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The set of coupled field equations for the standard model of a bosonic superconducting cosmic
string is solved numerically. Only a straight, infinitely long string is considered. The regular solu-
tions exist for a limited range of the constants in the potential. We compute the solutions of the
field equations, the linear energy density, maximal current, and the deficit angle for several
different choices of the constants. The maximal current occurs when the total energy is smaller
than the energy of the string in the nonsuperconducting phase. We argue that the transition from
the superconducting phase to the ordinary one is smooth.

I. INTRODUCTION

Recently there has been a major escalation of interest
in superconducting cosmic strings,! even though they
have nothing to do with ceramics and are not easy to
manufacture. This popularity is not surprising because
the ability of strings to conduct enormous currents, up
to 10?! A, leads to many exotic phenomena.?~* In the
paper that started the industry of superconducting
strings Witten! showed that they can exist in two forms:
with bosonic or fermionic charge carriers. This paper
deals with bosonic strings exclusively.

The standard example of the theory describing boson-
ic strings is a gauge theory of two scalar fields ¢ and o,
with a gauge group U(1)xU(1). The field ¢ is coupled
to the gauge field R, which corresponds to the U(1)
group. These two fields give rise to strings. The field o
is coupled to the gauge field A4,, which is identified with
the electromagnetic potential. The Lagrangian of the
model is

=—1F,F®_1B,B"_1(D,0)*D

— LD, $)*Dp—V(d,0), (1.1)
where Fab =aa Ab —ab Aa, Bab =aaRb _abRa, Daa “—*(Va
+ieA,)o, and D,¢=(V,+igR, ). The potential of the
scalar fields is

V(g,0)=1h4(|¢|*—n*+ 1A, |0 |*

+%f|¢lz|a|2—%m2|0|z. (1.2)
If the constants in the potential are chosen appropriate-
ly, then the symmetry U(1) is broken and the fields ¢
and R, form a vortex. Outside the vortex, where
| ¢ | =7, the expectation value of the field o vanishes
and the gauge symmetry of electromagnetism survives.
However, inside the vortex the field ¢ vanishes and the
potential develops a minimum at 00. This breaks the
gauge symmetry of electrodynamics and the resulting
charged Goldstone boson as the charge carrier.

In his paper, Witten gives an elegant argument show-
ing that indeed the solution o =0 is unstable at the
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string core, but he does not discuss the internal structure
of the string. Lately, because general interest has been
focused mainly on the astrophysical applications of
strings, people usually have been approximating the
string by an infinitely thin Nambu string and neglecting
its internal details.>~> Recently, Hill, Hodges, and
Turner® discussed the internal structure of a bosonic su-
perconducting string using a variational approach with a
specific ansatz characterized by a few parameters. This
method works very well for ordinary cosmic strings
where we have a good idea how the fields behave. How-
ever, this procedure assumes that the solution for o ex-
ists and is well approximated by the ansatz; without
knowing anything about the behavior of the solutions it
is risky to use such an approach. In particular, the
question of existence and regularity of the solutions can-
not be addressed in this way at all.

Here we report the results of a direct numerical study
of the quantum fields and geometry of a straight infinite
bosonic string. In Sec. II we derive the set of coupled
field equations for all the fields present in the Lagrang-
ian, calculate the stress-energy tensor, and write down
the Einstein equation. In Sec. III we solve the field
equations in flat spacetime. Instead of wusing a
parametrized variational method we directly integrate all
field equations. Our results are similar to the results of
Hill, Hodges, and Turner.® The regular solutions exist
for a rather limited range of the constants in the poten-
tial, particularly if their values are ‘“‘natural.” In this
section we also calculate the electromagnetic energy and
the maximal current. Surprisingly, the maximal current
occurs when the total energy is significantly smaller than
the energy of the solution with 0 =0. In fact, when
“binding energy” E;(0=0)—E;(o) vanishes the
current goes to zero as well (for simplicity we frequently
refer to the linear energy density by energy). Finally, in
Sec. IV the whole problem is considered again, but now
we solve the full set of coupled Einstein and field equa-
tions. The metric and the bending angle are calculated
for several choices of the constants in the potential and
different values of the electric current in the string. The
gravitational effects are rather small. For a large current
the metric approaches the Kasner solution far away
from the string.
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II. FIELD EQUATIONS

