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Within the basic concepts of the constituent-quark model formulated in the light-cone Fock ap-
proach I examine the general symmetry properties of the relativistic nucleon wave function. With
these symmetry restrictions I develop an economical parametrization of the nucleon wave function
expanding it in terms of known spinor amplitudes multiplied by certain unknown momentum wave
functions. I also present a simple model of a relativistic spin wave function which fixes the expan-
sion coe5cients and leaves us with the nucleon-ground-state-model wave function uniquely deter-
mined. Such a relativistic model serves as a basis for a unified description of low- and high-
momentum-transfer nucleon properties presented in the following paper.

I. INTRODUCTION

The constituent-quark-model (CQM) description of
the nucleon, and any other light hadron, is based on the
following three concepts.

(i) Valence quark d-ominance The. Fock expansion for
a hadronic state can be approximately saturated by the
valence-quark configuration.

(ii) Uniuersal hadronic scale The. re is a universal ha-
dronic scale of =1 fm relevant to all static hadron prop-
erties.

(iii) Consti tuent quark. QCD, as the underlying
quark-gluon field theory, can be cut off at some scale of
the order of the universal hadronic scale. This produces
an effective field theory of the constituent quark with pa-
rameters, e.g. , mass (the constituent-quark mass) and
form factors (the anomalous moments) which are to be
determined from the experiment.

It is becoming widely accepted that the world of
light-quark hadrons is intrinsically relativistic, even in
the CQM picture. As has been convincingly argued'
this fact can be traced back to the existence of the
universal hadronic scale. Fortunately, there is a natural
and consistent framework for describing the composite
system with a fixed number of constituents. This frame-
work is the light-cone formalism which provides an ex-
tremely useful scheme for a relativistic CQM approach.

Unfortunately, at the moment our theoretical under-
standing of QCD dynamics is in a very rudimentary
state. The central unknown of the theory is, in fact, its
nonperturbative nature responsible for the confinement
of quarks in color-singlet states. In particular, in spite
of the progress in perturbative QCD studies, for most
purposes of the light-cone description of the composition
of the hadron we must continue to rely on models of
the wave function for guidance. There are, in such cir-
cumstances, two key tools to be used in model building.

(l}These are the relativistic invariance and all the oth-
er symmetry properties which already imply a large
number of useful relations and restrictions on the ha-
dronic wave functions. Many of these relations and re-
strictions can be used without any detailed knowledge of

the quark dynamics. Others need some additional argu-
ments of a dynamical nature but result from some simple
and general properties of the interactions.

(2} If the permissible form of the valence wave func-
tion is known, then a large number of phenomena can be
used to provide rigorous constraints on the form of the
wave function.

To appreciate the power of the first part of the pro-
cedure let us invoke the case of the nonrelativistic
description of the nucleon ground state as an example.
As shown first by Franklin" and then by Rolnick, the
nucleon spin state is uniquely determined if we consider
three quarks in a color singlet, obeying Fermi statistics,
and orbiting all in the same s state. Therefore, the sym-
metry properties together with some simple dynamical
assumptions (i.e., quarks are all in the same s state) pro-
vide an economical parametrization of the nucleon
ground state in terms of a single totally symmetric space
(or momentum) wave function.

On the basis of these encouraging results, the purpose
of this paper is to give a generalization of the Franklin-
Rolnick procedure from the nonrelativistic to the covari-
ant light-cone description of the nucleon ground state.
The outline of the paper is as follows. In Sec. II the
light-cone description of the nucleon quark state is re-
viewed. We study the kinematical constraints following
from the proper Poincare group invariance. Having
done this, in Sec. III, we discuss model-independent re-
strictions which follow from the other kinematical sym-
metries (viz. , parity, isospin, and color). In general, for
any nucleon-valence-quark state, there are 16 helicity-
mornentum amplitudes. After having imposed various
kinds of the kinematical restrictions we are left with four
independent amplitudes. There, we also develop an
economical parametrization of the nucleon wave func-
tions, expressing them in terms of known spinor ampli-
tudes multiplied by certain unknown momentum wave
functions. This spinor basis is especially suited to an ap-
proach which uses some additional dynamical arguments
to determine the wave function.

In Sec. IV we conjecture, following current light-cone
phenomenology, ' ' that the ground state is described by
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a single, totally symmetric momentum wave function.
Then the spinor basis expansion contains only three un-
known numerical coeScients which must be taken from
the experiment or from another dynamical ansatz. The
resultant parametrization can serve as an analogue of the
Franklin-Rolnick theorem.

