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Cosmological wave functions are found in a minisuperspace model (1) with “tunneling” and (2)
with Hartle-Hawking boundary conditions. The probability distributions for the initial states of
the Universe corresponding to the two wave functions are calculated and compared. It is shown
that the tunneling wave function predicts initial states that lead to inflation, while the Hartle-
Hawking wave function does not. Small perturbations about the minisuperspace model are con-
sidered and it is argued that both wave functions predict that the Universe nucleates with quan-

tum fields in de Sitter-invariant vacuum states.

I. INTRODUCTION

Two different approaches have been recently suggested
to the problem of determining the quantum state of the
Universe. The first approach! = is based on the picture
that the Universe spontaneously nucleates in a de Sitter
space and then evolves along the lines of an inflationary
scenario. The mathematical description of this cosmic
nucleation is closely analogous to that of quantum tun-
neling through a potential barrier, and it is often re-
ferred to as ‘“‘quantum tunneling from nothing” or
“creation of the Universe from nothing.” An alternative
approach to quantum cosmology is being developed by
Hawking and collaborators.®~!° Their proposal is that
the wave function of the Universe, 1, is given by a path
integral over compact Euclidean geometries. Both
schools of thought claim that their respective wave func-
tions ‘““predict” a period of inflation, but a direct com-
parison of the wave functions is obscured by the fact
that they are calculated for different models. For exam-
ple, Refs. 8—10 consider a universe filled with a scalar
field having a potential ¥ (¢)=1m?¢? while in Ref. 5
the potential is taken to be V(¢)=—1m?¢*+const
(m?>0).

In this paper I shall further discuss the tunneling ap-
proach and compare its cosmological predictions with
those of the Hartle-Hawking approach. The paper is or-
ganized as follows. The next section reviews the basic
formalism of quantum cosmology. The tunneling bound-
ary condition for the wave function of the Universe is
formulated in Sec. III. (This formulation is more de-
tailed than the one previously given in Ref. 5.) In Sec.
IV the tunneling wave function ¢¥; and the Hartle-
Hawking wave function ¢y are calculated in a minisu-
perspace model with 2 degrees of freedom: the scale fac-
tor and a scalar field ¢ with an arbitrary but slowly vary-
ing potential ¥ (¢). The cosmological predictions of the
two wave functions are discussed in Sec. V. Perturba-
tions around the minisuperspace model and the quantum
states of the gravitational and scalar fields are considered
in Sec. VI. The conclusions are summarized in Sec. VII.
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II. THE BASIC FORMALISM

We shall consider a model defined by the Lagrangian
L=I;"R+13,4)—-V(4), 2.1

where Ip =(167G)!/? is the Planck length, G is Newton’s
constant, i=c=1, R is the scalar curvature, and the
matter fields are represented by a single scalar field ¢.
The wave function for this model is defined on the space
of all three-metrics 4,;(x) and three-dimensional scalar
fields ¢(x):

Why(x),(x)) .

This wave function satisfies the equations (assuming that
the Universe is closed)!!

Hi(x)y=0, 2.2)
H%x)y=0, (2.3)
where
SO T
i— — __jhUp  — 4
H'=2iD;, 5h, ihY¢ ; 56 (2.4)

H= -1V +h'" [~ 13 PR+ 1h¢ ;¢ ,+V(4)]

=—I}(V-U), 2.5
2 6 & ) 1, 2, 1 8
=G.. g —I5%h -,
V=G Sh Shy VB, T 2T 5
(2.6)
h =det(h;;), Dj is a covariant derivative in the metric
h;;j(x), and

Gy =+h "X hyhjy+hyhy —hjhy) .

The coefficients y; in the second term of (2.6) depend on
the choice of factor ordering in the first term. The
correct choice is presently unknown and possibly does
not exist, since it is likely that a consistent quantum
theory based on Einstein’s gravity cannot be formulated.
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However, Egs. (2.2)-(2.6) can still be adequate for calcu-
lating the wave function ¢ in the semiclassical regime.
The factor-ordering ambiguity, as well as higher-order
corrections and renormalization issues, become impor-
tant only at or above the Planck curvature, R XI5 2. We
will see that in some models the Universe can be treated
semiclassically throughout its entire history.

Equations (2.2) and (2.4) imply that ¢ is independent
of the choice of coordinates on the three-space. This
fact is often expressed by saying that ¢ is defined on a
space of all three-geometries and matter-field
configurations (superspace) in which all sets of
{h;;(x),4(x)} that differ only by a coordinate transfor-
mation are identified.

Using the notation introduced in (2.5) and (2.6), we
can write the Wheeler-DeWitt equation (2.3) in a form
similar to the Klein-Gordon equation:

(V2—-U)=0. Q.7

Just as in the Klein-Gordon case, we can now construct
a conserved current:

J=é(¢*V¢~¢V¢*) : (2.8)

vV-J=0, (2.9

where the scalar product is in the metric defined by (2.6).
This current can be identified with the probability flux in
superspace,' "> but just as in the Klein-Gordon case one
has to bear in mind potential problems with negative
probabilities.

