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Inflation as a transient attractor in R ? cosmology
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Using the equivalence between the curvature-squared gravity theory and the Einstein theory
with a scalar field, we show that the potential in the latter system has a very flat plateau. It turns
out that inflation is quite natural but transient in the R2 cosmology. All anisotropic Bianchi types
of space-time except IX approach the de Sitter solution as an attractor, followed by the Friedmann
universe after sufficient inflation. We find a similar behavior in higher- (4 <D < 10) dimensional
theories, in which inflation is not exponential-type but power-law-type. The dilaton coupling to
the R? term is also investigated. The coupling destroys the inflationary solution.

I. INTRODUCTION

Inflation is now very desirable in modern cosmolo-
gy."? It may solve the horizon, flatness, and monopole
problems. In resolution of such problems, we usually as-
sume an isotropic and homogeneous Friedmann-
Robertson-Walker (FRW) space-time. In order to see,
however, whether inflation really solves those problems,
we should start from an anisotropic and inhomogeneous
space-time. We are also interested in whether or not
inflation is natural. If inflation is an attractor for a wide
range of initial conditions or for a large class of models,
we easily understand why our present Universe is at the
present state. In particular, assuming a cosmological
constant, if the de Sitter solution is a unique attractor
for any initial conditions (we call this the no-hair conjec-
ture’), inflation becomes quite natural.

Recently, several authors have attempted to show that
inflation really occurs even in an anisotropic (or inhomo-
geneous) space-time and it isotropizes (or homogenizes)
initial anisotropy (or inhomogeneity).*"!® For some
models, they have shown that inflation is really an at-
tractor. One of the most important works was done by
Wald,? in which he showed that all Bianchi types of
space-time except IX with a cosmological constant ap-
proach the de Sitter solution as an attractor and its an-
isotropy disappears within one Hubble expansion time.
Generalizations of this work to a chaotic inflationary
model® and to an inhomogeneous case’ have been done.
Starobinskii also found a set of general solutions starting
with inhomogeneous initial conditions, under which all
space-times approach the locally de Sitter solution.’
From those analyses, the no-hair conjecture seems to be
true.

We know, so far, two types of inflation: one is due to
a flat potential appearing, e.g., in grand-unified-theory
(GUT’s) phase transitions (type I) (Ref. 1), and the other
due to a scalar curvature-squared (R?) term (type II)
proposed by Starobinskii.> For type-II inflation, there
are few attempts to prove the no-hair conjecture. Staro-
binskii and Schmidt'® have found the same result in the
type-IT model as Starobinskii did in the type-I model. A
natural question arises: Is Wald’s important result true
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in R? theory also? We will show in this paper that
inflation in this model is always a transient attractor,
finding the de Sitter solution within one Hubble expan-
sion time for all Bianchi models except IX.

Another point of interest is what happens in higher di-
mensions. Recently, higher-dimensional theory has been
taken seriously as a realistic model, including string
theory.!!? Hence, it may be interesting to see whether
an inflationary solution in higher dimensions also be-
comes an attractor. We will show that there is a critical
dimension (ten) below which a power-law inflationary
solution exists and it is really an attractor in the FRW
model.

In the superstring theory, a dilaton field, which is re-
sponsible for conformal invariance, appears.'> The dila-
ton coupling to the other fields gives rise to very impor-
tant effects on the dynamics of the system. For example,
Boulware and Deser!* found the de Sitter solution in
ten-dimensional Einstein theory with a Gauss-Bonnet
curvature-squared term, which however disappears in
the N =1, ten-dimensional supergravity with a Gauss-
Bonnet term coupled to a dilaton. In the four-
dimensional model reduced from the ten-dimensional
gravity theory, we found similar results.!>'® For the
case with a dilaton coupled to electromagnetic fields, the
dynamical structure of charged black holes also changes
drastically.!” In this paper we investigate what happens
in theories with a scalar curvature-squared term coupled
to a dilaton field and will show that the dilaton coupling
destroys an inflationary solution such as the Boulware-
Deser case.

II. MODEL LAGRANGIAN AND THE EQUIVALENT
SYSTEM

We start with the action

=
Spo= [ dPx 2K2g [R(g)+aeP*R2—(VO)], (1)

where D is the dimensionality of space-time, R (g) is a
scalar curvature of metric g,,, and ® is a dilaton field.
a and B are coupling constants. Taking variations of the
action (1), we find the basic equations
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For the case without a dilaton field (®=0), Starobin-
skii analyzed those equations, showing that there is an
unstable de Sitter solution followed by the present Fried-
mann era after sufficient inflation.? This model has been
investigated by many authors, especially intensively by
Mijic, Morris, and Suen.!®* In their paper, the
equivalence between the curvature-squared theory and
the Einstein gravity theory with a scalar field'® has been
applied to analyze the model without showing the expli-
cit form of potential.