In Sec. V we present a simple model of the relativistic
spin wave function which fixes the expansion coeacients
and leaves us with the nucleon-model wave function
uniquely determined. A more detailed comparison of
the prediction with the experimental data will be given
in the subsequent papers.

II. LIGHT-CONE NUCLEON-QUARK WAVE
FUNCTION

Since Dirac's work, there is a natural covariant
framework for describing the composite system with a
fixed number of constituents. This framework is the
light-cane formalism in which the hadron is described
by a momentum-space Fock basis defined at equal
x+=t+z rather than the more familiar equal-t wave
functions, i.e.,

i
0),

i p, tr; ) =b (p, , o, )
i
0), . . . ,

where b (p;,o;) is the creation operator of the ith
constituent quark with momentum p; = (p;+, p3;),
p+=p +p (Ref. 7) and internal quantum numbers o;
=(A, , t, ,c;). Here, the indices are for the light-cone heli-

city, isospin, and color, respectively. The light-cone
description of single-particle momentum-helicity states is

briefly reviewed in Appendix A.
With the valence-quark-dominance assumption (i), any

nucleon state l( with momentum p = (p +,pj ) and helicity
I, is described by

X'P~2(p;, o';)b (p~, o ~)

&&b (P2 ~2)b (p3 03) IO&

where 'P~z(p;, o; ) = (p, o „p2o 2,p3o 3 ~
pA, f). Now, it is

useful to recall some suitable features of the light-cone
approach. It will allow us to simplify the general expres-
sion (1) and give a starting point for the discussion of
wave-function-syrnrnetry properties. We will leave un-
touched all complications due to the nontrivial structure
of the QCD vacuum (e.g., gluon and quark condensates,
chiral-symmetry breaking, and the like) even if some of
them can be incorporated into the light-cone formula-
tion of QCD (Ref. 8). At the present level of discussion
we will take it for granted that all effects due to them

pz pi+p (2b)

The dynamical algebra 2)=(M, P3, 73) is generated by
the mass operator M, the transverse spin operator P3,
and the light-cone helicity operator 9. In fact, the
latter is also the kinematical operator but is needed here
to close the dynamical algebra. Let us mention that the
component P of the total four-momentum operator is
related to the mass operator by

P =(M +P )/P+

Along with the decomposition R2) there is a factori-
zation of basis nucleon states into the kinematical and
dynamical parts, viz. ,

~ p int) =
( p)8

~
int), (4)

where int labels the internal dynamical variables needed
to distinguish different states at rest (p+=mz, p2=0).
This factorization is a complete one because the
kinematical algebra acts only on the momentum vector p
in a manner which is independent of the internal vari-
ables int. In particular, it means that there is no
Wigner-type rotation in the approach [compare Eq.
(A5)].

There is a suitable choice of variables for a description
of a composite system with a finite number of elementa-
ry constituents. To accomplish the factorization (4), in-
stead of the individual momenta p;=(p;+, pj;) we can
use the following variables: the total rnomenturn
p=(p+, p~), p+ = g p;+, p3 =gp3;, the fractions

x, =p-+/p+, and the individual transverse rnomenta at
rest k~; =p~; —x;p~. It is easy to check that the variables
(x;,k3,.) are invariant under the kinematical transforma-
tion (2). With the normalization convention of Ref. 7,
eigenstates of the momenta P+ and P~ are of the form

%zq(p;, o; ) =16m p+5 p —g p; Pz(x;, k3;,o; ) . (5)

This seemingly trivial expression warrants some com-
ments.

(i) The wave function f is independent of the
nucleon's momentum p= gp, . Thus, Eq. (5) formu-
lates the complete separation of the overall center-of-

can be absorbed into the effective parameters of the
CQM.

One of the unique features of the equal-x+ quantiza-
tion approach is the fact that it enables the complete
separation of the kinematical and dynamical features of
Poincare invariance. Ten generators of Poincare algebra
can be replaced by two commuting algebras % and 2).
The kinematical algebra 4'=(P+, P3, E3,K ) consists
of three components of momentum and three boosts.

(a) The boost along the three-direction (K is a positive
multiplier), i.e.,

p ~&p ~ p ~& p s ps~ps ~

(b) The transverse boosts

Ey: p p p p + px'"j+p
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mass-system motion in momentum space. As shown by
Leutwyler and Stern in Ref. 9 it is a consequence of the
transitivity of the kinematical group in momentum
space. Such a separation is not possible in the equal-t
approach. In the latter case, the kinematical group gen-
erated by (P,J) is transitive only in coordinate space.
However, the x- and the p-space bases are related in an
interaction-dependent way.

