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Photoproduction of delta and Roper resonances in the cloudy bag model
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The photoproduction of delta and Roper resonances has been calculated within the framework
of the cloudy bag model. Two alternative formulations, the original pseudoscalar surface coupling
and the pseudovector volume coupling of pions, have been used, and the results are compared.
The helicity amplitudes are in fair agreement with experimental data, the prediction for the small

El+ /M&+ ratio for delta production is —1.8%%uo for a bag radius of 1 fm and pseudovector cou-
pling.

I. INTRODUtmION

Over the past 30 years photo- and electroexcitation of
nucleon resonances has given a tremendous amount of
information about the structure of the nucleon. These
data provide crucial tests of the dynamics describing the
nucleon in terms of QCD-inspired models. Of particular
interest is the mixing of electric quadrupole and magnet-
ic dipole amplitudes for the transition leading from the
nucleon, N(938), to its first excited state, 6(1232). This
ratio R& E&+/M&+——, is directly related to the tensor
components in the effective forces between quarks and,
consequently, to the intriguing possibility of a quadru-
pole deformation of elementary particles. In view of the
fact that a static deformation, though in principle ex-
istent for the 6 and other nucleon resonances with spin
J& —,', is experimentally hard to observe, the Nh transi-
tion moment is the only experimental evidence for such
an effect.

In the past, experimental evaluations of Ra have
spanned a large range between practically 0 and a
minimum of —5%. The latest analysis of the Particle
Data Group' gives a value of R a

——( —1.3+0.5)%.
Another recent evaluation of the available data, using a
unitarity constraint via Watson's theorem, arrived at a
value of (—1.5+0.2)%. From these analyses it is evi-
dent that the ratio is definitely finite in contrast with the
predictions of spherical quark models.

Skyrmion models of the nucleon seem to overestimate
the effects of quadrupole deformation by obtaining
values Ra of the order of —5%. A recent study of this
ratio in a modified Skyrme model, with the inclusion of
stabilizing fourth- and sixth-order terms, predicted
values of R & between —2.6% and —4.9%. On the con-
trary, most other hadronic models have predicted ratios
significantly lower than the experimental values. In the
nonrelativistic constituent-quark model (CQM), the ten-
sor part of the color hyperfine interaction serves as the
effective ingredient to admix D-state components into
the bag wave functions. Typical results for Rz range
between —0.08% and —0.S%%uo. Similarly, calculations

using relativistic bag models seem to underestimate the
quadrupole effect. As a typical example we mention the
calculation of Ref. 8 in the framework of the cloudy bag
model (CBM). The interaction between the quarks and
the surrounding pion cloud leads to an effective tensor
force which admixes D states into the baryon wave func-
tions and yields a ratio of R& ———0.92% at a bag radius
R =1 fm. Further investigations of the effect include a
CQM calculation using the color hyperfine interaction
and pion exchange at the same time and a recently re-
ported result that nonspherical components are also
created by purely relativistic effects without explicit ten-
sor forces. '

In view of the crucial importance of the ratio R& for
our understanding of bag dynamics, we have repeated
the calculation of Ref. 8 using the chiral bag model. In
particular, we compare the results of pseudoscalar (PS)
surface coupling and pseudovector (PV) volume coupling
between bag and pion cloud. Both couplings are related
by a chiral transformation" similar to the one generat-
ing the chiral Lagrangian of Weinberg' from the cr

model. In practical calculations, the equivalence of the
two coupling schemes is usually violated because of a
truncation of the Hilbert space and by using MIT bag
wave functions without modifications due to the pion
pressure. As an example, a calculation of pion-nucleon
scattering has shown that the two coupling schemes
show a completely different convergence and that about
5-10 excited states have to be included in order to ob-
tain equivalent results for PV and PS coupling. ' Simi-
larly, the leading Kroll-Rudermann term in pion pho-
toproduction at threshold is only obtained as an infinite
sum over sea-quark (Os&&z) and valence-quark (Op&&2) ex-
citations in the case of PS coupling. ' Therefore, the
comparison of PS and PV coupling can serve as an indi-
cation of whether or not a particular truncation of the
configuration space is adequate. As we have shown in a
previous Letter, ' the matrix elements of the charge (C2)
and current (E2) quadrupole operators are affected quite
differently by such truncations. In fact it turns out that
the usually small value for R~ in CQM calculations is

37 89 1988 The American Physical Society



90 K. BERMUTH, D. DRECHSEL, L. TIATOR, AND J. B. SEABORN 37

obtained using the current operator, because of strong
cancellations of initial- and final-state deformations in a
restricted configuration space. The corresponding ma-
trix element of the charge operator is much more stable
against a truncation of the configuration space, which
leads to a much larger ratio Rz in a good agreement
with the data. In the same spirit, we shall evaluate both
C2 and E2 amplitudes in the CBM in order to test the
numerical accuracy and stability of the predictions.