III. BOUNDARY CONDITIONS

In the quantum tunneling approach, the nucleation of
the Universe is a nonsingular event. Semiclassically, the
underbarrier propagation corresponds to evolution in
imaginary time, and so the tunneling is described by a
regular solution of the Euclidean field equations (an in-
stanton) which is matched to a Lorentzian solution at
the nucleation point. Even though the Universe begins
in a nonsingular way, it will develop singularities in the
future (e.g., black holes or big crunch). The boundary
condition for ¥ corresponding to this picture of a non-
singular beginning of the Universe was formulated in
Ref. 5. Here I shall give a somewhat more detailed for-
mulation.

At singular boundaries of superspace, ¥ includes only outgoing modes (carrying flux out of superspace).

Note that this boundary condition is formally similar to
the causal boundary condition for the Feynman propaga-
tor.

The definition of ingoing and outgoing modes is simi-
lar to that of positive- and negative-frequency modes,
with the direction toward the boundary playing the role
of “time” direction. It is not obvious that these modes

a) b)

FIG. 1. Singular three-geometries can be obtained by the
slicing of regular four-geometries. Here this is illustrated in a
two-dimensional analogy.

The boundary of superspace can be thought of as con-
sisting of singular configurations which have some points
or regions with infinite three-curvature or with infinite ¢
or (9;¢)% as well as configurations of infinite three-
volume. It is important to note, however, that singular
three-geometries do not necessarily represent singular
four-geometries. For example, if one slices a four-sphere
as shown in Fig. 1(a), one would get three-spheres of
vanishing radius and infinite curvature near the poles, al-
though the four-geometry is perfectly regular there.
More generally, if we write the three-metric as
h;;=Q%h;;, where h; has a unit determinant, then the
configurations with 1 —0 but 4;; and ¢ nonsingular do
not necessarily correspond to four-dimensional singulari-
ties. Another example of this sort is shown in Fig. 1(b)
where the three-space develops a singularity at point P.
Such configurations can be important in tunneling tran-
sitions with a topology change. It would be interesting
to classify all possible singularities that can arise due to
slicing of regular four-geometries. This will not be at-
tempted here; we shall simply assume that it can be
done. Then we can divide the boundary of superspace
into two parts. The first part includes three-geometries
which have only singularities which can be attributed to
slicing of regular four-geometries; we call this the non-
singular boundary of superspace. The second part in-
cludes the rest of the boundary and is called the singular
boundary of superspace. The ‘“tunneling” boundary
condition for ¥ can be now formulated as follows.

(3.1

f

can be unambiguously defined in the general case, but
such a definition is possible in the semiclassical regime.
The semiclassical wave function can be written as a su-
perposition

=3 Cneis" , (3.2)
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where S, are rapidly varying functions satisfying the
Hamilton-Jacobi equation in superspace'!

(VS,)?+U=0. (3.3)
The current J, for the nth term of (3.2) is
J,=—|C,|*VS, (3.4)

and the boundary condition (3.1) requires that the vec-
tors — VS, should point out of superspace at the boun-
daries. To put it differently we note that each function
S, defines a congruence of classical paths in superspace.
The boundary condition (3.1) states that these paths can
end at the singular boundary of superspace, but none of
the paths is allowed to begin there.

In addition to (3.1) we shall impose a regularity condi-
tion

(Y] <o . (3.5)

It is not clear whether it should be supplemented by
some sort of normalizability condition. (Even if ¥ is not
normalizable, it may still be possible to calculate some
conditional probabilities.”'?) It is also not clear whether
or not the wave function specified by conditions (3.1)
and (3.5) is unique.

The Hartle-Hawking proposal for i states that the
wave function for a certain three-dimensional
configuration is given by a path integral

Uy = [ [dg,,1[d¢]exp[ —Sk(g,,,d)]

which is taken over all compact Euclidean histories ter-
minating at this configuration.®” Compact four-
geometries can be thought of as interpolating between a
point (“nothing”) and a finite three-geometry. In this
sense the proposal (3.6) is similar to ‘“‘tunneling from
nothing.” An important difference between the two wave
functions is that i is real, and so the current (2.8) is
identically zero, while the tunneling wave function ¢t
specified by (3.1) is necessarily complex.

The gravitational part of the Euclidean action Sg is
unbounded from below, and the integral (3.6) is badly
divergent. It has been suggested that Sp can be made
positive definite by analytically continuing to complex
scale factors.!> This prescription works for pure gravity,
but not in the general case, and at present it is not clear
whether one can meaningfully define an integral such as
(3.6). In practice, all calculations of ¥ have been per-
formed not by evaluating the path integral, but by solv-
ing the Wheeler-DeWitt equation with a boundary con-
dition deduced from the formal expression (3.6). Such a
boundary condition has been specified in some simple
cases using the semiclassical approximation, but its gen-
eral formulation has not yet been given.

