr .

From these data, we obtain

KEK ce~
——( —7+32)X 10' km

Kv1143 cys ——(8+13)X 10' km

(5.7)

(5.8}

These are consistent with K =0 (general relativity).
The last application of the periastron shift formula is

to the more massive systems AS Cam (5.8mo) and DI
Her (9 7ms). F. or the former system, Khaliullin and
Kosyreva ' quote

K~a =(m ~ +ma )(I~ 4)d~a—
and place limits on this parameter. Shapiro, Councel-
man, and King quote

bee», ——(14'.6+1'.2)/100 yr,

hCOO„+ c1
——(43'.6+3'.5 ) /100 yr,

(5.9)

~$ Merc= 1.003+0.005

while Anderson et al. quote

A,o M„,——1.007+0.005 .

(5.2)

(5.3)

while, for the latter, Guinan and Maloney quote

he@,» ——(0'.65+0'. 18)/100 yr,

hcoo„+„——(4'. 27+0'. 30)/100 yr .
(5.10)

We adopt the mean of these values. The value of the
coefficient J2o is controversial. Hill and Rosenwald
list a table of published values in a recent review. An
equally weighted average of these values gives
J,o =(5.7+6.5) X 10 '. If we weight the average to ex-
clude those points which are not consistent with any
other results, we obtain

b,co b,
——(1'.75+0'. 1 1 )/100 yr

for DI Her. From this data, we obtain

Kzs ce~ ——(3.37+0.43) X 10' km

(5.11)

(5.12)

If they limit themselves to higher accuracy photoelectric
observations alone, they obtain

If we use Eq. (5.10), we obtain
(5.4)J2g ——(5+6)X 10

KD1 H„——( l.59+0.33)X 10' km

while Eq. (5.11) yields
The standard error quoted is much higher than most
measurement errors quoted in the table of Hill and

(5.13)
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Kn, H„=(1.10+0.14)X 10' km (5.14)

These results are not consistent with zero. It has been
pointed out that retrograde contributions to the classical
periastron shift can arise if the spin axes of the binary
components lie in the orbital plane. This would then
reconcile the observed and calculated periastron shifts
and make E consistent with zero. However, this is a
highly unstable configuration. It is likely that the stars
would not remain long in this state. A retrograde classi-
cal shift may also be induced by a third body in the sys-
tem, but there is no evidence that either system has a
third companion. Clearly this is an area that requires
further study, both observationally and theoretically. It
would be very interesting to know if other high-mass
eclipsing binaries exhibit anomalously small periastron
shifts. For some other examples, see Ref. 20, but note
that it assumes geodesic motion in NGT.

As we have established above, there is no Nordtvedt
effect at the 1PN level in NGT (meaning there is no
effect in the lunar orbit caused by an inequivalence of mi
and mG). However, we need to know how large the er-
ror terms are in this calculation. Therefore, we need an
upper bound on the I value of Earth. Let us consider
the LAGEOS artificial satellite and lunar laser ranging
experiment (LURE) data. From our knowledge of the
orbit of LAGEOS about Earth, a value for the mass of
Earth times Newton's constant can be deduced:

d~ LAoEos becomes small ( & 10 ) and we obtain

l~ =(3+3) km. However, the baryon-number model
causes observable effects in the Eotvos experiment. A
separate analysis ' of this data in the light of last year' s
controversy has yielded l~ =(1.35+0.17) km using the
baryon-number model of I, if one follows the reanalysis
of the original Eotvos experiment by Fischbach et al.
Since baryon number is the conserved charge that most
resembles mass, we consider this the model that would
give the highest upper bound on I, giving us the least
confidence in the relation mr=mG. (For this model, the
error induced by dropping 2PN terms in the Nordtvedt
calculation will be the largest. ) For I precisely propor-
tional to mass, d@ LAGEQ$ would be zero and no limit on
I could be obtained. We hasten to add that the
baryon-number model does not fit very well the above
periastron shift results. We do not presently think it
provides a viable interpretation for I, but it is a worst
case. We choose I &2 km.