What we are interested in here is whether inflation is
natural in the present model. For this purpose also, it is
much more convenient to use the above equivalence.
The equivalence is easily generalized for our D-
dimensional model with a dilaton as follows.

Let us consider the following Weyl conformal trans-
formation:

gl’wz[1+2aeB®R(g)]2/(D—2)g 4)

I

This conformal factor is uniquely determined if the grav-
itational action of g,, is forced to be the Einstein-
Hilbert one. Introducing a new dynamical variable (sca-
lar field) ¥ defined by
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DLl j1+42aePR(g)] (5)

D -2

Y=

instead of R(g), we can easily show that the action (1)
[or the basic equations (2) and (3)] is equivalent to the
following action:

Secatar= | dDX——& (3)— (VW)
—e =V D=/D-D¥(FGp)?
—2V(¥,®)], (6)
1 (D —4)¥
V(V,d)=——-2c P e A
e’ P|IVID_DD -2
D 2 172 2
1—exp ﬁ v , 7

where variables with an overbar denote those with
respect to g,,. This system is just the Einstein gravity
theory (the metric g,,,) with two scalar fields, ¥ and ®,
whose potential is V(¥,®). The dilaton field ® has a
noncanonical kinetic term like a nonlinear sigma model.
The basic equations in this system are explicitly written
down as

VD -2)/D-1¥[T §T T\ 25
G, =e [V“d)VV(D-—%(Vdﬂ 8y
+V, 9V, ¥—L(V¥)g,, —VE,, , (®)
172
= D -2 VD -/D -T2 OV _
Ov+ D1 (VO) 3w =0, (9
D -2 12 14
Oo— |—= | (V¥)VP)——=0. (10)
— o
We shall discuss this model for three cases: (i) ®=0,

D =4 (Sec. IID); (ii)) =0, D >4 (Sec. IV); and (iii) $£0
(Sec. V), separately.

III. INFLATION IN R 2 THEORY (Ref. 20)

We consider the case without a dilaton field in four di-
mensions (®=0, D=4). The potential V(¥) in the
equivalent system is
V273w

VW) =—1(1—c , (11
8a

whose shape is drawn in Fig. 1. It is trivially seen from
Fig. 1 that the potential has a very long and flat plateau.
The height of this plateau, which is determined by the
coefficient @ as k 2V (0 )=m }(8a/k?)~", is of the order
107 13-10""xm#},, because a/k? is constrained to be of
the order 10'2-10'¢ from the density perturbation.>!8

First we consider an anisotropic but homogeneous
Bianchi-type space-time. The potential ¥ is almost con-

stant V' =V (w0 )=1/8a on the plateau, which behaves
V(¥)
Y myexpl-yTBYI
0 y
FIG. 1. The potential in the equivalent system to the

curvature-squared gravity theory. The height of the plateau is
V,=1/8a~10""-10""" in Planck units. The Planck limit in
the fictitious g world is shown by the dashed line. The
Universe evolves along the solid line with arrows and first
reaches the plateau. The Friedmann era follows after sufficient
inflation.
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as a cosmological constant. The energy-momentum ten-
sor without the potential term, 7,,=V, ¥V ¥
—%(V\I/)zgw, satisfies the strong and dominant energy
conditions. Therefore, we can follow Wald’s method.
From the Einstein equations (8) and (9) and the equation
of motion for the scalar field (10), we find the equations

1K =00 —RP+¥ )4V, (12)
K:—%Kz—a‘wo’”—\.l/z%—V ; (13)
Ey=—KW?, (14)

where R is the scalar curvature of t =const hypersur-
face, an overdot denotes a time derivative, and E, is the
energy of the scalar ¥ defined by

Ey=1¥24V(V). (15)

K and o, are the expansion and the shear of the normal
vector n, to the t=const homogeneous hypersurface,
respectively.

Using Egs. (12) and (13), we reach the same results as

Wald’s as follows:

Vi3V
3V K<———2— 16
ViV, < gtanh(t/‘r) (16
2,
O',WUMS———. 3 , (17)
sinh“(t /71)
- 2V,

<5 > (18)

sinh“(t /1)
where 7=1/3/V _ =V 24a=~10°-10%,.

Hence, when the Universe is_on the plateau, the ex-
pansion rate K approaches V3V _ within one Hubble
expansion time 7. Anisotropy o,,0*" and the Kinetic en-
ergy of the scalar field W2 disappear also within 7. Any
anisotropic but homogeneous space-time except Bianchi
type IX approaches the isotropic de Sitter solution
(<e'/™) in one Hubble expansion time. The Universe is
completely isotropized because the Universe must be rol-
ling down on the potential for at least 60 times the Hub-
ble expansion time in order to solve the horizon prob-
lem, etc. This result can be easily generalized to inho-
mogeneous cases satisfying some conditions such that
the three-dimensional scalar curvature R ®’ of ¢ =const
hypersurface is always negative in a synchronous refer-
ence systems, as discussed in the type-I inflationary mod-
el by Jensen and Stein-Schabes.’