In order to derive the field equations, it is convenient
to rewrite the Lagrangian (1.1) in terms of real fields.
To this end we replace ¢—dpe’® and o —oe'®. The La-
grangian becomes

L=—1F,F®*—1B,B" 1V, V%
—1V.6V—14*(V, 6 +gR, )

—10%V, 8 +ed,)?—V(d,0)
and one easily gets
V, V% —0(V,8+ed,)—a(A,02+f$*—m?)=0,

Vo Vb —$(V,E+8R, P — [ 1Ay (¢ —nP) + fo]=0,
(2.2)
VoV, 0+ed,)]=0, V[$AV,E+gR,)]=0,

V°F,, =ecX(V,3+ed,), V°B,,=gdXV,E+gR,).

The spacetime around an infinite straight string can be
described by the metric

ds’=—e*4dt* +e*Pdz? 1 2d 0 +dr? , (2.3)
where A4, B, and C are functions which depend on r
only.

For a vortex with a winding number n =1 we take
§=6 and for the field R, we use the ansatz
gR,=[P(r)—1]V,6. In order to have finite energy, the
function P(r) must vanish at large radius and |¢ | =1,
while the regularity condition at small r demands that
P(0)=1 and | #(0)| =0. The phase ¢ of the scalar field
o should have a trivial dependence on 6 or else we
would have a singularity at the origin. In fact, it is pos-
sible (at least for an infinite straight string) to choose a
gauge in which ¢=0; in this gauge it is the vector poten-
tial 4, that describes the effects of any current present
in the string. The electromagnetic potential can be writ-
ten as ed, =I1(r)V,z, and for a large r the function I(r)
« I;In(r), where I is the total current in the string.
The nontrivial field equations are

¢"+(A'+B'+C")¢' =@[P?e ~C+ LAy ($*—n2)+ fo?],

0"(A'+B'+C')o'=0(I% B4 A 0’ —m2+f¢?),
2.4)
P'+(A'+B'—C')P'=g%*P ,

I"+(A'—B'+C)I'=e%"I ,
where a prime denotes the derivative with respect to r.
The energy-momentum tensor is diagonal and can be

written in terms of the energy density p and three pres-
sures:

p=1[(cT*+I'*/e?)e 2B 4 (¢*P? 4+ P /g2)e ~ €
+¢2+02+2V(d,0)],
pz=%[(0212+I’2/e2)e‘28—(¢2P2+P’2/g2)e -2C
—¢?—0"?-2V(¢,0)],
(2.5)
pez_;_[_(0212+112/92)e _2B+(¢2P2+P'2/g2)e -2C
—¢?—0"?—-2V(4,0)],
P,=%[( _0212+I:2/e2)e—28+(_¢2P2+P12/g2)e—2c
+¢" +0"? =2V (d,0)] .

The Einstein equation takes the form
A"+(A'+B'+C')A'=47G(p+p,+py+p,) »

—B"—(A'+B'+C")B'=41G(p+p,—py—p,) ,
—C"—(A'+B'+C")C'=47G(p—p,+po—p,) -

(2.6)

Equations (2.4) and (2.6) form a complete set of equa-
tions needed to calculate the internal structure of the su-
perconducting string and to find the geometry of the
spacetime around such a string. However, this set of
equations is too complicated to be attacked analytically
and one is forced to use numerical methods. In order to
separate gravitational effects we solve the problem first
in flat spacetime. Next, we shall consider the influence
of gravity on the quantum fields.

III. STRING IN FLAT SPACETIME

In flat spacetime the fields equations can be
significantly simplified. It is convenient to introduce di-
mensionless variables. The natural unit of length is the
radius_ of the string 8=1/V'A,m, so we write
x=1 M’?"- From now on, primes denote derivatives
with respect to x. It is also natural to rescale the fields:
o=Y7, ¢=X7, and I=Q7. Then the field equations
become

2 -—
X”+%X'=X iJ7+%(X2—1)+fY2 ,
X

1

Y+ Y =Y(Q +AY—m *+X7), (3.1)