Another challenge for dynamical models of the nu-
cleon has been the Roper resonance N(1440). In a naive
quark model, this resonance is described by the same
spin-isospin structure as the nucleon, but a radial excita-
tion of one of the quarks. This orthogonality of the ra-
dial wave functions leads to an underestimation of the
M1 transition, and not even the sign of the matrix ele-
ments is correctly predicted. As has been shown by the
authors of Ref. 8, the CBM is quite successful in improv-
ing this situation. In fact, the pionic terms are larger
than the contributions of the valence quarks by an order
of magnitude. We have checked the reliability of such
calculations by a comparison of the predictions of PS
and PV coupling.

For the sake of completeness and in order to relate
our results to previous calculations, we briefly review the
cloudy bag model in Sec. II. The definitions of charge
and current transition operators are given in Sec. III,
followed by analytical expressions for the photoproduc-
tion amplitudes corresponding to the various diagrams
in Fig. 1. Finally, we present the results of our calcula-
tions in Sec. II and conclude with a short summary in
Sec. V.

+—'(a ~)' '—m-. 'n' —qys&q ~ii s

where ev is one inside the bag with radius R and zero
outside and bs is a Dirac 6 function on the surface,
r =R. In order to satisfy the Weinberg-Tomozawa rela-
tionship, ' Thomas' developed an alternative formula-
tion, where the pion interacts with the entire volume of
the bag by pseudovector (PV) coupling:

&pv=(&q&q &)~v— ,'qqii—s—

~v
+ 2i(ay~)2 —2im. 2~2 — '2 qrurq (~xap~)

2 ii 2 17 4f Q

6'v
+ q1' 1'srq d~'ir, '

2
(2)

The quark wave functions are given by the well-known
solutions to the Dirac equations for zero-mass quarks in
a spherical cavity:

x, n P

q~(r)=N„„
—A,i o'r j-

1

where

teracts only with the surface of the bag by pseudoscalar
(PS) coupling"

ps=(iq~q &)—~v ,'q—q~—s

II. THE CLOUDY BAG MODEL

In our calculations we use two different versions of the
linear cloudy bag model. In the original one the pion in-

N„„= ~, n

2R (co„„+i~)j,(co„„)

A, =sgn(i~) and /= I —A, .

X~=
~

(1,1/2)J, p)
~

I/»),
' 1/2

(4)

The index a stands for the angular momentum l, the to-
tal angular momentum J =I —A, /2 (ir&0) with projec-
tion p and the radial quantum number n. From the
linear boundary condition at the surface of the bag,

(5)

J'
I l l

N 8 8' N N 8 8' N N 8 8' N

/
i

N 8 N N 8 N~

N 8 N N 8 N N 8 N

(b)

(c)

the ground state Os&&2 and the first excited s state 1s,&2

have the eigenfrequencies coo ——2.0428 and coj ——5.3960.
The pionic field has the representation

1 d k —ik x& t ik„x"n(r)= (ake " +ai,e " ),
(2n. )

i 2ai

with a& and a& the annihilation and creation operators of
a pion of four-momentum k"=(co,k). In this context we
use a spherical notation for the components of the pion
field, i.e.,

1
n~, ——+ —(n„+iny ), n.o——m, ,

FIG. 1. Diagrams used in the calculation of the M1 and E2,
C2 form factors. The intermediate states 8 and B' represent
either nucleon, delta, Roper, or a quadrupole excitation (D
state), and N* stands for delta or Roper.

where m. + &
is the field which creates a m. + and destroys a

Note that (ak)+& is defined as +(a„~+ia )/&2
Performing the minimal coupling substitution for the
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electromagnetic field A,

Bpg ~Ops +leq Apg

8 K+i~B 7Tgi+leA 7Tgi
(8)

J X k[ai;. (k)q. ak a—f; (k)q. ak] .i d k

6f (2m )'2'
(13}

we obtain the electromagnetic interactions of lowest or-
der:

Xqqr ——qeq A~}/ q8„

= +ie A„(qr+, dl'qr, qr—,B"qr+, ),
(9)

(10)

where e =e(1+3rD)/6 and e=&(4ma) are the quark
and proton charges, respectively. Moreover, the pseu-
dovector coupling contains a contribution of the contact
term:

Oq
qqr=+ qAqy y5ie(q, m+, —'r+, m', )q, (11)

2

where q and m are defined as spherical tensors [Eq. (7)].
The first-order interactions between quarks and pions
differ in the two coupling schemes. Introducing special
form factors, they can be cast into the form

Hq, „&xfI+q——q lx;&, (12)

with

In this form only p-wave pion emission and absorption is
considered, other partial waves do not enter our calcula-
tions. In detail for specific quark transitions we find

for &i/2~&//2

and (14)

3jt(kR)
ab

' = ab
'

Na COb

(N~ +K~ }(COb +Kb )

1/2

Xsgn[jr (co, )j( (cob )],

while the pseudovector form factors differ for transitions
involving different eigenfrequencies, co, &cob,

&= —&(8m )[a X Y2(r)](') for s, /2~d3/z .