(ii) The wave function g is invariant under all
kinematical Poincare transformations, i.e., translations,
three boosts (2), and the rotation about the three-
direction. Hence, it is determined if it is known at rest.
Both features bring great simpli6cation to model build-
ing as well as to matrix element calculations where one
should know the nucleon wave function in different
frames as an input.

We return our attention to the general formula of the
state vector (1}. Using Eq. (5) we find

III. SYMMETRY PROPERTIES
OF THE WAVE FUNCTION

Up to now we have studied a general three-quark state
with the kinematical constraints following from the
proper Poincare-group in variance. Before we call a
three-quark state, the nucleon we must still consider re-
strictions which follow from the other kinematical sym-
metries. Those of which we can discuss without specify-
ing the interquark interactions are parity, permutations,
isospin, and color. In this section we shall show that the
conventional parity, flavor, and color assignments reduce
the number of three-quark wave-function components to
four independent amplitudes. In addition, for these
helicity-momentum amplitudes we derive a convenient
spinor basis.

First, we examine parity invariance. Following Sop-
er' we consider the operator of reflection in the xz
plane,

[dx][d~k, ]
~

pA, Q) = g f Pz( x, , k~, ,o, )

g. X1X2X3

3

X ff b (x;p ,+xp~+k~;, a) ~0), (6)

P=exp( inJ—)P=R (O, n.,O)P,

as the light-cone parity. Clearly, P commutes with the
Lorentz transformation along the z axis. Applying the
operator 9 to the single-particle light-cone state

~
pA, )

in Eq. (Al) we get

GJJp+plp2$)c(1)l /2 IL~p+p 1 p2$)(7)
where

3

[dx]= g dx;5 gx; —1

3

[d kj]=16m 5 gkj, ff d k~, /16m

Here, we follow the notation of Ref. 2(a}.
Concluding, in the light-cone approach the validity of

the Poincare algebra allows one to define the frame-
independent wave function g which therefore has a
meaning of the probability amplitude for 6nding the con-
stituents with motnenta (x,p, x;p~+kj;) within the nu
cleon

Here, cz is the intrinsic parity of the particle. Thus, the
action of P simply changes the transverse momentum

from pj to p~=(p', —p ) and flips the helicity. To
derive the desired transformation law for a general state

~
pA, Q ) we assume the nucleon and quark intrinsic pari-

ties are the same and obtain, from Eq. (6),

gz(x;, k~;, A,;)=(—1) 'P „(x;,kj;, —A,;) .

Thus, with the invariance under the light-cone parity the
three-quark state is described by eight quark-helicity am-
plitudes.

Next we consider restrictions imposed by isospin and
color symmetry. Requiring that the nucleon is a flavor
doublet and a color singlet one obtains two representa-
tions of a proton-p light-cone state with helicity X, viz. ,

dx d'k
~
pAM ) = g f P (1,2, 3)e p [2u (1)u@(2)d (3)—d (1)u@(2)u (3)—u't(l)d@(2)ur (3)]

~

0)
X1X2X3

and
(»)

[dx][d k~]
~
pkM„) = g f f "(1,2, 3)e p [u (1)d@(2)—d (1)u@(2)]urt(3)

~
0) .

X1XPX3
(9b)

Here, we adopt the shorthand notation

u (i)=—b (p, , A, , t, = —,', c; =a),
d t(i)—=b (p, , A, , t, = ——,',c;=a),

with i = 1, 2, and 3. 1, 2, and 3 are collective
momentum-helicity indices; e

&&
is the totally antisym-

metric tensor in color space. The superscripts on the
states (Ms, M„) indicate that the wave functions are
symmetric or antisymmetric under interchange of the
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first two quarks.
For practical purposes, such as the relativistic CQM

building, it appears convenient to have a representation
of the invariant wave functions (9) in which all of the dy-
namics is contained in a set of invariant momentum am-
plitudes. In a sense it would factorize out spin from the
problem.