(3.6)

IV. MINISUPERSPACE WAVE FUNCTIONS

A. de Sitter space

To illustrate the difference between the wave functions
obtained in the two approaches, we first consider a sim-
ple minisuperspace model

S=[d*%vV g ;R —p,), (4.1)
where p, is a constant vacuum energy and the Universe
is assumed to be homogeneous, isotropic, and closed:

ds?=0c[N¥t)dt*—a*(1)d Q3] . 4.2)

Here, N(t) is an arbitrary lapse function, dQ} is the
metric on a unit three-sphere, and 0%*=2G /3~ is a nor-
malizing factor chosen for later convenience. This mod-
el has a single degree of freedom, the scale factor a, and

so Y=1(a). The classical solution of the model [for
N (t)=1] is the de Sitter space

a(t)=H ~'cosh(Ht) , 4.3)
where

H=%Gpl”?. (4.4)
The Wheeler-DeWitt equation for ¥(a) is

d d
- 9% ,p 9 —
a aaa 3a U(a) |¢y=0, 4.5)

where the parameter p represents the factor-ordering
ambiguity and

Ula)=a*(1—H%?) . (4.6)

Equation (4.5) has the form of a one-dimensional
Schrodinger equation for a “particle” described by a
coordinate a (t), having zero energy and moving in a po-
tential U(a). The classically allowed region is U(a)<0

or a >H ™!, The WKB solutions of Eq. (4.5) in this re-
gion are (disregarding the preexponential factor)
D) — - e ' P
P (a)=exp | *i fH_]p(a )da' F - 4.7)
and the underbarrier (a < H ~!) solutions are
—1
¥2(a)=exp [i I jp(a’)|da’] , (4.8)

where p(a)=[—U(a)]"’%. Equation (4.7) with the upper
(lower) sign describes a contracting (expanding) universe.
Tunneling through the barrier corresponds to the choice
of the “outgoing” wave for a > H ~:

Yrla>H H=yV(a) .

Then the WKB connection formula gives the underbar-
rier wave function of the form

(4.9)

¥ria <H‘l)=w(f’(a)—é¢(_2’(a). (4.10)
Except in the immediate vicinity of a =H !, the second
term in (4.10) is negligible, and l,szv,b(f_)(a). The wave
function grows exponentially toward @ =0 [see Fig. 2(a)].
The “tunneling amplitude” is proportional to*?

1
Yr(H ™) /Yr(0)=exp [‘foH |p(a’)|da’]

_3
16G2p,

=exp (4.11)
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FIG. 2. (a) Tunneling and (b) Hartle-Hawking wave func-
tions for the one-dimensional minisuperspace model describing
a de Sitter space. The “potential” U(a) is shown by a solid
line and the wave functions by dashed lines.

The Hartle-Hawking proposal gives’?

Yyla <H H=¢'?(a) 4.12)
for the underbarrier wave function and
Yyla>H =y Da)+¢'"(a) (4.13)

in the classically allowed range. This wave function de-
scribes a contracting and reexpanding universe; under
the barrier y(a) is exponentially suppressed [see Fig.
2(b)].

B. Model with a scalar field

We now turn to a more realistic model defined by the
action

S=[d%V—g[l; R+103,67-V(], .14

where the scalar field ¢ is assumed to be homogeneous
and isotropic and the metric is restricted to the form
(4.2). It is convenient to introduce dimensionless quanti-
ties

¢=(41G /3)'\%¢, V=(4G/3)*V . (4.15)
Then the Wheeler-DeWitt equation takes the form
32 po 1 9
— ——— = =0, .16
3a "ada alagt [P [¥=0, @416
where
Ula,p)=a’*[1—a’V(¢)] . 4.17)

The minisuperspace of this model is a two-dimensional
manifold O<a <w, —ow<¢d<ow. Its nonsingular
boundary is the line a =0 with | ¢ | < «, while at singu-
lar boundaries at least one of the two variables is infinite.
Introducing a new variable @ =1na, we can represent the
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minisuperspace and its boundaries by a conformal dia-
gram (see Fig. 3). This diagram is the same as for Min-
kowski space with a playing the role of time and ¢ the
role of a spatial coordinate.” The nonsingular boundary
is represented by a single point i~ at past timelike
infinity.

In the WKB approximation we represent the wave
function in the form (3.2) and the Hamilton-Jacobi equa-
tion (3.3) takes the form

as, | [as, |’ o
3 aw | TV
For small values of @ (a— — « ), the potential U(a,d)

approaches zero, and ¢ is a superposition of terms of the
form

(4.18)

P =eklaTé (4.19)

Terms with k >0 describe universes collapsing to a

singularity. The corresponding classical solutions of
Einstein’s equations with a free massless scalar field are
ax(ty—1)'3, |¢|=LIn(ty—t),

with an arbitrary ¢,. The paths representing these solu-
tions on the conformal diagram cross the boundary at
the past null infinity, J~. Terms with k <0 describe
universes expanding out of singularity. The “tunneling”
boundary condition (3.1) requires that only the positive-
k modes should be present. At the nonsingular bound-
ary i~ the wave function approaches a constant (corre-
sponding to the k =0 mode):'*

Yla=0,¢)=const .