We calculate the error in the equality mr ——mo by
looking at the terms in Eqs. (4.2) and (4.3b). These are
typical 1PN terms. The largest 2PN terms have an ad-
ditional factor of U inserted (U~ -10 ). We also as-
sume lo-10 km. Now we may examine the 1PN and
2PN terms in the equation for Earth falling in the field
of the Sun. By referring to Eqs. (4.2) and (4.3b) and in-

serting the extra U to get a typical 2PN term, we obtain

Gm~ =3.98600434(2)X10' m s

The LURE gives

Gm~ =3.98600444(10)X10' m s

(mG /ml )~ =1+0( lPN)+0 (2PN)+

=1+0(10-')+0(10-")+
We have estimated

(5.20)

This allows us to calculate the gradient

b(Gm~/c ) =(3.0+3.0) X 10
T

(5.17)

Now, from Eqs. (4.4) and (4.6), we see that the NGT
terms in the acceleration of a body (the Moon or
LAGEOS} toward Earth may be absorbed into an
effective definition of Newton's constant

G.r=G 1—,(Ie —IA )dsA (5.19)

where r is the distance from the object A to the center
of Earth. We now compute the gradient of G,&m and
compare it with Eq. (5.19), assuming any disagreement
in the two determinations of Gm can be attributed to
NGT. We can probably safely assume the Moon experi-
ences little acceleration due to the I terms in G,z because
they fall off rapidly with distance. However, there is a
question as to what to do about the IL~oEos/mLAQEQs
term in d LAGEQs. If we set it to zero, we obtain
l~ =(0.1+0.1) km. This is a very stringent limit. If, in-
stead, we take I -baryon number, then the difference

a„=—G,sm„m~ —+the PN terms in (4.4b) . (5.18)
r

P

Ignoring the X terms, we obtain
T

*S*' meld
d x d x', —

3
-7X10 ', (5.21)

e lx x'I R',

where R is the radius of Earth. Currently, the LURE
experiment can detect a Nordtvedt effect produced by a
difference between mi and mG of 7 parts in 10 ' (see
Ref. 5}. We therefore expect that, if NGT predicts a
difference between mi and mG at the 2PN level, this will
not violate the null result of the LURE. However, our
error analysis was, by necessity, crude.

LURE and LAGEOS measurements may have anoth-
er interesting application to the testing of NGT. Expan-
sion of the three-body version of Eqs. (4.4) about the
Earth-Sun distance indicates that NGT may influence
the relative motion of Earth and a satellite, causing os-
cillations similar to those caused by a difference in mi
and mG but originating in three-body point-particle
terms in (4.4c). Whether or not these terms are observ-
able in a Fermi coordinate system at Earth's surface is
not yet known and is the subject of current investigation.
However, the calculation in our post-Newtonian coordi-
nate system is straightforward and indicates that oscilla-
tory terms in this system have divisors involving the
Earth-satellite distance. Therefore, the laser tracking of
LAGEOS may place rigid bounds on I.

We emphasize that our analysis does not apply to
compact objects such as the binary pulsar
PSR1913+ 16. It appears impossible to build pulsars
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with I values greater than about 10 km but this still
gives I /R —1, where R is the radius of the pulsar.
Therefore the perturbative PN expansion cannot be re-
lied upon. Perhaps a matching procedure such as that
of D'Eath is more appropriate for the pulsar problem
(see, however, Ref. 9).

Lastly, we point out that the appearance of the
d„z ——lz/m„—lz/mz term in the equation of motion
means that laboratory-sized objects will fall at different
rates if they carry different amounts of I charge. This is
to be expected since S" is not coupled via the metric
(not "universally coupled" ). We have not analyzed this
prediction in detail here because it necessitates a micro-
scopic model for I charge that is imposed from outside
the theory. We have studied the effects of this term if I
is baryon number and have fit the model to the anomaly
in the Eotvos data. ' However, the model does not ex-
trapolate well to objects of stellar size. Nonetheless, the
recent Eotvos experiments may provide useful bounds on
1~lm for laboratory-sized objects.