The pseudoscalar form factors for pion absorption ( —)

and emission (+ ) are identical,

a b ab + k—R
(~ ~b+~R }N Nb dr ~ jt(kr ) ~bjl jipv, + ps, +

0 a g Ib

CO, r CObr

J( JI (16)

III. THE PHOTOPRODUCTION AMPLITUDES

pbN (~6J X q )
mN(ma —m~ )

(17)

hNeG
jhN

2mN

GAN

e,„Xq—e(-', )'" "(aP)Xq"')"'.
mN

Photoproduction of the b(1232) and N(1440) reso-
nances proceeds mainly through the M1 transition. ' In
the case of the b resonance an additional E2 transition
is possible. Furthermore, if the resonance is excited by
virtual photons, the longitudinal rnultipoles CO and C2
contribute for Roper and delta, respectively. While the
monopole contribution CO vanishes at the photon point,
the C2 transition of the 6(1232) is related to the E2 in
the long-wavelength limit. From general arguments the
NN' electromagnetic transition currents can be written
in the c.m. frame by nonrelativistic approximation as fol-
lows. '

(i) 6(—'+ —'1232)

e(mR ™b/)GFO . eGM1
RN RN

~RN q+i cr )&q,
2mN(ma —m~ ) 2mN

(20)

where mN, m&, and mR are the nucleon, delta, and Rop-
er masses, respectively, and q is the momentum of the
transferred (real or virtual) photon. The transition spin
matrices for the delta are defined by their reduced ma-
trix elements:

&~ll~~('kllN & =2 &~llak'kllN & =+(1o) (21)

Furthermore, we use the definition q =(q Xq )

In comparison with Ref. 19 we include an additional fac-
tor —,

' in the definition of Gz2, which is now defined in

accordance with standard literature. At resonance en-

ergies, co=m —mN, the electric and Coulomb form
factors are related by current conservation: GC0=GEp
and G~2=GE2. Strictly speaking, this equivalence is
only valid in the long-wavelength limit, q~0 (Siegert
theorem ').

To connect with experimental quantities we define the
radiative decay width of resonances:

(ii} N(1/2+, 1/2;1440)

T'~'"(N* ~Ny )
(18)

2

1( I
A~i'/21'+

I A$/2 I

'»
7T mN 2JN Q + 1

—e(m„+m~)q G("Q
PRN 22mN(mz mN )

(19) with co& the photon energy in the rest frame of the reso-
nance of spin J + and mass m +. The helicity ampli-
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tudes are given by

Ai'/3=+ (N* J* +2 i
X iN & &

& (23)
1

2'&

For the Roper resonance we define the ratio

p R+pA 1/2 GM1

A 1/2 GM1
(30)

=j"A„=pg —j A . (25)

Using definitions (17)—(24) and a right-handed photon
polarization vector e= —1/&2(l, i,O), we can express
the helicity amplitudes in terms of the following form
factors.

(i) A~Ny

A$/2 ——+ (N*;J*,+—',
i J,

i

—N; ,', +-,' —&, (24)
1/ 2co&

where the sign (k) is determined by the pion photopro-
duction amplitudes. Specifically, for N' being the
Roper (R) or delta (6) resonances the sign is positive.

The electromagnetic interaction is obtained by
minimal coupling to the model Lagrangian and can be
written as

For an evaluation of these quantities in the cloudy bag
model we have considered the diagrams depicted in Figs.
1(a)—1(d). Diagram 1(a) is the direct absorption term
and the others are pionic terms coupled to N, 6, R inter-
mediate states denoted generally by 8. In the case of
E~Ny we have omitted intermediate Roper states but
have also included excitations of intermediate D states.