In this paper we shall be interested in the behavior of ¥
in the neighborhood of i ~. This region corresponds to
the very early stages in the evolution of the Universe
(nucleation and the beginning of inflation), and it is in
this region that quantum cosmological effects can be im-
portant.

Semiclassical solutions of Egs. (4.16) and (4.17) have
been studied in Ref. 5 for the case of a quadratic poten-

(4.20)

FIG. 3. The conformal diagram for the minisuperspace
model (4.16) is the same as for a two-dimensional Minkowski
space with a=Ina playing the role of time and ¢ the role of
spatial coordinate. Directed lines in the diagram represent
semiclassical histories of the Universe originating at the non-
singular boundary i ~ and collapsing to a singularity at J .
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tial V(¢). Here, we shall consider the general case, as-
suming that V(¢) is a slowly varying function of ¢:

|V-ldv/de | <«<1 . 4.21)

[This is a preliminary form of a constraint which will be
more rigorously formulated below; see Eq. (4.32).] We
shall assume also that ¥(¢) is small compared to the
Planck scale:

|V ] <<1.

When this condition is violated, the semiclassical ap-
proximation cannot be used and higher orders of quan-
tum gravity become important. Equations (4.20) and
(4.21) suggest that, for sufficiently small a, the wave
function ¥ is also a slowly varying function of ¢. Then
we can neglect derivatives with respect to ¢, and Eq.
(4.16) takes the form

(4.22)

2
L 122 U |u=

3a2 Td 2 (4.23)

Now ¢ is just a parameter, and the problem is essentially
identical to the one-dimensional minisuperspace model
studied in the previous subsection. The minisuperspace
(a,¢) can be divided into regions where U >0 and U <O0.
As long as Eq. (4.23) is accurate, this division coincides
with the division into a classically forbidden region,
where the behavior of i is exponential, and a classically
allowed region, where ¥ is oscillatory. The boundary be-
tween the two regions is U =0 or

a’=1/V(¢$) . (4.24)

To find the solutions of Eq. (4.23), we note that (i) the
factor-ordering parameter p does not affect semiclassical
probabilities and that (ii) w1th the choice of p=—1 Eq.
(4.23) can be solved exactly.>’ Introducing a new vari-
able

z=—2VN 7 (1—a?p) (4.25)
and setting p = — 1 we have
82
a—;+z Y=0.

The general solution of this equation is a linear combina-
tion of Airy functions Ai(—z) and Bi(—z) with
coefficients which are arbitrary functions of ¢. For the
convenience of the reader, I give the asymptotic forms'?
of the Airy functions at large values of z(z — + o0 ):

Ai(z)~

g/t
T

Bi(z)~%z‘“4e§ ,
m
(4.26)

. 1
Ai( — —_~— —1/4 _:
i(—z) ‘/72 sin

T
§+Zl ’

. 1
Bi( — ~— —1/4
i(—z) 1/7-,-2 cos

S+

INE

where {=223/%

The tunnelmg wave function ¢ is found from the re-
quirement that only an outgoing wave should be present
in the classically allowed region (i¢y~'d¢/da >0 for
a?>V~!). With the aid of Egs. (4.26) and the condition
(4.21) we find, up to a numerical coefficient,

b= Ai(—z)+1i Bi(—2z)
T™ Ai(—zy)+i Bi(—zy) ’

(4.27)

where z,=z(a =0)= —(2¥)~2/2. For negative values of
V(¢), z and z, are complex. The correct analytic con-
tinuation which matches Eq. (4.27) at V(¢)=+0 is ob-
tained by setting

Vig)=e ™| V()]

_zzeZﬂ-i/3|z | ,

___zo=e21ri/3 IZO I .

Using the relation’®

Ai(e?™32) +i Bi(e?™/32)=2e™3Ai(z) , (4.28)
we can write the wave function for V(¢) <0 as
bp= THL_IL) [V($)<0] . (4.29)

We note that in this range the wave function is real.

In the classically allowed range, a?V > 1, but not too
close to the barrier (4.24), z is large and positive, while
z, is large and negative [see Eq. (4.22)]. Then, using the
asymptotic forms (4.26) we can write

_1+i(@’v—1)y7
v

(@v>1).

¢T=ei”/4(an— 1 )—-1/4 exp

(4.30)

Similarly, in the classically forbidden range we find

(1—a?v )32 1

=(1— 2V —1/4
Yr=(1—a¥) exp 3V

(@?V<1). (431

Note that the last expression is not singular at ¥ =0 and
applies both for positive and negative values of V(¢).
Using Eqgs. (4.30) and (4.31), it is now easily verified that
omitting the ¢-derivative term in Eq. (4.16) is justified if

<«<max{|V|,1/a%} . (4.32)

av
do
This is the final form of the condition for V(¢), which
now replaces the preliminary form (4.21).