As shown in Appendix B, for the positive-parity state,
there are eight independent spinor amplitudes
u(1)l, zCu (2)u(3)I 3u» that are constructed from co-
variants I 12C(3) I 3 sandwiched between the light-cone
bispinors u and u of Appendix A. Four of the ampli-
tudes, Ik, k =1, . . . , 4 are mixed symmetric; the others,
Jk, k =1, . . . , 4 are mixed antisymmetric. The corre-
sponding covariants I,2(3) I 3 which are composed of the
nucleon momentum p" and the Dirac y matrices are list-
ed in Tables I and II. Therefore, quite generally, we
may write the wave functions of (9) in the form

4

tfi (1,2, 3)= g [P» (1,2, 3)I»+P» "(1,2, 3)J»]
k=1

and

(loa)

Xu ( I)u@(2)dr (3)
~
0),

4
"(1,2, 3)= g [$» (1,2, 3)J»+P» "(1,2, 3)I»],

k=1

(lob)

Ms M
where P»,P» are the momentum wave functions of a
given symmetry under interchange of the first two
qua rks.

Having constructed the convenient spinor basis for the
mixed symmetric and the mixed antisymmetric represen-
tations (9) one can prove their equivalence. This can be
done simply by the method of Ref. 5. Since the quark
operators anticommute, and we have antisymmetry in
the color indices, we can freely interchange the quark
operators (but not the color indices). Using this proper-
ty we show that both states are equivalent to

[dx][d kj ]
~/tX)= y J '

q„(I,Z, 3)e.~,
Qx)x2x3

TABLE II. Mixed antisymmetric covariants.

Amplitude

JI
Jq
J3
J4

r„Ce r,
ysCI

ysy„Cp"
Cys

ysy~Cy"

in the mixed symmetric representation and

$»(1,2, 3)=[/» "(1,3,2) —g» "(3,2, 1)] (12b)

f»(1,2, 3)+l(t»(1, 3,2)+P»(2, 3, 1)=0, (13)

which is of course satisfied by both representations (12).
Now it is easy to check that condition (13) reduces the
number of linearly independent quark-helicity ampli-
tudes of the relativistic nucleon state from eight to four.
The four amplitudes we select are f ff, fit, ill, ill.
Let us illustrate this with an example.

For a helicity-up proton, there are three amplitudes
with the total quark helicity + —,', viz. ,

in the mixed antisymmetric representation, respectively.
Note that the tilde means just the required isospin pro-
jection.

The proton light-cone states (11) are now written in
the so-called uds basis, which was first introduced by
Franklin and recently used extensively in CQM calcula-
tions by Isgur and collaborators. " In the uds basis one
carries out only a part of the antisymmetrization that
would be required by the full 53 group; the rest is en-
sured by the anticommutation properties of the quark
operators.

Notice that the above-mentioned equivalence means
that in a model consideration one can use the helicity-
momentum amplitudes which are either symmetric or
antisymmetric under interchange of the first two quarks
(compare Sec. V}.

To make explicit the restriction imposed by the iso-
spin symmetry we use the uds basis form of the proton
state vector (11). Requiring that the total isospin of
three quarks in (11}be equal to —,', one obtains the rela-

tion

where f is given by

g»(1, 2, 3)= [2g» (1,2, 3)—P» (1,3,2)—1(t» (2, 3, 1)]/3

(12a)

P(1,2, 3;t ti)=——2T(1,2, 3),
1((1,2, 3; tlt):—g(1,2, 3),
l((1,2, 3; t t t ):—q'(1, 2, 3),

(14a)

(14b)

(14c)

Amplitude

II
I2
I3
I4

I I2C(3}I 3

y„cay
o„„C o.""ys

y,Cysp"
icr„„Cp yl'ys

TABLE I. Mixed symmetric covariants. 2T(1,2, 3)=q&(1,3,2)+y(2, 3, 1),
qr(1, 2, 3)= V(1,2, 3)—A (1,2, 3),
tp'(1, 2, 3)= V(1,2, 3)+ A (1,2, 3),

(lsa)

(15b)

(15c)

where V—:[p(1,2, 3)+p(2, 1,3)]/2 and A =[gr(2, 1,3)
—qr(1, 2, 3)]/2. Therefore, there is only one independent

where 1, 2, and 3 are collective momentum (x,k~) vari-
ables.

Condition (13) leads to the relations
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amplitude with total quark helicity +—,', say fp(1, 2, 3).
Moreover, the only independent amplitude fp(1, 2, 3), in
general, has no definite symmetry under interchange of
the momentum variables of the first two quarks. The ac-
tual importance of the remark is exploited in Ref. I2.

The message of this section is that the kinematical re-
quirernents of the Poincare invariance together with the
internal symmetries or, in other words, the model-
independent methods, do not restrict the three-quark
wave function very strongly. We are left with fourfold
ambiguity in the relativistic case. With the result of the
symmetry consideration now in hand, we cannot proceed
without some information about the interactions of the
constituent quarks.