P -LP'=gX'P, Q"+ 10’21,

where X:)La/k¢, F=r7/h,, §2=g2/7\¢, €2=e2/7\,¢, and
ml=m2/( }»wz). The “natural” range for these param-
eters is around unity, so that all constants in the poten-
tial are of the same magnitude, but they have to satisfy
certain constraints"® in order to preserve the gauge sym-
metry of electromagnetism far away from the string.
The first condition f > 7 2 follows from the demand that
the field o vanishes far away from the string and cannot
be relaxed. The second condition A >2 * should be
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satisfied or else the solution with broken gauge symme-
try of electromagnetism would be energetically favor-
able. This condition does not preclude the existence of
solutions with o (e )=0 when A <27 *, but such solu-
tions are probably unstable.

The problem at hand differs from the standard cosmic
string case by the presence of the two additional fields:
the scalar field Y and electromagnetic potential 0. How-
ever, from the numerical point of view the crucial equa-
tion is the one for Y, for the reason that will be presently
explained. For the moment let us concentrate on this
equation.

We need a solution for the Y field that is sufficiently
regular inside the string and that vanishes at infinity in
order to preserve the gauge symmetry of electrodynam-
ics. By “sufficiently regular’” we mean that the linear en-
ergy density of the given field configuration must be
finite. This is a weaker condition than the requirement
that the field itself be regular everywhere. However, the
difference is not very significant since even a mild loga-
rithmic singularity at x =0 leads to an infinite linear en-
ergy density.

First we look for the solution with a vanishing elec-
tromagnetic current, so we can set Q =0. Assuming
that the field X does not change significantly from its
form for the ordinary cosmic string we can approximate
X by tanh(x /2). With these simplifications the equation
for Y decouples from the other equations and becomes

Y 14y
dx?  x dx

=Y[AY?+f tanh*(x /2)—7 %] . (3.2)

Let us make a few remarks about this equation. First, if
Y goes to zero for large x, then equation (3.2) reduces to
the modified Bessel equation, and the desired solution is
Y «Ko((f—m)""*x). This function has to be matched
with a regular solution at small x. Now, if we assume
that there is a regular solution with a nonvanishing first
derivative at x =0, then the singular term in the
differential equation must be canceled by the second
derivative, but this is only possible if Y —In(x) or
if Y——»l/\/Xx, which are not regular, contrary to the
assumption. So at x =0 the first derivative must van-
ish. Consequently, near the origin, Y has the form Y
=Y(0) Ql—ax?+ ).

Second, despite the fact that (3.2) is an ordinary
differential equation of second degree, it is not a trivial
task to integrate it numerically. The first thing to check
is that if one integrates equation (3.2) from a very small
value of x with regular initial conditions, then invariably
the solution blows up at large x, because of the presence
of the growing mode I, which overwhelms the desirable
mode K. Exactly for the same reason it is not safe to
integrate with some initial conditions specified at large x;
such a method does not give correct results even for the
field ¢. The way to proceed is to solve Eq. (3.2) as a
boundary-value problem, that is, with the values of Y (or
Y’) specified at two points: at large x and at x =0.
However, even this method is not good enough because
any inaccuracy in the boundary condition at large x
leads to a spurious singularity at x =0. Therefore one is

forced to impose boundary conditions on Y (0) and
Y’(0) and of course on Y(x ). This means that three
conditions have to be imposed on the solution of the
equation of second degree. This is only possible—if at
all—for a very special choice of the constants in the
equation. To find such constants one can make m 2a
new variable satisfying the equation d */dx =0 and
solve the two equations together without imposing any
conditions on the 7 2. Then one deals with two coupled
equations of second and first degree and one can impose
three boundary conditions.” In other words, instead of
searching for the correct boundary conditions which

correspond to a given set of constants f and 7 %, we

choose the boundary conditions and the constant f and
we look for the correct constant 7 2. Of course, there is
no guarantee that such a constant can be found for any
set of boundary conditions. Searching the suitable range
of boundary conditions we can find all 7 2 for which the
superconducting solution exists. This boundary-value
—eigenvalue method works well even when the remain-
ing fields are unfrozen and the set of equations (3.1) is
solved simultaneously. The boundary-value method
should be used also for the fields X and P. However, for
the electromagnetic field Q it is advantageous to use the
initial-value method since we can easily obtain analyti-
cally the initial conditions for Q at x =0 and we expect
Q to grow first quadratically and then logarithmically.
This method allows one to avoid the question of the con-
sistency of the conditions imposed at x =0 and at
infinity. In practice we solve Eq. (3.1) separately for X
and P,Y and Q and iterate until the change between sub-
sequent solutions is very small. The relative accuracy of
10~* can be reached without any problems for almost
any choice of the constants and boundary conditions.