VI. CONCLUSIONS

We have obtained the 1PN approximation to the non-
symmetric gravitation theory in the context of a post-
Newtonian perfect fluid. Using a variation of a method
discussed by Fock, Nordtvedt, and Will, we obtained
the 1PN equations of motion for an object consisting of
this perfect fluid in the field of itself and an arbitrary
number of other such objects, obtaining the equality of
inertial and gravitational masses in NGT at 1PN order.
We have derived some special cases of the equation of
motion that are particularly useful for testing NGT. We
have discussed the consequences of this formula for
periastron shifts of binary stars and the perihelion shift
of Mercury.

While we have illustrated certain cases where our re-
sults are amenable to observational tests of gravitation
theory, we have not performed a detailed comparison of
NGT with observational data, preferring here mostly to
obtain the formalism for later application. One primary
reason for this is that conclusive testing of NGT will
occur only when the nature of the current S" is known
or when model-independent tests can be developed, the
latter meaning a combination of tests such that the I
values of all objects in the test system are determined.
We can, however, currently rule out models for I and
hope to constrain the theory by limiting the parameter
space of couplings to known currents such as baryon
number and lepton number. For example, it seems un-
likely in view of the new periastron formula that I
could be taken to be proportional to baryon number, ow-
ing to the fact that planets have greater baryon number
per unit mass than stars. In this case, NGT effects
would be presumably greater in planetary terrestrial sys-
tems than in stellar systems. As we have seen, the
greatest deviations from GR predictions occur, however,
in stellar systems. We believe we do not currently have
a successful identification of the I charge in terms of
known charges.
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APPENDIX A

The fundamental tensor of NGT is

gpv g(pv) +g[pv]

and has inverse g""given by

g" g,.=g "g..=&", . (A2)

To form the Riemann curvature tensor, we introduce an
unconstrained nonsymmetric connection 8'„„. Covari-
ant differentiation on vectors is given in a basis Ie„j as

~VX=Z"(B„X"+X~w„" }e„. (A3)

A generalized Riemann curvature may be defined in the
standard way by

R(X Y)Z =(~VV~ —V~~V —V@~))Z

=R p„+"Y"ZPe

where

R p„„—$Vp„„—IVY„„+8' „8'~p —O' „Wpp .

(A4}

(A5}

—Wp„W„p+ Wpp8'„„. (A6)

Often it is useful to work with the constrained connec-
tion (constrained to have zero torsion vector) defined by

r„„=w„„+2s„w„, -
where the torsion vector is defined as

W„=WI',p) .

Then we have

(A7)

(A8}

R„„(W)=R„„(I)+—,'W(„„l,
where

R„„(r)=rp„,——,'(rp„„„+rp„„„)
—I P I „p+I P(~)I „„.

(A9)

(A10)

The NGT field equations may be derived from a Pala-
tini variational principle

5 f g""R„„(W) 8mg""T„„——W„S' d x=0
(A11)

under unconstrained variations of g„„and 8'p&. This
gives

There are two independent natural contractions of this
tensor. The tensor R„ is formed from a linear combina-
tion of these two independent contractions:

R„„(w)= WP„,p l(WPp, „+-WPp, „)
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G„,( W) =8nT.„„,
g(~.} „=4~s,

(A12}

(A13}

g»g~vP~ +gP»WI +gI PW»

ag pA, S ap
—S" P" W~ —~"WP. = (S~s".—S Sg) .

where

G„„(W) =R„„(W) ——,'g„,R ( W),

R ( W) =g""R„(W) .