IV. NUCLEON GROUND-STATE MODEL

For a complete determination of the transformation
properties of the wave function ftt, Eq. (11), one must
specify unitary representation of the full Poincare group.
It means that, in addition to the invariance under the
kinematical Poincare generators, the bound state P is to
be an eigenstate of the two interaction-dependent opera-
tors, i.e., the mass operator M and the spin P. The
main difficulty of the program is that it requires a large
amount of information on nonperturbative e8'ects such
as those of confinement, chiral-symmetry breaking, con-
densate, etc., implemented into the light-cone scheme.
Therefore, it seems more appropriate and simple to start
with a relativistic model of the wave function rather
than a relativistic model of dynamics itself.

We begin our discussion by commenting on the nonre-
lativistic description of the nucleon ground state. It is
not difficult to see that, apart from some trivial notation-
al modifications, the above discussion of the internal
symmetries can be directly applied to any Galileo-
invariant quark dynamics yielding identical symmetry
restrictions. Therefore, we rederive here the Franklin-
Rolnick theorem with the aim of shedding some light on
the dynamical assumptions involved.

For the lowest-energy nucleon state, it is customary to
assume that the three valence quarks are all in the same
s state. Hence, the total orbital angular momentum
equals zero and there is only one linearly independent
quark-helicity amplitude, viz. , ) & &. Furthermore, be-
cause of the s-orbit assumption, the total orbital
(motnentum) wave function fI)(1,2, 3) is completely sym-
metric. Thus, Eqs. (15) and (14) give

l{q(1,2, 3 ) = f}ef(1,2, 3)X f(A, „A,2, k,3),

Xf(A f A2 A3) ( 25$ f5/ f5/ f +5ff f5/ f5/ f

+5f,, f5f,fk, f) .

{16)

It is clear from (16) that for the lowest-energy nucleon
state there is the static spin wave function Xf(A, „A2,A, 3)
which is uniquely determined if we assume valence-
quark dominance, use Fermi statistics, and invoke the
conventional parity and color assignments. I,et us stress,
however, that the uniqueness of the nonrelativistic nu-
cleon state follows from the extra weak nevertheless

&.e.,

P(1,2, 3)=$(8) .

There is already quite extensive wave-function phenome-
nology2'3 '~ which assumes (for simplicity reasons) that
in the nonperturbative domain the ftf falls off exponen-
tially in 8, i.e.,

$(1,2, 3)= A exp(8/6a ) .

Note the presence of a mass-scale parameter a which
gives the characteristic size of the composite state.

With this assumption, Eqs. (10) give

4

(1,2, 3)=p(1,2, 3) g a&II, (1,2, 3)
k=1

(19a)

4
"(1,2, 3)=P(1,2, 3) g bl, Jf, (1,2, 3),

k=1
(19b)

where al„bt, are free parameters of the model (see Ref.
18). Now we use the ttds basis, Eq. (11), and employ the
isospin projection to the wave functions (19). The details
of the calculation are relegated to Appendix B. It turns
out that the resulting isospin projections of the spinor
amplitudes Ik, Jk are interrelated. Namely, J4 ——J3 J1
and I4 ——2I3+mfv{2I, I2)/4 (see Ref. 15)—. Now that
we know these relations, we can define the nucleon
ground-state model by the following two (equivalent)
wave-function expansions:

3

f(1,2, 3)=p(1,2, 3) g aI, I&
k=1

(20a)

or
3

g(1,2, 3)=/{1,2, 3) g bf,J„,
k=1

(20b)

each given by three linearly independent [see Eqs.
(84)—(Bl 1)t spinor amplitudes If, or J„,respectively.

The parametrization (20) can serve as an analogue of
the Franklin-Rolnick theorem. It shows that the
kinematic-symmetry requirements even if supplemented
with some plausible assumptions on the momentum

dynamical assumption that the ground-state quarks are
all in the same s state.

To implement analogous assumptions for the light-
cone description of the ground nucleon state it is con-
venient to employ the spinor-basis representation (10).
In the Fock-state approach there exists much intuition (a
wide discussion of which can be found in Refs. 3 and 13)
for the following basic ansatz: the ground nucleon state
is described by a single, totally symmetric momentum-
space wave function P(1,2, 3) which depends only on the
light-cone ofF-shell energy

3 3

f =p+ p —g p; =m„' —g (k', , +m, )/x, ,
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wave function (17) are insufficient for the uniqueness of
the nucleon ground state. After that we are still left
with threefold ambiguity in the relativistic case,
represented by the expansion coef5cients, either ak or
bk T.hey can be taken from the experiment (see Ref. 16}
or from another dynamical ansatz' (see also Sec. V).
The lack of uniqueness can be definitely traced back to
the fact that the Poincare group in the light-cone ap-
proach contains as many as three Hamiltonians (i.e., the
interaction-dependent generators), as opposed to the
Galileo group that contains a single Hamiltonian. It is
suggested by the model of Sec. V that the angular condi-
tion J=—,

' is required to fix the admixture coeScients aI,
or bk.