The first question to ask is what is the range of param-
eters in the potential for which the solutions exist. The
solution should be rather sensitive to the choice of con-
stants 7 and f. The coupling constant g is also impor-
tant since it determines the radius of the vortex. On the
other hand, we do not expect the solution to be very sen-
sitive to the choice of the constant A: if one rescales Y
by V'R this constant disappears from the equation for Y
and remains only as a factor dividing the interaction
term in the equation for X. We set the inner boundary
condition at x =0 and numerical infinity to be at
x  =~20; this is quite sufficient, since Y should decrease
exponentially outside the string. For each value of the
constant f we solve the field equations several times with
a different choice of Y(0). In this way we find a range of
7 2 acceptable for this particular value of f: m? has to
satisfy two constraints 7 2< f and 27 * <A (the second
condition can be relaxed), and the total energy of the
solution must be smaller than the energy of the solution
with Y =0 (“pure” string), so that the superconducting
phase is energetically favorable.

First we study the dependence of 7 2 and of the total
energy E; on Y(0) for fixed values of £, g, and A. The
results are shown in Figs. 1 and 2 for (gF2f,A)
=(1,0.85,1) and (1,0.4,1). We start with a very small
value of Y(0). In this region the energy Ey of the scalar
field Y [including the interaction term f(XY)*] is posi-
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tive, but the total energy E is smaller than the energy
of the “pure” string. However, the difference is very
small and almost any current would destroy this
configuration. As Y (0) increases the 7 ? increases also
and Ey becomes negative. The total energy E; becomes
appreciably smaller than the energy of the solution
Y =0; this means that in this region of parameter space
superconducting solutions exist. As Y (0) increases fur-
ther 7 % grows until it reaches a maximum. It can hap-
pen that before the maximum is reached the constraint
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FIG. 2. The total energy E; as a function of Y(0) for
®@2%A)=(1,1) and (a) f=0.4 and (b) £=0.85. In the case (a)
the curve ends because of the constraint. f > 2. The vertical
line marks the constraint A > 27 *.

ml< f is violated, in which case the line 7 2= on the
plane (7 2, f) is the boundary of the region in parameter
space in which superconducting solutions exist. This is
the case for f=0.4. For f=0.85 the maximum of m 2
can be reached. The total energy E; has a minimum ex-
actly when 7 % has a maximum. When Y(0) increases
further 7 % starts to decrease. The energy E, is still
negative and its magnitude grows quickly, but this effect
is offset by even faster growth of the energy of the string,
so the total energy increases. This means that for many
values of the parameter 7 2 there are two solutions with
different values of Y (0). One should note that before
the maximum is reached the condition A > 2 * is violat-
ed so all solutions in this region are unstable against the
transition to the phase with the gauge symmetry of elec-
trodynamics broken far away from the string. Since
such a transition involves the change of the field in the
whole space, it is plausible that such solutions are at
least metastable. However, since the total energy of the
solutions with a larger value of Y (0) is larger than the
total energy of the solutions with a smaller Y (0), these
solutions are unstable against the decay into the state
with smaller Y(0). The energy difference, of the order
1032 erg/m, is released when an unstable solution decays.
We have failed to find solutions for even larger Y (0).
This can mean either that our code cannot handle this
problem or that solutions with large initial value of Y do
not exist. The behavior of # 2 as a function of Y(0) is
very similar for other values of the constants f, g, and A.
For example, the ©plots of the difference
i 2 Y)—m %(0.002) for f=1.6 and f=0.85 almost ex-
actly coincide if other constants are kept fixed.