The wave functions of nucleon, delta, and Roper are
constructed as direct products of a symmetric coordinate
space part, a symmetric spin-isospin part, and the an-
tisymrnetric color-singlet state. Omitting the color de-
gree of freedom we find the overall syrnrnetrical wave
functions

1
N & =Rp (r] )Rp (r2)R 0 (r3 ) (PMS~MS +4MA~MA )

2

A, /~
——A, /2(M1)+ A )/2(E2)

1/2

2 (GMt 3GP2—),
6mN

(26)

5& =Rp (r])RO (r3)RO (r3)P X

1
i
R & = —(R t, (r&)RO, (r2)RO, (r3)+ permutations)

3

(31)

a&co&

2mN

A3/2 A3/3(M1 )+ A3/3(E2)
1/2

(GMi +GE2") . (27)

1
X g (QMSXMS+PMAXMA ) '~2

The spin and isospin wave functions are denoted accord-
ing to their symmetry behavior, given in standard angu-
lar momentum algebra by

(ii) R ~Ny

AP n~ 1/2

1/2
am@&

2
mN

RN (28)

I, =
i
[(-,' —,')1-,']-',p&,

&MS =
I
l(-,'-,')1-,' hv &

~MA I l(-,'-,' )0-,' 1-,'V &

(32)

Finally, we obtain the ratio of electric quadrupole and
magnetic dipole transitions in standard high-energy no-
tation:

where p is the projection of the total spin of the bag.
The isospin wave functions P are defined in an analogous
way.

E1+
R~ ——

1+

1
A 1/2

—
~
—A 3/2v3

A (/2+&3A3/3

A 3(/3E)2

A3/2(M1 )

6EN
E2

GEN
M1

(29)

A. Photoproduction of h, (1232)

Using the Lagrangian of Eqs. (1) and (2) and the wave
functions defined in Eqs. (3) and (4) we have evaluated
the contributions to the form factors G~, and GE2 from
the various diagrams in Fig. 1. Specifically, we obtain,
for Figs. 1(a), l(b), 1(c),

(33)

GMY(b)
2m~ 1 dk k apo (k)

27v 3m ky 2f
M(k )

125 100 8

co(co+5—coy) (co+ 5 )(co+5 coy ) (c—o+ 5)(co a)y )—+ +

100+
CO( CO —CO )r

(34)
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3v 377 k& 2f coco

1 1 1
Xapp(k')I„, (k, k', k )

CO(CO' —5) (CO+ CO' —5)(CO' —5) CO(CO+ CO'+ 5 )

+, +5 5 5

CO (CO+5) CO (CO+CO 5—) (CO+5)(CO+CO'+5)
(35}

The Photon and Pion four-momenta are defined as (co„,k„) and (co,k}, and 5=m~ —mN is the nucleon-delta mass
difference. The pion decay constant f is related to the strong nN coupling constant by the Goldberger-Treiman rela-
tion

'9 COp

2f 5 COp P
(36)

where we have used the bag-model value for gz. In order to get the proper mN coupling strength we have used

f zz /4' =0.08. This value gives f=76 MeV, which is a factor of 1.2 smaller than the experimental number.
The electromagnetic form factors (y,BB') and (y, nn') are defined as

R cog r Qpbr N~ r Nbrf (k )= ,'N N, -d«'j (k r) j& jp +jp j~
0

(37)

I~~~(k, k', k )=J dr rj &(kr)j&(k'r)j&(kyar)= 2 & 2 [4k kr (k —k'—+kr ) ]h(k, k', kz),
0 ~ 32/2/

(38)

where Q(g, b, c)=1, whenever a, b, and c obey a triangular relation, and zero otherwise. Since we are considering only
nucleons and deltas so far, these equations hold both for pseudoscalar and pseudovector coupling. However, an addi-
tional contribution arises from the contact term in PV coupling, Fig. 1(d):

J ~

(39)
3 3n' k 2 co co —5 co co+5y. '.

with the y~8 vertex form factor

Cp(k k )=Np dr r j &(kr)j&(krr) jp
p R

copr—J1'
R

(40)

The factor (Z Z )'/ in Eq. (33) describes the bare bag probability in the initial and final states. The renormalization
constants are given by"

j,

X'(E)
E (41)

where X is the self-energy of 8 =N, h due to the interaction with the pion field:
2

4

(E) 1 1 Jdkk z(k) 25 32
12~' 2f 00

J

2
4

X (E)= f dk app (k)
12~' 2f co E —pf N

—co E —pl g —co

(42)

(43)

For reasons of consistency we have expanded the renormalization constants (Z Z )' to order (1/2f ) . Consequent-
ly only the leading term, Fig. 1(a), will be modified. Such a procedure guarantees current conservation to second or-
der. In previous calculations" also higher terms [Fig. 1(b), etc.] have been multiplied by the renormalization con-
stants therefore implicitly introducing fourth- and higher-order terms in the coupling constant. Whether or not such
a procedure improves the convergence of the perturbation series is not known a priori; however, gauge invariance
could be violated.