U. NUCLEON SPIN-WAVE-FUNCTION MODEL

In this section we consider a very elementary model of
the spin wave function in order to illustrate the role of
the angular condition J = —,

' for the determination of the
nucleon ground-state wave function (20). It is con-
venient to start with a system of relativistic but nonin-
teracting quarks. Hence, we follow to some extent the
mock-hadron method of Isgur' and use the correspond-
ing prescription. The nucleon is a collection of quarks
with the wave function (17) of bound quarks in the phys-

ical nucleon and the mock-nucleon mass equal to the
mean total invariant mass of the free quarks. As is
shown below this prescription defines a procedure to
deal with the problem of the spin and mass operators.

For noninteracting particles the equal-x+ and the
equal-t (r}descriptions are equivalent. They are related
by a unitary transformation which, for a single particle
with spin —„is given in Eq. (A8). Now, using the stan-
dard method of the equal-t approach we can construct
a state vector

I
p=0$' —,'I =I'=0) r which describes the

valence quarks in their center-of-momentum (c.m. } frame
(p, +p2+p3=0), all in the same s state (I =I'=0), being
in an eigenstate of the total angular momentum J=—,

'

and the invariant mass W}$3 8'. For the mock nu-
cleon,

I
p=OW ) T ——

I
p=Om1v ) T. Thus, the

mock-nucleon state
I P=Om1v )r in the c.m. frame

equals the mock-nucleon light-cone state at rest:

IP=Om1v ' ' ' &r=
I fm„

where $=(mN, 01). Hence, by this prescription, the
mock-nucleon state is the eigenstate of the mass opera-
tor, the spin, as well as P.

To construct a three-particle state with a given total
angular momentum J =—,

' and a helicity A, in the Is cou-

pling scheme we use the same methods as in Ref. 21.
We start with the standard Clebsch-Gordan prescription

s„2„d'k, d'k,
Ip12 OX12W12S12112=0)T= g C1„','2 ~ (kl+k2 P12) Ik111)r Ik2A2)r

2A, ] 2A2
] 2

(21)

with k, =(e„k), k2 —(e2, —k), p, 2 ——( W, 2,0), and 8', 2
——e, +@2 is the invariant mass of the (12) pair. A vector of the

form (21) describes the pair (12) in its c.m. frame being in an eigenstate of the angular momentum J 12
——S12, A, 12, and

the invariant mass W, 2. Next, we perform the special Lorentz transformation I(p,2~/, 2)=l(p, ~k, )l(p2~k2) of
the vectors (21) to the overall c.m. frame in which p1+p2+p3 =0. After using (A7) we obtain the result

dp)

dpi'

1

I p, 2= —p3k, 2W, 2S,21,2
—0)r= g C13 12 I 5 (p, +p2 —p12) I p, k, )

I p212)D3'2, (U(k, )U(I,2))
A, ]A,2

]2 2 ] ]

1

XD~ ~ (U(k2)U(P12)) .
22

(22)

The latter equation follows from the simple transformation law of the light-cone state under the special Lorentz trans-
formation (A5). Combining the vectors (22) in a similar manner with the vectors

I
p3A, 3) T we obtain

gg S'&2 P3 4
d3 d3

I
p=OA, WSW12I =I'=0) T

—— g C i I ~ (p12+p3 P }
I p12 p3~12~12S12I12 0)T

I P3~3)
12 ]2 2 3 ~/2 ~3

]2 3 3

]

XD~ „.(U(p3)) .
33 (23)

To actually perform calculations with these mock-
nucleon wave functions we make the identification
U(k; }U(p,2)= U(p1), i = 1,2. Some motivations for do-
ing this are given in Ref. 22.