Now we vary the constants f, g, and A in order to
find the region in parameter space corresponding to the
superconducting phase. Needless to say, this search is
very tedious even if one uses a Cray as we did. In the
Figs. 3-5 we show the cross sections (7 2,f) of the
whole parameter space for three values of g and two
values of . The upper edge is determined by the re-
quirement that the energy of the Y field Ey <0. The
lower edge is determined either by the constraint 7 > < f
or by the maximum possible 7 2. The vertical lines
mark the constraint A >27 *. The upper edge can be
approximated analytically by the formula f=am 2,
with the parameters a and [ given in Table I. The posi-
tion of the upper edge agrees reasonably well with the
results of the Hill, Hodges, and Turner. The rapid
growth of the energy of the string after 7 “ reaches a
maximum is caused by the strong interaction with the
scalar field Y. This is so because when Y becomes large
the potential for the X field is significantly changed at
the core of the string.

Next we consider a string with a current. The princi-
pal question is what is the maximal value of the current
allowed for a given set of parameters in the supercon-
ducting region? A priori one expects that as the current
grows the energy of the string increases. When the total
energy of the string with Y40 and a large current is
larger than the energy of the “pure” string with Y =0
then superconductivity is no longer energetically favor-
able. The real story is, however, a little bit different. In

2
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FIG. 3. The cross section (77 2,f) of parameter space for
Z2=0.1 and A=1 and 2. Superconducting solutions exist for
parameters inside the large triangle for A=2 and small one for
A=1. The vertical lines mark the constraint A > 27 *.

Fig. 6 we show the total energy of the string as a func-
tion of a current for (f,7 %,X,g 2=(0.65,0.6,1,1). One
can see that the maximal current

0.499 X (Egyr /V 4410"° GeV)10*' A

corresponds to the energy roughly halfway between the
minimum of the total energy E; (Y0, Q =0) and
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FIG. 4. The cross section (# %,f ) of parameter space for
g2=1and A=1 and 2. Superconducting solutions exist for pa-
rameters inside the large triangle for A=2 and small one for
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FIG. 5. The cross section (i 2, f) of parameter space for
22=10 and A=1 and 2. Superconducting solutions exist for
parameters inside the large triangle for A=2 and small one for
X=1. The vertical lines mark the constraint A > 277 *.

E; (Y =0) (we used A,=0.1). This can be partially ex-
plained in the following way. The asymptotic form of Q
as x—0 is Q=Qly(€Yyx), so the derivative Q'
=Qo€YyI,(eYyx), where I, and I, are modified Bessel
functions. To increase the current in the string one
monotonically increases Q,. However, as Q, increases
the initial value of Y must be lowered in order to keep
m ? fixed. If the change is small the product Q,Y, in-
creases and the current grows. When Q, is larger than a
certain critical value Q its further growth induces such
a change in Y, that the value of Q.Y decreases and the
derivative of Q at x =0 becomes smaller than before.
Consequently, the current goes down. The important
point is that as Y, becomes small the energy | Ey | de-
creases very rapidly and therefore the “binding energy”
E; (Y =0)—E;(Y)—0. Table II contains values of the
maximal current for combinations of all parameters cor-
responding roughly to the centers of “good” regions and
for points on the boundary A=27 * in Figs. 3—5. The
only problem with this argument is that the magnetic
energy of the infinite straight string with a current is

TABLE I. Parameters for the analytic fits to the upper
edges of the regions on the plane (7 2, f) inside which the su-
perconducting solutions exist.

g? x a B

0.1 1 1.81 1.44
0.1 2 1.87 1.51
1 1 1.39 1.27
1 2 1.45 1.33
10 1 1.14 1.14
10 2 1.17 1.18




882 PIOTR AMSTERDAMSKI AND PABLO LAGUNA-CASTILLO 37

3.140

3.135

3.130

3.125

3.120

3.115

3.110

3.105

LR B B B B S S S B N B L AN B

3.100

.01

Current

FIG. 6. The dependence of total energy Er on the current
in the string for @2A,f,m 3)=(1,1,0.650.6). The unit of
current is 2.85 X (Egyr/V A410"° GeV)10*! A.

logarithmically divergent. To correct this one should
add 0.872XIn(X,,,/20) to the total energy computed
numerically, where I is the total current and X _,, is a
cutoff which should be of the order of the radius of a
string loop. Since the maximum current is I =~0.1, this
addition is small and does not change the results.