Let us now find the Hartle-Hawking wave function ¢
for our model. This wave function is specified by the re-
quirement that it should be an exponentially growing
function of a in the classically forbidden range. Together
with Eq. (4.20) this condition fixes ¥ up to a numerical
factor, and we find
Ai(—z)

¢H=m . (4.33)

Using the asymptotic forms (4.26) we obtain the WKB
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approximations for ¥y in the classically allowed range,

1 (@’ V-1 x

(g2 1) 1/4 1 lay =1)"" ™
Yy=2a“V—-1) exp | 37, | cos V% 2
(@*¥V>1), (4.34)

and in the classically forbidden range,

Yy=(1—a?V) Vexp %

1—(1—a?y)3/? ‘

@V <1). (4.395

It is interesting to note that i, given by Eq. (4.33)
can be obtained from ¥ of Eq. (4.27) by an analytic
continuation. This is easily seen from Eq. (4.28). If we
change a to e™%a and V(é) to e "V(4), then

z—e?™/3z, z0—e?™ /32, and ¢ goes into Py

Yy=vr(V—e '"V,a—e'™?a) . (4.36)

This raises an intriguing possibility that ¥, and ¥ may
be related by an analytic continuation even in the gen-
eral case. As a generalization of the transformation
(4.36) one can propose

hj—e'"h;, V(g)—e V(@) . (4.37)

ij>
It is easily verified that this transformation leaves the
Wheeler-DeWitt equation (2.7) invariant.

V. COSMOLOGICAL PREDICTIONS FROM ¢; AND ¢

Soon after the nucleation, the evolution of the
Universe as a whole becomes classical with a very high
accuracy, and the cosmological wave functions (4.30)
and (4.34) describe ensembles of classical universes. The
role of quantum cosmology is to determine the probabili-
ty distribution for the initial states of the Universe. In
our simple model the initial state is characterized by the
value of the scalar field ¢. [The initial value of a is
fpund from a’=1/ V(¢), and the initial values of ¢ and
¢ are both equal to zero.]

In the quantum tunneling approach, the probability
distribution for ¢ can be found using the conserved
current (2.8). In the minisuperspace model (4.16) the
current has two components:

j“=~§aﬂ(¢*aa¢-¢aa¢*), (5.1)

. i,

J¢=_Eap 2P* A, — Y %) , (5.2)
and the continuity equation takes the form

0, +34j%=0. (5.3)

With a proper normalization, the component j* can be
interpreted as the probability density for ¢ at a given
value of a. The relation

3, [ jdp=0

expresses the conservation of probability. The classical
paths represented by the wave function (4.30) include

(5.4)

only expanding universes,

a=V~12cosh(V'?t), ¢=const, (5.5)

and problems with negative probabilities do not arise.
(In other words, the scale factor a is a good time vari-
able for our model. See Ref. 5.)

The probability density p(a,$) is defined so that
pla,d)d ¢ is the probability for the scalar field to be be-
tween ¢ and ¢+d¢ when the scale factor is equal to a.
Substituting (4.30) in (5.1) with p = — 1, we obtain p(a,d)
corresponding to the tunneling wave function ¥,

2
V()

pr(a,¢)=Cyexp . (5.6)

Note that p; is independent of a. This is due to the fact
that ¢ is approximately constant on classical trajectories,
which is in turn due to the slow variation of V(¢).
Equation (5.6) applies only in the region where V(¢)> 0.
For V(¢) <O, ¢ is real and p;=0. The normalization
constant C; is found from

2
3V(d)

. (5.7)

Crl= d
f[V(¢)>0] ¢ exp

This integral converges if V(¢)<0 as ¢—>* o or if
V(¢)—0 faster than 2/31In|¢|. The integral is also
convergent if ¢ is a cyclic variable defined in a finite
range, 0 < ¢ <¢,, with points ¢=0 and ¢=¢, identified.
If none of these conditions is satisfied, then the distribu-
tion (5.6) is not normalizable. It is not clear how serious
a problem this is, since, as it was emphasized in Refs. 9
and 12, conditional probabilities can still be calculated,
even for non-normalizable distributions. An alternative
approach would be to require that the integral (5.7)

#| v b, ($) , ($)

2 A
¢ ¢,

AN

\

FIG. 4. Probability distributions pr(é) and py(¢) for the
field ¢ at nucleation obtained from tunneling and Hartle-
Hawking wave functions, respectively, for different types of the
scalar field potential V (¢).
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should converge and to consider this as a constraint on
particle-physics models.