In the case of the quadrupole transitions, E2 and C2, the contribution of Fig. 1(a), which is dominant in the M 1

channel, vanishes. Therefore we go beyond the calculations for the M1 amplitude by taking into account intermediate
states from Od3/2 (@=2) excitations. The wave function is given by Eq. (3) and the eigenfrequency co2 is determined
through the boundary condition jz(co2)= —j, (co2), which yields the value co&

——5. 1231 for the lowest mode. We
neglect the mass shifts due to the hyperfine interactions between quarks in the presence of a D-state quark, such that
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6:(co2 coo)/R =608 MeV for R = 1 fm. For the individual diagrams of Fig. 1 we find the following form factors for
the current:

GO2C(a) 0gal%(b)
2

fp2(k )f k apo(k)
90 3 n.2k

(44)

xap2(k)
5

co(co+ 6—coy )
+ 5

(co+5)(co+&—coy ) (co+~ )(co+5 co—
y )

8 2

(co+ b, )(co —coy ) (b co—
y )(co co—

y )
+

5 8

b co 6(co+5)

5

(6 co—
y )(co+5 co—

y )

(45)

3 ty 317 ky 2f coco'

1 1 1 1
&&aop(k')I~Q2(k k ky) + +

co(co' —5) (co+co' —5)(co' —5) co(co'+co+5) co'(co+5)

1 1

co'(co+co' —5) (co+5)(co+co'+5)
(46)

Gs2 (d) =
'2 T

J k aop(k)C2(k, ky)
3~ k 2 co co-

y

2 1+
N N+5

(47)

The large cancellations among the individual contributions to the electric quadrupole amplitude are obvious from Eqs.
(45)-(47). The expressions within the large parentheses vanish exactly in the soft-photon limit (coy~0) and for a van-

ishing hyperfine interaction (5~0).
The corresponding charge form factors are

Ga%(a ) () (48)

GC2 (b) =(GE2 (b;5, —2, —5, 8, 2, —5, 5, —8),
55m' 1 dk dk'

GC2 (c)= f, k k' aoo(k)a~(k')
3+3m ky

(49)

&(I i i (2k~k &ky ) + +
co'(co+ 5) co'(co+ co' —5) (co+5)(co+co'+ 5)

N —N N+N N —N

co(co+ co'+ 5) co( co' —5 ) ( +coco' 5)(co' 5—)—(50)

Ga,"(d)=0 . (51)

The terms (b) involving D-state excitations are very similar for E2 and C2, up to the signs of the individual diagrams
as indicated symbolically in Eq. (49) and an overall factor

55 Q2(ky)
(52)

kyf o2(ky )

Because of this change of sign the cancellation observed in the current matrix elements is no longer present for the
charge operator. The additional vertex form factors for BB'y, BB'my, ~m'y are given by

R Nof N2f
fo2(ky)=NoN2 dr r j i(k r) j 1 J2

0 R R
NOf N2f

5Jo R J (53)

R Nof N2f
f02(ky)=NpN2 dr r J2(kyr) Jo J2

0

Of . N2f
J& R J& (54)
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C2(k, k )=No f drr j,(kr)j, (kyr) jo
0

1 . ~or—5J] (55)

I,O2(k, k', k )= f dr r[k'j&(kr)jo(k'r) kj—o(kr)j&(k'r)]j2(kyr)
y

(k' —k')[4k'k ' (k'—k'—+k ')']6(k k' k )
32k k' k

I&&2(k, k', k )= f dr r j &(kr)j&(k'r)j2(k r)= I&&&+ 2 2 (ky k' —k)b—(k, k', ky) . (57)

B. Photoproduction of R (1440)

For the photoproduction of the Roper we can form two independent isospin amplitudes corresponding to the
proton/neutron amplitudes in the usual notation. Since the Roper appears in the final state we have also included it
as a possible intermediate state. For the M1 form factors we obtain the following contributions from the diagrams of
Fig. 1:

RN, I~ IGMi' " «)= 4m~ 1 .F ( k )(Z NZR )1/2
3

(58)

Sm& 1 dk 5 1 64
GM)

" (b)= k ' ARO(k)FOO(ky)A+(k)
(27~)'ky 2f ~(~RN —~) —

(&RN —~)(&Na —~)

64
co(b,R o co)—32 4

(~RA ~)(~Na —1

1 64
+ ARp(k)FpR (ky ) ARo(k } 2 4+(~ )(b,

)' l
(~RN —~) . . Rh NR

1

+ARR(k)FRO(ky)AOO(k) 2
'

4
64

~(aN, —~}

1

ARR (k)FRR (ky )ARR (k} g 4

27/5 25 32
+ ls/5 FRR( y}ARo(k}AQN(k} g + g g )RN RN ~+ hN

+FRR (ky ) ARR (k}ARN(k)
25

RN ~+ RN

25 32+ ARO(k) A ON(k)FNN(ky )
RN RN ~ RN Rh

—ARR(k) ARN(k)FNN(ky )+ 25

R%~
(59)
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RN, I~ I

72m, 2 2

. 2
'