From (23) and (22), after a simple change of variables,
we find an expansion of the mock-nucleon state

I )mdiv ) into one-particle states of the light-cone dy-
namics
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[dx][d'k, ]
~

$A,mNSI =I'=0) = g J g~z(1, 2, 3)
X )X2X3

TABLE III. The nucleon light-cone spin wave function

g&(1,2, 3); a;=x;mz+ m, p "=p'Vip .

where

Xg ~pk;),

3 1

-'I. 'A ~D ~ '
12 122 3 2 12 2 i=1 i

12 i

A 1A2A3

'rTT

TLT

X~(1&2&3)V X~X2x3

—2a1a2p3 +a3~a1pz +a2p
a3p 1 p2 +p3 ~alp2 +a2p1

a1a2a3+p2 (2a1p3 —a3p1 )
L

p 1 p2p3 +a2~2a3p1 alp 3

Finally, based on the mock-nucleon prescription, we get
the following model for the Lorentz-invariant light-cone
wave function (6):

f~(1,2, 3)=$(8)X~(1,2, 3)/Qx, x~x3, (24)

Note, in Eq. (25), the coupling between the relative mo-
menta and the quark helicity. Furthermore, the wave
function (24) depends on two parameters: viz. , the
constituent-quark mass and the bound-state scale factor
a [see e.g., Eq. (18)], which is to be of the order of the
universal hadronic scale.

It is convenient to start with the subsystem (12) with
angular momentum S,2 =0 (i.e., with the mixed antisym-
metric spin wave function) then using the spinor basis
(see Table I) and the isospin projection Eq. (12b) we get
the compact and useful expression

X,(1,2, 3)=J,(1,3,2)—J, (3,2, 1),
where

(26)

lc ( 1

)(mN+ppy")@su�

(2)u (3)u,

Here, u and v are the light-cone spinors. The explicit
form of X,(1,2, 3), for four independent quark-helicity
components, can be found in Table III. The other com-
ponents are readily generated with the use of (8) and
(15).

The light-cone spin wave function can also be ex-
pressed in the mixed symmetric spinor basis. Using Eqs.
(B4)—(B1 1), we obtain

X,(1,2, 3)= —3m~(I, I2/6+2I3/mjv )/—2, (27)

where Ij„k=1,2, 3, are the isospin projection of the am-
plitudes of Table I.

This completes the specification of our model and
leaves us ready to check its validity. Certainly, the QCD
picture of hadrons is not this simple. Although such a
weak-binding assumption is very crude and presumably
untenable, it is regarded as the first approximation given
by pure relativistic kinematics and fundamentals of the
quark model (spin-parity assignments, the constituent-

where the relativistic spin wave function 7 is given by

s ~
X„(1,2, 3)= g C' („,C)", )", g D~ ~ (U(p;))

12 122 3 2 12 2t =
12 i

(25)

quark mass, etc.). Deviations from the model predic-
tions are then regarded as caused by a dynamical agent.

It is an interesting feature of the light-cone approach
that a large number of observables have an exact expres-
sion in terms of the wave function (e.g., form factors,
charge radii, magnetic moments, structure functions, dis-
tribution amplitudes, etc.). Thus, if the wave functions
are known, then a large number of phenomena can be
interrelated. Some interesting consequences of the rela-
tion between low- and high-momentum-transfer nucleon
properties are given in the following paper.

VI. CONCLUSION

In this paper we have shown, even without explicit in-
formation about details of QCD dynamics, we can make
a number of basic statements concerning the form of the
valence-quark wave function of the nucleon. The nu-
cleon is described by Poincare-invariant quantum
mechanics. In the weak-binding limit, we have found
the relativistic spin structure uniquely determined.
Comparison of our model predictions with data on some
low- and high-momentum-transfer properties of the nu-
cleon may be found in Refs. 12 and 23-26. These give
further indication that fundamentals of the quark model,
together with relativistic kinematics, provide a con-
sistent starting point of complete description of the
nucleon-valence structure (and of the other light-quark
hadrons).
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APPENDIX A: SINGLE-PARTICLE
STATE ON THE LIGHT CONK

In this appendix we make all of our wave-function
conventions explicit and give a compilation of some no-
tations, definitions, and formulas which are used in the
text of the paper. Details can be found in Refs. 9, 10,
and 21.