The probability distributions p(¢) for different types
of the potential ¥V (¢) are illustrated in Fig. 4. In the
first example V(¢)— « and pr(¢)—const as | ¢ | — oo.
The largest values of pr(¢) correspond to over-
Planckian values of the potential, ¥V(¢)>1. Although
our semiclassical approach should not be trusted in this
range, the behavior of p; for V(¢) <1 indicates that in
this type of model the Universe is most likely to nucleate
at V(¢)> 1. If the growth of the potential at large ¢ is
sufficiently slow, this initial state leads to ‘‘chaotic”
inflation.> In the second example the potential is un-
bounded from below. This is not a problem, as long as

J

Yy =(a?V—1)""*exp(1/3¥)exp

3V

The first term in (5.8) describes an ensemble of expand-
ing universes, while the second term describes a time-
reversed ensemble of contracting universes. Disregard-
ing the second term, we can now use (5.1) to find the
probability distribution

2
pula,$)=Cy exp (P)

] . (5.9)

The normalization condition for Cy is

—1__

CH——

d¢exp

2
W) ' . (5.10)

f [V($)>0]
This integral is divergent if V(¢)=0 for some value of ¢.
Since there should be a range of ¢ where V(¢)>0 (oth-
erwise, there is no classically allowed region), we con-
clude that the distribution (5.9) is normalizable only if (i)
¢ has a finite range and (ii) V(¢) is strictly positive. In
such a case the maximum nucleation probability would
correspond to the true minimum of the potential V(¢).
This initial condition does not lead to inflation.

The claim that the Hartle-Hawking wave function
predicts inflation is based on the models with ¥(¢) un-
bounded from above, as in the first example in Fig. 4. In
this example, the distribution py(¢) diverges at ¢=0,
where V(¢)=0, and approaches a constant at |¢ | — o}
it is obviously not normalizable. Small values of ¢ corre-
spond to large initial values of @ and small initial densi-
ties. Hawking and Page’ argue that values of ¢ for
which the initial density of the Universe is too small
(say, smaller than the present density) should be exclud-
ed and suggest that one should calculate conditional
probabilities with the condition that the density of the
Universe is in a given range (for an arbitrary a). If small
values of ¢ are cut off, then the ensemble described by
the distribution (5.9) is dominated by universes with ar-
bitrarily large values of ¢. Hawking and Page interpret
this fact as indicating that the initial state of the
Universe is, with probability equal to one, a state with
|¢| — o and a—0. The problem with this interpreta-
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the lifetime of the metastable state at ¢ =0 is greater
than the present age of the Universe. The largest nu-
cleation probability is at the highest maximum of V(¢).
This type of initial condition is required in the new
inflationary scenario. A similar probability distribution
is obtained if V(¢)—0 at large |¢| (example 3 in Fig.
4). If max[V(d)] << 1, then the initial density of the
Universe is much smaller than Planckian, and the
Universe can be treated semiclassically throughout its
entire history.

In the Hartle-Hawking approach the wave function
Yy is real and the current (5.1) is identically zero. To
determine the probability distribution for ¢, we rewrite
Eq. (4.34) as

5.8
n (5.8)

r
tion is that, in order to outweigh the exponentially large
values of py(¢) at small ¢, one has to go to extremely
large values of ¢, for which the potential V(¢) will far
exceed the Planck energy density [except, perhaps, for a
very special shape of V(¢#)]. The semiclassical approxi-
mation, on which the derivation of Eq. (5.9) was based,
cannot be trusted in this regime. If the distribution (5.9)
is cut off at ¥(¢)~1, then it would predict nucleation at
very small ¢ with a probability close to one. The
Hartle-Hawking probability distribution for the poten-
tials of examples 2 and 3 is even more pathological. My
conclusion is that at this stage inflation cannot be
claimed as one of the predictions of the Hartle-Hawking
approach.

Of course, quantum cosmology can only give a proba-
bility distribution for the initial states of the Universe.
Unfortunately, we have a single copy of the Universe,
and our best guess seems to be that it is a “typical”
universe which has started somewhere near the max-
imum of the probability distribution. It may happen
that the most probable initial conditions result in a
universe which is not suitable for life. Then we will have
to invoke the anthropic principle and look for the most
probable initial configuration consistent with the ex-
istence of intelligent life. It may be argued that inflation
is necessary to provide certain amount of homogeneity
and isotropy needed for our existence. This argument,
however, does not ‘“save” the Hartle-Hawking wave
function, since it would predict minimal inflation in
which homogeneity and isotropy extend to scales much
smaller than the present horizon and the expected quad-
rupole anisotropy is 87 /T ~ 1.

VI. PERTURBATIVE SUPERSPACE

In this section we shall consider linear perturbations
about our minisuperspace model. The theory of such
perturbations is equivalent to quantum field theory in de
Sitter space, and the boundary conditions for the cosmo-
logical wave function should specify the quantum states
of the gravitational and scalar fields.
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In the Hartle-Hawking approach this problem was
studied by Halliwell and Hawking'® and then by Wada'®
and others'”'® (see also an earlier treatment in Ref. 19).
They concluded that the initial state of the quantum
fields is the de Sitter-invariant vacuum. Here we shall
discuss the quantum tunneling approach, with a similar
conclusion.