I 2
, J~ dkk4yi d

1 —t
0 CO —1 CO

X gdB
A„+B(k)ABN(k')+ ARB(k') ABN(k) A„B(k)ABN(k') A„B(k)ABN(k')

+ +(~+~BN )(~+~'+ ~RN ) ~RB )(~ +~BN ) (~+~BN )(~ ~RB )

ARB(k) ABN(k') 1+ +
CO+ CO —ARN CO —ARB CO —ARB

(60)

with

k'=
~
k —k& ~

='t)r k +kz 2kk—zt, co'=Qk' +m, co=Qk +m
(61)

AB~B =mB4 —mB

25
9

8
97

B=N,R,

The electromagnetic and strong vertex form factors are given as

fpp, BB'=NN, Nh, hN, hh,

FBB (kr)= fip, BB'=NR, RN, RI,RRb, , ,
1

—,'f ii+ ,'f pp, BB'—=RR,

(62)

with f,„de nfied in Eq. (37),

AB B(k)=

app(k), B'B=NN, Nb„bN, AA=QQ,

1 a,p(k), B'B=RN, R b, —:RQ,

ap, (k), B'B=NR, hR =QR,
(63)

—,'a*„(k)+—2app(k), B'B=RR,

where the index 0 denotes a nucleon or delta, and 1 stands for the Roper resonance. Finally, we obtain additional
contributions from the seagull term [Fig. 1(d)] in the case of PV coupling:

RN, (P 2mN

3k 2 —1y~

2

fdkk gdB
B

CRB(k, kr )ABN(k) ARB(k)CBN(k, kr )
+

ENB —CO ~RB
(64)

with dB defined as in Eq. (61) and the vertex form factors

R COa P COb I
c,b ——N, Nb dr r j &(kr)j &(kyar) Jp jp

0

COa P COb 7

J1 g J1 (65)

where

c00, B'B=XX,Xh, AX, hh,

CB.B(k,k )= —c,p, B'B =RN, R b, ,NR, bR1
B'B ~ y ~3 iP~

—'c»+ —'c00, B B=RA .

(66)
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IV. RESULTS

In Table I we have listed the results of the individual
contributions for photoproduction of the delta reso-
nance. We have varied the bag radius R in the range of
0.6, 0.8, and 1.0 fm. At R =1 fm the M1 helicity ampli-
tude is dominated by the bare bag contribution. Howev-
er, for smaller bags the pionic contributions become
more important, which is a general feature of bag mod-
els. The quadrupole amplitudes E2 and C2 get no con-
tribution from the bare bag, which is a pure s state, such
that the transition is only mediated by the pion cloud.
A comparison between pseudoscalar and pseudovector
coupling shows that the contribution of terms (a), (b),
and (c) remains almost unchanged, because of the
equivalence of both models for transitions from ground
state to ground state (e.g., nNN, r. AN, m b,h). A
difference occurs only for intermediate D states whose
contributions are negligible, however. Therefore the
PS-PV difference arises almost entirely from the seagull
contribution, which is only present in the pseudovector
model. Its effect lowers the M1 amplitude and almost
cancels the E2 amplitude. If the seagull term would
take the opposite sign, an almost perfect agreement with
the experimental M1 amplitude would be obtained.
However, the same sign as in our calculation was also
obtained in a recent investigation evaluating the seagull
contributions to magnetic moments and the axial-vector

coupling constant. From the seagull charge (—yzyz)
one does not obtain a contribution for ground-state tran-
sitions; therefore, the quadrupole helicity amplitude is
almost unchanged in the PV coupling model when calcu-
lated via the charge transition C2. Obviously, as C2 and
E2 matrix elements are totally different, the electromag-
netic current is not conserved. The reason for this is the
truncation of the configuration space to nucleons, deltas,
and D states in the intermediate state. While this is a
good approximation for C2, the results for E2 are total-
ly spurious and higher contributions, which are hard to
calculate, will have a large effect on this amplitude. '

A comparison with the experimental data and with
the predictions of the constituent-quark model (CQM)
shows that the CBM M1 amplitude is larger than in the
CQM but still smaller than experiment. Our C2 calcula-
tions are in quite good agreement with the data, both for
the CBM and the CQM. In particular, the difference of
PS and PV coupling turns out to be very small in this
case. Evaluating the matrix element with the E2 opera-
tor, we observe an almost complete cancellation of pion-
ic and contact currents for PV coupling and a result of
the right magnitude but with a wrong sign for PS cou-
pling. In view of the strong cancellation, we were not
able to reproduce the result Ra= —0.92% of Ref. 8