The interesting question is what happens if one tries
to generate an even larger current by, for example, drag-
ging the string through an external magnetic field. The
complete answer to this question requires the study of
the time-dependent solutions, but it seems clear what
should happen. The work done on the string in this way
does not go into increasing the current, but is used to
destroy the field Y. Consequently, the current decreases
and the transition to the ordinary phase should proceed
in a smooth fashion, that is, without any tunneling. Of
course, when the current is dissipated the string should
return to the superconducting phase rather abruptly.

TABLE II. The maximal current for different combin-
ations of the constants in the potential. The unit of current is
(EGUT\/MIO‘S GeV)lOZ’ A.

gl x f i Current
0.1 1.0 0.70 0.6 0.501
0.1 1.0 0.90 0.7 0.469
0.1 2.0 1.0 0.8 0.333
0.1 2.0 1.40 1.0 0.455
1.0 1.0 0.65 0.6 0.255
1.0 1.0 0.75 0.7 0.837
1.0 2.0 0.90 0.8 0.204
1.0 2.0 1.20 1.0 0.330
10 1.0 0.65 0.62 0.076
10 1.0 0.70 0.68 0.339
10 2.0 0.90 0.85 0.112
10 20 1.05 1.0 0.444

IV. STRING IN CURVED SPACETIME

The principal questions we are trying to answer in this
section are the following: What is the metric of the
spacetime and how are the solutions of the field equa-
tions affected by the curvature of the spacetime? In or-
der to answer these questions we have to solve the Ein-
stein equation and the field equations with the curvature
taken into account. It is convenient to rewrite the Ein-
stein equation and the field equations in the following
form:

o ) (Pa)ZeZ(A +B) (Q/)ZK
(KA'") =4my” | —-2KV + 7K 52,28 |’
(KB’)'=47T’T]2 _2KV+(_P'_)29_2(_A_+fi

g°K
2
QK ovioke-|, @
e’e
., (Pl)ZeZ(A +B) (QI)ZK
K" =4mn? | —6KV + — = 3B
gkK e‘e
2X2P2e2(A +B)
_2Y2 ZK —2B_ .
Q’Ke = ;
LK, ) PledA+B)  _ 5
X +?X =X %(X —1)+ e +fY°|,
w, K' o, Tv2, Fyv2_ = 2 2 —2B
Y -+-—I?Y=Y(7\Y +fX*—m“+Q% ),
4.2)
P+ 2A'+2B'—K7 P'=g*x?P ,
’ K’ ’ ’ —
Q"+ | —2B'|Q0'= vl ,

where K=e?*28+C/L,n. These equations can be
solved by iteration. We start with a flat-spacetime solu-
tion for the quantum fields and calculate the metric
keeping the fields fixed. The Einstein equations can be
easily solved with the initial conditions specified at
x =0. We take A4(0)=B(0)=0; this choice is dictated
by the normalizations of the Killing vectors d/9z and
/3¢ to unity on the axis. Conditions K (0)=0 and
K'(0)=0 follow from the requirement that the metric be
smooth® at x =0. Finally, the initial values of the
derivatives 4'(0)=B’(0)=0 can be easily obtained using
Einstein equations and the known asymptotic form of all
fields as x —0. Having found the metric we calculate
the quantum fields again and iterate: in practice two or
three iterations give the solutions with a relative accura-
cy better than 104,

The results are not surprising. In Fig. 7 we plot the
metric functions 4 and B for

(0,8 LA, F,m 3)=(10"2,0.25,1,0.75,0.65)

and three values of the current. For a small current the
metric is the same as for the usual cosmic string’ and
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FIG. 7. The metric functions A and B for (9,8 %A, f ,m 2)
=(1072,0.25,1,0.75,0.65). (a) e?—1=eB—1 for the string with
a very small current, (b) e”—1, (c) e2—1 for the string with a
current 0.05, (d) e?—1, and (e) e®—1 for the string with a
current 0.17s. The unit of current is 2.85
X(Egur /V 5410'% GeV)10? A.