From the above analysis, we may have the following
scenario: If the Universe starts more or less at the
Planck scale, the initial energy Ey o is naively given by
e~V 4. Because, of the conformal transformation
(4), the energy in the physical g world is given by
(1+2aR )E, which is limited to the Planck scale mp,
initially. From such an initial stage, the Universe easily
evolves onto the plateau as shown in Fig. 1. The proba-
bility that the Universe reaches directly the true
minimum (V=0) may be extremely small. If the
Universe is initially expanding, K is always positive be-
cause of Eq. (12) with R‘¥ <0. The system of the scalar
field is always dissipative (Ey <0). Losing the energy

Ey, the Universe evolves onto the plateau as in Fig. 1.
Once the Universe reaches the plateau, the Universe is
going to roll over on the plateau either in the positive or
in the negative direction depending on initial conditions.
Even if the Universe is initially rolling over in the posi-
tive direction as in Fig. 1, the scalar field ¥ gradually
loses its velocity because of the friction term HW and
the potential gradient 8V /0¥, and eventually changes its
direction. In any case, therefore, the scalar field is rol-
ling down finally in the negative direction and the
Universe is isotropized within one Hubble expansion
time, finding sufficient inflation as discussed above. The
Universe reaches the potential minimum (¥=0), at
which a cosmological constant automatically vanishes.
In this sense, an inflationary phase is always a transient
attractor, and then inflation is a quite natural
phenomenon in R ? gravity theory.

We may need one remark. The above attractor prop-
erty has been discussed in the equivalent system (8
system). Because of the conformal transformation, it is
not, in general, trivial that inflation in the Weyl-rescaled
(g,,) system always guarantees inflation in the original
(8,,) system. In our case, however, we can easily show
that it is true. Because when the Universe is undergoing
inflation in the Weyl-rescaled system, the scalar field ¥
is changing very slowly. While we have the relation (4),
ie.,

2¥
V(D —1)D —2)

g,uv—_—exp gpv . (19)

This guarantees inflation in the original curvature-
squared theory also.

IV. HIGHER-DIMENSIONAL R 2 THEORY

We consider a D-dimensional space-time. The poten-
tial of the scalar field ¥ in the present system is

V:—l—ex (D —4)¥
8a P | V(D 1D —2)
D2 172 2
- B —
X exp D1 v (20)

The difference from the four-dimensional case appears
only in the potential shape. The potential has a very flat
plateau in the four-dimensional model, while the poten-
tial in a higher- (>4) dimensional model diverges ex-
ponentially as ¥ — «, i.e.,

(D —4)
V(D —1)D —2)

It seems that there is no inflationary solution unless
D =4, because there is no plateau in the potential.
However, if a potential of a scalar field has an exponen-
tial function form, there is another type of inflation that
is called a power-law inflation proposed by Abbott and
Wise?! and intensively analyzed by Lucchin and Matar-
rese.”? The expansion law of a scale factor @ is not ex-
ponential but power law, whose exponent is greater than
1 so that the Universe expands faster than the horizon.

Vziexp v

asV— o . (21)
8a
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Assuming a space-time being the flat FRW type in D
dimensions,

ds}=g,,dX"dX"=—di*+a(D)’dx’, (22)

and the potential of a scalar field having an exponential
form as exp(AW¥), we find the basic equations

B-DD =252 g2y pw), 23
(D-2)H=-¥2, .
) Y

o 1A= 25)

where H=a/a and an overdot denotes the derivative
with respect to 7.

Setting H=p /7, i.e., <1’ and W=q /7, we find a
power-law solution as

and g=—— . (26)

p )

. 4

AXD —2)
In order for inflation of power-law type to occur, p
should be larger than 1; hence, the coefficient of the po-
tential A should be smaller than the critical value
2/V'D —2. This yields from Eq. (21) that the dimen-
sionality of space-time should be smaller than 10. When
the dimensionality is lower than 10, hence, we may have
power-law inflation. It is interesting to note that the
same critical dimensionality appears from the conditions
of whether general inhomogeneous solutions have chaot-
ic behavior near the singularity in a higher-dimensional
Einstein system.?> The critical dimension D =10 is mar-
ginal both for power-law inflation to occur in the present
model and for chaotic behavior to be found in their
model, although the critical dimension D =10 itself is
not included for inflation but included for chaotic behav-
ior.