(R =1 fm, E2 operator, PV coupling), but instead ob-
tained a value smaller by orders of magnitude. Because
of the cancellations in the E2 matrix elements within the

TABLE I. Helicity amplitudes for L(1232) photoproduction in units of 10 ' GeV ' . Experimen-
tal data from Ref. 1 and results of the constituent-quark model (CQM) from Refs. 5, 6, 15, and 29
compared to the predictions of the cloudy bag model for various bag radii R and using pseudoscalar
(PS) and pseudovector (PV) coupling, respectively. The specific contributions a-d correspond to the
diagrams of Fig. 1. If possible, the ratio R& has been calculated with the results for the C2 amplitude
(Siegert theorem).

R(fm) Term PS
A 3/2(M 1 )

PV
A 3/2 (E2)

PS PV
A 3/2(C2)

PS PV

Rq
E)+ /Mi+

PS PV

1.0 a
b
C

d
X

—96
—52
—46

—194

—96
—52
—46

26
—168

1.45
4.34

5.79

0.44 —0.11 0.09
4.34 —3.40 —3.40

—4.56
0.22 —3.52 —3.31 —0.018 —0.020

0.8 a
b

C

d
X

—60
—72
—74

—206

—60
—72
—75

35
—171

1.79
3.12

4.91

0.39
3.12

—4.81
—1.30

—0.18 0.07
—5.21 —5.21

—5.39 —5.14 —0.026 —0.030

0.6 a
b
C

d
X

—33
—102
—125

—260

—33
—102
—125

49
—211

0.06
—7.05

—1.86
1.09

0.27 —0.15
1.09 —7.05

—4.43
2.95 —3.06 —7.20 —6.99 —0.028 —0.033

CQM (Ref. 5) —179
CQM (Ref. 6)
CQM (Refs. 16 and 29) —186
Expt (Ref. 1) —255+10

—0. 14. . . —0.43 —3.3. . . —3.8
—3.4+1.2

—0.004
—0.02

—0.013+0.005
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highly truncated basis, ' we believe that this value is
completely spurious anyway, and propose to use the pre-
dictions obtained via the charge operator. In this case
we obtain, for a bag radius R = 1 fm, a ratio
Rz ———1.6% for pseudoscalar and —1.8%%uo for pseu-
dovector coupling, in good agreement with the experi-
mental data.

In the case of Roper production the contributions of
the graphs of Fig. 1 are listed in Table II. Since the
Roper is a radial excitation of the nucleon, the bare bag
contribution (a) almost vanishes because of orthogonali-
ty. Therefore, the M1 amplitude for Roper production
is much more sensitive to pionic effects and different
pion coupling models than in the case of delta produc-
tion. The dominant contributions arise from the pseu-
dovector seagull term (d) and pionic currents (c). A
comparison with the data gives the correct sign in all
cases and fair agreement with the PV model at R =1 fm.
We obtain a qualitative agreement with Ref. 8 for the
overall amplitudes, but considerably different results for
the individual contributions. A11 of our calculations give
a proton to neutron ratio close to —1, i.e., an almost
pure isovector transition, whereas the experimental ratio
is more like the ratio of the magnetic moments of pro-
tons and neutrons, showing a sizable isoscalar contribu-

A 1/2 A

R (fm) Term PS PV PS PV
Rg

PS PV

1.0
b
C

d
X

2.6
0.7
8.3

—3.5
6.3
0.7

—38.7
—7.6 —35.2 11.6

—3.9
4.6

—8.3

2.4
—2.3
—0.7
38.7
38.0 —0.66 —0.93

0.8 a
b

C

d
X

—0.6
—20.2
—35.7

—56.5

—0.6
—6.7

—12.3
—59.6
—79.1

0.4
12.0
35.7

48.2

0.4
2.7

12.3
59.6
75.0 —1.17 —1.05

0.6 a
b
C

X

0.4
—69.6
—96.5

—165.6

0.4
—27.6

36.5
—83.6

—146.4

—0.3 —0.2
35.7 11.8
96.6 36.5

83.6
131.9 131.7 —1.26 —1.11

Expt. (Ref. 1) —69+7
CQM (Ref. 5) —24

37+19
16

—1.9+1.1

—1.50

TABLE II. Helicity amplitudes for Roper(1440) photopro-
duction in units of 10 GeV ' . For notation see Table I.

~ -zso+r /XX/XXYXEXXXXXXXYYXl

PS
—200

—100 N~QM/)
-50

c
0.6

-175

-150 i PS

0.7 0.8

R(fm)
0.9 1.0 c

0.6

125-

0.7 0.8

R(fm)
0.9 1.0

—185 100-

-100
I

-75.