We shall assume that the scalar field potential is
bounded from above. Then our minisuperspace analysis
suggests that the tunneling wave function ¢ is peaked
near the maximum of V(¢). In the vicinity of the max-
imum (which we take to be at ¢ =0)

V(¢)=H*—p*$*+0(¢%) .

We shall assume that u <<H, so that the maximum is
sufficiently flat for inflation. Small perturbations of the
scalar field around ¢=0 can be expanded in spherical
harmonics:

(6.1)

d(x)=(2m*)!/? S, Foim (DQR (x7), (6.2)
nlm

where n=123,...; [=01,...,n—1;, m=-—I

—I+1,...,l, and the factor (2#%)'/? is introduced for

the proper normalization of Q,,. Hereafter, the labels
{n,l,m} will be denoted simply by n. With an appropri-
ate choice of gauge, gravitational perturbations are for-
mally equivalent to a pair of minimally coupled massless
scalar fields,?° and so it is sufficient to consider the scalar
field only.

With all modes of the scalar field included, the wave
function ¥ becomes a function of an infinite number of
variables, v¥(a,f,f,,...), and the Wheeler-DeWitt
equation takes the form

* pad _a¥1_H%?
a 2+paa —a*(1—H*a®)
aZ
-3 ———afz—(nz_1)a4f3+u2aﬁf3 ¥=0. (6.3

This equation can be analyzed using the method first in-
troduced by Banks, Bender, and Wu.?! Here, I follow
the treatment of Wada.!¢

Representing the wave function as

p=e (6.4)
with
(@,{f,})=Sol@)+1 3 S, (a)f}+O(f}), (6.5)
we shall treat the scale factor a as a semiclassical vari-
able and neglect terms higher than quadratic in f,. This
leads to the following equations for S and S, :
St +a(1—H%?*»=0, (6.6)
a’syS, —S}—(n?—1)a*+p%ab=0, (6.7)

where primes stand for derivatives with respect to a.
Equation (6.6) is the semiclassical version of the one-
dimensional minisuperspace model describing de Sitter
space (see Sec. IV). In the classically allowed range,

a>H™!
1
Sola)=—
0 3H?

, its solution is

a’—1)?, (6.8)

where the choice of sign corresponds to an expanding
universe (outgoing wave).

Since pu << H and the characterlstlc scale of the tunnel-
ing problem is a ~H ~!, the u’a term in Eq. (6.7) can
be neglected compared to the (n2—1)a* term. The only
exception is the homogeneous mode with n=1. The
wave function for the homogeneous mode f, has been
studied in the two-dimensional minisuperspace model of
Sec. IV and in Ref. 5. We can find S,(a) by substituting
V(¢)=H?—p*f? in the exponent of Eq. (4.30) and then
expanding it in powers of f3. This gives

Si@= 2 g
3H 3H
Because of the first term in this equation, the wave func-
tion v is an exponentially decreasing function of f;. It
is localized near f,=0 within a tube of width
Af;~H?/u. In the rest of this section we concentrate
on inhomogeneous modes with n > 1 and neglect the last
term in Eq. (6.7).
At this point it is convenient to introduce a time vari-
able ¢ through the relation

DVY2H%*+2). (6.9

where d@ =da /dt and N (a) is the lapse function [see Eq.
(4.2)]. Following Wada, we choose N (a)=a, which cor-
responds to “conformal time”; then

=(H cost)!. (6.10)

We shall use ¢ instead of @ as an independent variable.
Equation (6.7) is a Riccatti equation, it can be linear-

ized by a substitution
S, ()=a%, /v, , (6.11)

where a is from Eq. (6.10).
v, (1) is

The resulting equation for

v, +2(a/aw, +(n*—1)v,=0. (6.12)

It coincides with the equation for scalar mode functions
in de Sitter space (6.10). Hence, v,(t) play the role of
mode functions for the scalar field 4. The general solu-
tion of Eq. (6.12) is

v, (t)=vD(—i tant)+B,v'?(—i tant) , (6.13)
where

V) =y =D D2y + 1)~ +D2(14y/n), (6.14a)

V() =(y+1)" D72y 1)~ "+D2(1_y/n) . (6.14b)

The overall normalization of v,(¢) is unimportant, since
it cancels out in Eq. (6.11). The quantum state of the
field ¢ is determined by the choice of the coefficients B,,.