It is worth noting that power-law inflation in the
Weyl-rescaled (g, ) system always guarantees power-law
inflation in the original (g,,) system as follows. The
metric in the original system is

dsp=—dt’+a(1)dx*=Q —dr’+a(7)*dx?] , 27
where
v _
0= —_—— rm 28
PV DonD-2 |~ (28)
with
me———2 (29)

AV(D —1)(D —2)

for the power-law inflationary solution (26). Then, we
find the power-law solution in the original system as

a_:_QEOCt—(p+m)o<t(p+m)/(l+m) (30)

with ¢ « 7™ showing that the power in the original
system is also larger than unity if p > 1.

We can execute the same analysis as that by Halliwell,
by which he showed that the power-law inflationary
solution is always the attractor for open (k= —1) and

flat (k =0) FRW models.* The analysis is exactly the
same as in four dimensions , so we do not repeat it here.
For some inhomogeneous models, however, this power-
law solution may not be an attractor as discussed by Bar-
row.® Then, this inflationary solution would not be
favored.

V. DILATON COUPLING

If there is a dilaton field coupled to the other fields
such as that in a superstring model, the dynamics may
change drastically as shown for the ten-dimensional de
Sitter solution,'* four-dimensional de Sitter solution,'> 16
and charged black holes.!”

Boulware and Deser showed that, although the de Sit-
ter solution does exist in ten-dimensional Einstein gravi-
ty with the Gauss-Bonnet combination of curvature-
squared terms, it disappears in the N =1, ten-
dimensional supergravity model with the Gauss-Bonnet
term coupled to the dilaton field. The inflationary solu-
tion is destroyed by the dilaton coupling. We shall con-
sider the similar coupling in our model.

In order to investigate this system, it is also con-
venient to use the equivalence discussed in Sec. II. The
potential V(W,®) in the equivalent system (D =4) is
shown in Fig. 2. As seen from Fig. 2, there is no flat
plateau. The plateau which appears in the the model in
Sec. III is no longer a plateau, because the potential is
not flat in the dilaton (®) direction. Consequently, we
can conclude that the dilaton coupling destroys the de
Sitter solution in the same way as in the model by
Boulware and Deser.

We may, however, find a power-law-type inflation as
discussed in Sec. IV. Because, from Eq. (7), the asymp-
totic forms of the potential V(V¥,®) are exponential
functions as

(D —4)
V(D —1)(D —2)

(i) Vzie‘m’exp V| for V> ,

31)
-D

.. 1
(i) V= —e PPex — Y [for ¥ — 0.
8a PIVDb-_nbD_2 |7 7~°
(32)
V(V,D)
\
/ v

(]

FIG. 2. The potential in the equivalent system to the
curvature-squared theory with a dilaton coupling in four di-
mensions. The potential drops monotonically in the dilaton
(®) direction. This destroys the inflationary solution which ex-
ists in the case without a dilaton.
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For example, we consider the simplest case (D =4). For
¥>>1, W=W(const) is a solution because of the flatness
of the potential in the ¥ direction. Only @ rolls down
over the potential V in the positive direction. Normaliz-
ing the kinetic term of @ as (2«*)~!(V¢)? in the action
(6), we find

w,/V'6

z—s%exp(—ﬂe $) for ¢— oo (33)

with

wo/\/s)q) . (34)

d=exp(—e
In order for power-law inflation to occur, the coefficient
in an exponential potential should be smaller than V2.
This yields the condition

el

|B| <V2exp Ve

«<1. (35)

Hence, although the dilaton coupling destroys the de Sit-
ter solution, the power-law type may still remain. In the
superstring model, however, f may not be an arbitrary
parameter; rather, it may be fixed as B=1/V2 (if the
coupling exists'’) and then even the power-law type is
not possible.

Both models (Boulware and Deser’s and our own) are
two extreme cases in most general models with curva-
ture-squared terms. We might find the same conclusion
for more general cases from those two extreme examples.

VI. CONCLUSION

We have shown that inflation is always a transient at-
tractor in the R? gravity theory using the equivalence
between the R? theory and Einstein theory with scalar
fields. Any anisotropic space-time except Bianchi type
IX (or inhomogeneous space-time with R’ <0) ap-
proaches an isotropic de Sitter space-time in one Hubble
expansion time, followed by the Friedmann universe
after sufficient inflation.

The equivalence is quite useful for any analysis in the
R? theory, because we usually know well the Einstein
system with ordinary matter (or scalar fields) than a
higher-derivative dynamical system.

In higher (D > 4) dimensions, there is also a transient
attractor in FRW models if D <10; however, it is
power-law inflation which may not be an attractor for
some inhomogeneous models.

As for a coupling with dilaton, although we do not
know yet which combination of the curvature-squared
terms appears in a superstring model, it seems that any
combination does not allow an inflationary solution, be-
cause two extreme cases, with the Gauss-Bonnet com-
bination and with the scalar curvature-squared term, do
not allow inflation unless the dilaton field is fixed at
some finite point.
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