A =B, as shown analytically in Ref. 8. The geometry of
the spacetime can be approximated by a conical metric
with a small deflecting angle so, far away from the
string, the spacetime becomes nearly flat. However, the
spacetime is different if the current is large. First of all,
A+#B anymore, and even more important, far away
from the string the spacetime approaches the Kasner
solution, in agreement with the solution given by L. Wit-
ten' for an infinitely thin wire with a current. To check
whether the solution is Kasner or Minkowski at a very
large distance from the string one has to look at the
asymptotic behavior of KA’ and KB’. For large
currents these products approach a constant and are
some four orders of magnitude larger than for ordinary
strings. In the latter case their values are still decreasing
when x =40. The Kasner solution is only acceptable
close to the string where the string is approximately
straight. Real strings are not straight nor infinite, and
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FIG. 8. The Y field for three different combinations of Y,
and Q, corresponding to (a) small current, large binding ener-
gy, (b) maximal current, and (c) small current, small binding
energy. (9,8 %A, f,m )=(10"3,0.25,1,0.75,0.65).

they do not reside in vacuum. Therefore, far away from
the string our approximation does not have any physical
meaning. The function K deviates very slightly from its
flat spacetime behavior K =x. In all cases we have stud-
ied, K increases monotonically with K’'—1 as x —0 and
K'=0.98 for large x.

The solutions are very similar for smaller values of 7,
but the deviations from flatness are even smaller. To see
this one can calculate the deflecting angle A¢. As shown
in Ref. 8,

d(e—(A+B)K)

A¢= lim 27 a

r— oo

1— (4.3)

The values of A¢ are given in Table III for three
different values of 1 and for three different combinations
of Y, and Q, corresponding to (a) small current, large
binding energy, (b) maximal current, and (c) small
current, small binding energy. As for the ordinary

TABLE III. The deflecting angle and the total energy of the string for different values of 7 and
different currents. The unit of current is (Egyr/V A410'° GeV) 102! A. Deflecting angle is in radians.

n Y, Qo Current E; A¢
10~* 0.5471 0.001 0.608 %103 4.0988 1.0499x 10~?
10~* 0.4732 0.130 0.499 4.1595 1.0043 % 10~3
104 0.1290 0.260 0.052 42113 0.9225x10¢
1073 0.5471 0.001 0.608 < 103 4.0988 1.0500< 10~3
10~3 0.4732 0.130 0.499 4.1596 1.0043x 1073
10-3 0.1290 0.260 0.052 42113 0.9225x 10~*
102 0.5474 0.001 0.610x 103 4.1003 1.0514x 10!
1072 0.4738 0.130 0.501 4.1611 1.0048 < 107!
102 0.1290 0.260 0.055 4.2128 0.9224 102
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FIG. 9. The magnetic field corresponding to the maximal
current for (9,8 %A, f,m ?)=(1073,0.25,1,0.75,0.65).

cosmic string the deflecting angle scales as 5. It is in-
teresting to note that the deflecting angle is ten times
smaller when the binding energy vanishes than in the
other two cases.

Since the spacetime is nearly flat, we do not expect
any significant changes in the fields Y and Q as com-
pared with the solutions obtained for flat spacetime.
Indeed, the changes are so small that it is not possible to
show them in figures. The field Y is shown in Fig. 8 for
three different values of the Q,: a very small one, one
that corresponds to the maximal current, and one such

that the “binding energy” is nearly zero. In Fig. 9 the
magnetic field is plotted for the maximal current.

V. CONCLUSIONS

In this paper we describe the numerical solutions of
the field equations for a superconducting bosonic string.
Direct numerical integration reveals several interesting
features of the solutions. First of all, the superconduct-
ing phase exists only for a very special choice of the pa-
rameters in the potential. The “good” region is, in fact,
similar to the one found with the help of the
parametrized variational method.® Second, for many
values of the parameters there are unstable solutions.
The decay of such a configuration should release energy
of the order 10*%erg/m. Third, for the parameters in the
range studied here, the maximal current does not occur
when superconductivity breaks down. On the contrary,
when the binding energy vanishes the current vanishes
also. This probably means that the transition between
the superconducting phase and the ordinary one is
smooth. Finally, the spacetime around a superconduct-
ing string is asymptotically Kasner and the deflection
angle is not sensitive to the value of the current but de-
creases when the string is about to switch from the su-
perconducting phase to the ordinary one.
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