-50.

c
0.6

(c)

0.7 0.8

R(fm)
0.9 1.0

75-
I

50-

85-

c
0.6 0.7 0.8

R(fm)
0.9 1.0

FIG. 2. Helicity amplitudes for photoproduction as functions of the bag radius. The dashed and solid lines are PS and PV cal-
culations, respectively: (a) A3/2(M1) and (b) A3/2(C2) for 5(1232) production and (c) A~&/2(M1) and (d) A ", /2(M1) for R (1440)
production. The numbers are given in units 10 GeV ' and the experimental data from Ref. 1 is shown as error band.
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tion. For comparison, the CQM gives a ratio of exactly

p /p„because of the lack of pionic efFects. The abso-
lute magnitudes however are smaller than the experi-
mental value by more than a factor of 2. In view of the
large differences between PV and PS couplings we con-
clude that the truncation of the basis is not well justified
in the case of the Roper resonance.

Figure 2 shows the dependence of our results on the
bag radius. The comparison with the experimental data
indicates a good agreement for a bag radius of R =0.9
fm, except for the M1 amplitude of the NA transition,
which is traditionally underestimated in quark model
calculations.

If we had also multiplied the higher-order terms with
the wave-function renormalization, see discussion in Sec.
IIIA, the discrepancy between experiment and theory
would increase. At R =1 fm the predicted amplitude
A 3&&(M1}would decrease by 9% and 8%%uo for PS and PV
coupling, respectively. Although an exact solution of
the c.m. problem in the bag model does not exist yet, the
prescription of Donoghue and Johnston for the static
magnetic moment leads to an increase of 18%. Similar
effects could be expected for the electromagnetic transi-
tions to the isobars.

V. SUMMARY AND CONCLUSION

In this contribution we have calculated the photopro-
duction of delta and Roper resonances within the frame-
work of the cloudy bag model. Although much of our
calculation was already performed in Ref. 8, we have re-
peated this work because of some disagreement concern-
ing both the analytical expressions and the numerical
values given in that work. In addition we have com-
pared our results with the original pseudoscalar formula-
tion of the CBM (Ref. 11) and studied in greater detail
the small quadrupole transition of the delta. In our cal-
culations we have treated pion loops in first order, tak-
ing into account nucleons and deltas in the intermediate
states as in standard CBM calculations. Furthermore,
for a consistent study of quadrupole excitations, we add-
ed intermediate D states in such processes where they
can be regarded as admixtures to the initial- and final-
state nucleons or deltas. In the case of photoproduction
of the Roper we have also allowed this resonance as a
possible intermediate state. Higher excitations and also
contributions of the Dirac sea have been neglected. Ob-
viously this is also the origin of some problems which
remain in our results. We assume that the observed

difference between PS and PV models essentially origi-
nates from such a truncation of configuration space. In
some processes such as s-wave mN scattering' or
meson-exchange currents and pion photoproduction'
it can be shown that PV coupling converges faster than
PS coupling. ' However, there seems to be no general
rule to determine which one of the two models con-
verges faster to the exact value. In any case, a very use-
ful signature for such convergence can be obtained by
comparing both model calculations and, whenever the
results agree as for the charge quadrupole excitations of
the delta (C2), convergence can be assumed. On the oth-
er hand, the electric quadrupole (E2) has an opposite
signature, with values of opposite sign for PS and PV
coupling, such that both results should be discarded and
replaced by the more stable values obtained for the
Coulomb amplitude (C2). We conclude that both CQM
and CBM models predict E2/Ml ratios of the order of
R = —1.5% if the calculation is performed with the
charge quadrupole (C2) operator, in agreement with the
experimental data. In this sense both the hyperfine in-
teraction as residual interaction of gluon exchange and
the tensor correlations, due to pion exchange, lead to
similar quadrupole deformations and transition moments
of the bag.

The predictions for photoexcitation of the Roper reso-
nance are in qualitative agreement with the data for a
bag radius R =0.9 fm. For smaller radii the contribu-
tion of the pion cloud increases rapidly to values consid-
erably higher than the experimental ones. However, the
differences between the predictions of the two coupling
schemes indicate that the calculations should be repeat-
ed in a larger configuration space. Preliminary calcula-
tions have shown that these problems are even more pro-
nounced for the Coulomb monopole transition (CO} mea-
sured by electroproduction of the Roper resonance. It is
interesting to note that the analysis of both electropro-
duction and inclusive electron scattering seems to indi-
cate a strong longitudinal coupling in the region of the
Roper resonance. In view of the possible interpretation
of this effect as the breathing mode of the nucleon and
its relation to the compressibility of the bag, this obser-
vation deserves further experimental and theoretical
studies.
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