Boldface type denotes tensor densities

g gP~ —gP~

(A14)

(A15)

(A16)

Vincent has derived a form for the contravariant (non-
symmetric) stress tensor of a perfect Iluid, I „,=A„„—D„, , (A24)

(A23)

Contraction on p and A, yields Eq. (A13}. Equations
(A23) are usually expressed in terms of the variables W„
and I „„(recall I „=0). In turn, the I connection is
often expressed as a tensor homogeneous in S", denoted
D„, and a connection satisfying the usual form of the
compatibility equation, denoted A„. That is, we define

T""= (p+p )u "u "
pg ""—

, (A17)

from a variational principle. Here p is the pressure and
u"=dx"/dr is the four-velocity of an element of Iluid.
The mass-energy density is

p=p (1+II), (A18)

where po is the fluid rest-mass density and II is the rest
specific binding energy density. The symbol T„, denotes

ap
gI pgav T

General covariance implies the existence of four Bian-
chi identities and the associated matter response equa-
tions

«wr& p+g(s rl p
(pp) [s pj

p p 4m p
gP»Dp(z +gpPDa» S (gpagP» g/iPga»

+go»g(~P} } '

and thus obtain

p p
gpv a gpv A@a g pp~av

~ PI+ g(Pi } 'p 4~ p

APPENDIX B

(A25)

(A26)

(A27)

+T~(g~r»+gr»v g~»r 3W(~r}

(A19)

In addition to T"", the theory contains a conserved
current S" such that

s~ =o.
~p

(A20)

This current is taken to be a linear combination of num-
ber currents associated with an inhomogeneous fluid

S"=g f, n, (t, x)u~(t, x), (A21)

I = fsdx. (A22)

Variation of the Lagrangian with respect to the un-
constrained connection 8'„produces the relation

though all that is required is that it be a conserved vec-
tor current. The f; are the couplings to the different
number currents n; present in the fluid. The charge as-
sociated with this current is

dv'
dt

1

, a„@+a„U .
P

(B1)

The conservation laws (3.6) and the time component of
the matter response equation give

dII ~ Pod
(B2}

dt Po dt
= —pV-v .

We define the following integrals:

We list here the Newtonian-order virial relations used
to show explicit cancellation of self-terms and of
composition-dependent 1/r terms in the equations of
motion. Most of these relations may be found in the
book by Will, though there are minor numerical errors
in some of the equations published there. The only
differences between the usual form of these relations and
the NGT form are the replacement of p by
p =p —(2n /3)S S and Il by II = Il (2n /3)S S /—po.

We begin with the Newtonian approximation to the
matter response equation (3.11). This is Euler's equa-
tion:

* Cl I 0! (jlit j)0 = d xd x'd x",
x' —x" x —x'

fI j P P P d3 d3 d3
A X X X

A X —X X—X

t'„= f ' ', 'd'xd'x'd'x", V'„= f P P " " '" "'d'xd'xd'x",
A X X A
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P'P*'u v'. (x—x') d3 d3 Pd3 gg

[x—x'['

P&„= f P P ', 'd'xd'x, 8= f[x—x'[ 3

1 p p X —X X —X

fx —x'/'

I„u = f p"(x' x"—)(xj x'~—)d x, I„=fA A

g J f P P [v ( x—x ) ] (x —x ) d 3 d 3 d 3

A
i
x —x'

i

'

p*p"II '(x ~ —x '1
)

X d X
i
x —x'

i

'

1
Q I

d'X d'X',
2 ~ [x—x'I

p'
i
x —x'

i

'd'x,

(B3)

Qt —&l J IJ
p = f pd3x, E& —f p Ildx, H&J= f dxdxdx

p'p"v'. (x—x')(x' —x")(x —x' ) 3 3 t 3 pg

A
A /x —x'['

We also need to define V J and %V~. These are given by Eqs. (3.3b), (3.3i), and (3.10).
We may derive several relations between the above quantities:

=4T'J+2P5u+2Q'J, =4T+6P+2Q,
dt dt

=H"~'+ f u„p, ,d x, =H+ f vIId x,

dt dt - dt t)t

p"N~d x = Pi Q'J —t —5'+7—' +—3T"
dt

(B4)

p'V'd'x =P'+Q'+'T'+'T",
dt

f p'Ilu "d x= f p' u "d x —f Iltlkpd3x —g" .

These quantities appear in the equations of motion, both as self-acceleration terms and as contributions to the gravita-
tional mass. However, if we average these quantities over time and assume that any secular effects due to these terms
do not become significant over the time scales of interest, then the left-hand sides of Eqs. (B4) may all be replaced by
zero. These averaged versions of (B4) are the virial theorems.
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