In the classically forbidden range, @ < H ~!, the unper-
turbed wave function is a superposition of two terms
with



896 ALEXANDER VILENKIN 37

s0<a)=¢§(1—y2a2)3/2 (6.15)
[see Eq. (4.10)]. The corresponding mode functions can
be obtained by changing ¢t — it in Eqgs. (6.13) and (6.14).
The three branches of the wave function corresponding
to growing exponential (i), decreasing exponential
(Y1), and outgoing wave () are illustrated in Fig. 5.
¢y and Yy have comparable magnitude near the nu-
cleation point (a =H ~'), but ¢;; dominates in most of
the forbidden region.
The coefficients B, in Eq. (6.13) should be chosen s

that

ImS, (a)>0 (6.16)

for all values of a. Otherwise, ¥ would grow exponen-
tially as a function of f, and the finiteness condition
(3.5) would be violated. (This argument is not quite
rigorous, since our approximations break down at large
f., but this seems the best one can do in perturbative su-
perspace approach.) Using the explicit forms of the
mode functions (6.14) it is easily shown'® that for ¥; and
Yy the condition (6.16) is satisfied if | B, | < 1, while for
1; the only possible choice is B, =0.

To find the relation between the values of B, in
different branches of the wave function, one has to ana-
lyze the neighborhood of the nucleation point, a =H ~!,
where the semiclassical approximation breaks down.
This problem, which requires a rather intricate analysis,
should be addressed in both quantum tunneling and
Hartle-Hawking approaches. Here we shall assume that
the three branches of the wave function are analytic con-
tinuation of one another, so that B, have the same
values on vy, ¥y, and ¥y;. [A similar assumption is also
made (implicitly) in Refs. 10, 17, and 18.] Then B, =0
in all three branches.

For gravitons, the choice of mode functions (6.14a)
corresponds to a de Sitter-invariant vacuum state.?? A
scalar field with a potential (6.1) is unstable (the expecta-
tion value of ¢ grows with time), and does not have de
Sitter-invariant states. The same is true for a minimally
coupled massless scalar fields (in which case the expecta-
tion value of ¢> grows with time?’). A massive scalar
field does have a de Sitter-invariant state, and the corre-
sponding mode functions go over into the functions
(6.14a) in the zero-mass limit. In this sense the quantum
state predicted by quantum cosmological models is as

- w
\\n
AY
\
\ U
Ay
\\
. ¥,
S m —>
v - NN A
1L_-- A A
== AN TP N
AN
H \ [T
’ \ Vo

FIG. 5. Three branches of the tunneling wave function.

close as one can get to a de Sitter-invariant vacuum.
The state predicted in the quantum tunneling approach
is the same as that deduced from the Hartle-Hawking
approach.?* They only differ in the behavior of the
homogeneous mode.

VII. CONCLUSIONS

In this paper we have compared the cosmological im-
plications of the “‘tunneling” and Hartle-Hawking wave
functions of the Universe (denoted by ¥ and ¢y, re-
spectively). The results of this comparison are summa-
rized in Fig. 4 which shows the probability distributions
for the scalar field ¢ obtained from ¥, and ¥y for
different types of the scalar potential ¥V (#). In the tun-
neling approach, the most probable initial states have
the highest values of V' (¢), while in the Hartle-Hawking
approach the highest probability is near V(¢)=0.
Hence, Y, naturally predicts initial states leading to
inflation, while ¥, does not. (The claim that ¥, pre-
dicts inflation made in Refs. 9 and 10 is not justified,
since it is based on the behavior of the wave function at
densities much greater than Planckian, where Einstein’s
gravity and the minisuperspace approximation cannot be
trusted.) Despite this difference, both wave functions
predict that the Universe nucleates with quantum fields
in the de Sitter-invariant vacuum state (pending the
proof of the assumption concerning the continuation of
mode functions through the nucleation point, see Sec.
VI). Finally, we have found, in a minisuperspace model,
that the two wave functions can be obtained from one
another by an analytic continuation (4.36). It would be
interesting to know whether or not this relation holds in
the general case.

I would like to conclude with a remark about the be-
ginning and the end of the Universe. It is often said that
a closed universe necessarily recollapses. If this were
true, then all the inflating universes described by the
wave functions ¥ and ¥ would thermalize and reach a
big crunch in a finite time. However, this conclusion is
drastically changed if quantum fluctuations of the scalar
field responsible for inflation are taken into account. It
has been shown?>?% that, once inflation has started, it
never ends completely. The total volume of inflating re-
gions grows exponentially with time, and they form a
self-similar fractal of dimension slightly less that 3.
Hence, the Universe has no end. On the other hand, it
appears that the Universe must have a beginning. The
reason is that the full de Sitter spacetime (4.3), from
which the inflating fractal is carved, corresponds to a
bouncing universe and inflation is possible only in the
expanding phase.?’” Thus, we are led to the conclusion
that the Universe had a beginning, but it will have no
end. We live in a region which thermalized about 10"
yr ago, but the Universe itself is probably much older
than that.

Note added in proof. The assumption concerning the
continuation of mode functions through the nucleation
point, which is stated in Sec. VI, has now been proved
[T. Vachaspati and A. Vilenkin, Phys. Rev. D 37, 898
(1988)].
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