The state of a single particle
~

pA, ) with mass m, spin
s, and an arbitrary momentum p"=(p,p )

=(p+, pj(p 1+m )/p+) is determined, in the Wigner
construction, in terms of the state vectors of a particle
at rest P "=(m,Oj, m):
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lpga)=U(l(p P))i/A) . (Al)

In the light-cone approach, the helicity state A, is
specified by the following standard Lorentz transforma-
tion 1(p~P ) which carries the rest momentum P into p,
Vlz. ,

1(p~P ) =exp( tv—, Ej )exp( i—cvK ),
where

vq
——p~/p+, tv=in(p+/m ),

(A2)

and E~ are the transverse-Galilean-boost generators
defined by

J and K being the usual Lorentz generators. Now, it is
easy to find how states (Al} transform under all proper
Lorentz transformations A. We get

U(A)
l

pA, ) = g l
p'A, ')Dqq(R(A, p)) . (A3)

Here, p'=Ap and R (A,p) is the Wigner rotation in ac-
cordance with our choice of the light-cone helicity basis,
Vlz. ,

R(A,p)=l '(p'~P )l(p~P ) . (A4)

Note that the Lorentz transformations l (p'~P) are
transitive on the mass shell p = pn

i (P~p')l (p'~p )l (p~P ) =I .

corresponding covariant representation S coincides with
the standard Dirac representation D( —,', 0)SD(0, —,') of
SL(2, Q. A four-component covariant field is then
defined as

dp d pg
P (x)=I, g{u (p, A, )e '~"b(p, A, )

16m. p+

+v (p, iL)e'~"dt(p, A, )I,

where the spinors u(p, A. ) are chosen such that the field

P(x) transforms covariantly according to the Dirac spi-
nor representation of SL(2, Q:

U '(A)g (x)U(A)=S(A) ~g&(A 'x) .

Knowing that we can obtain explicit expressions for
the Dirac spinors u (p, A, ) and the charge-conjugate spi-
nors v(p, A, ), the spinors u (p, A, ) are given by

u(p, A, )=&m P ~ =S(l(p+—P))u(P, A, ), (A9)
l(P

where the matrix l(p~P ) of SL(2,Q represents the stan-
dard Lorentz transformation (A2). We recall that the
generators of rotations in SL(2,Q are the Pauli matrices,
J=—,'r, and that the generators of Lorentz boosts are
K= ,ir Th—en, .the exponentials in (A2) can be easily
worked out, giving

Thus, the states
l

pA, ) transform under l,

U(l(p'~p))
l
pk) =

l
p'A, ), (A5)

p
u(p, 1)=

p+ m

0

m
u(p, 1)=

p+ —p
p+

without the Wigner rotation (A4).
The vectors

l
pA, ) are assumed to be normalized in a

Lorentz-invariant manner:

(p'A, '
l

pA, ) =5~~16m p+5 (p —p') . (A6)

Using, once again, the general formula (A3), one can
find that the light-cone helicity basis

l
pA, ) and a con-

ventional helicity basis of the equal-t approach
l

pA, )r
are related by a rotation

I
p~)T= X l

p~')Dd. (U(p}) . (A7)

For s = —,', the relation (A7) is given by the Melosh trans-
formation

(p'+m)
I p1) —p"

I
pl)

P
't/2p+(p +m )

(p++m)
l pl )+p l pt)

+2p+(p +m)

(AS)

where p '"=p +ip .
To construct the Dirac bispinor representation of the

nucleon wave function, we reformulate the unitary non-
covariant transformation law (A3) in terms of a covari-
ant nonunitary representation. Let us consider a particle
with spin s =—,'. By the Weinberg construction, the

(A10)
The spinors are normalized to uu =2m. It is useful to
notice the following relation between S(A)u(p, A, ) and
u(p', A, '):

S(A)u(p, A)= g u(p', A, ')DI ~ (R(A,p)) (A 1 1)

with p'=Ap.
The spinors v(p, A, ) are related to u(p, A, } by charge

conjugation C =i y y:

v(p, 1)= 1

p+

—Nl 1
v(p, 1)=

p
p+

p+

p

I 0
r5= 0 I

(A12)

The light-cone spinors (A10} and (A12} correspond to
the Weyl realization of the y matrices:

~ ~

0 I . 0
0y= I 0 7=, 0
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Finally, notice that the spinors u and U are identical to
the ones used in Ref. 3(a}.

APPENDIX B: SPINOR BASIS
FOR NUCLEON %'AVK FUNCI'ION

8

gi(1,2, 3)= g pl, (1,2, 3)X'i"'(1,2, 3},
k=1

where

g'"'(1,2, 3)=u(1)I',"'Cu (2)u(3)I' 'u(p, A, ) .

(B2)

(B3)

We consider the three-quark system described by the
light-cone wave function %'~i(p;, A,;) which is invariant
under all kinematical Poincare transformations (we keep
here color and isospin indices implicit). To construct
the spinor representation of ql we embed the kinematical
Lorentz group in the full Lorentz group of three nonin-
teracting particles. In that case, the relativistic invari-
ance under the full Lorentz group is given by

1 1

+P~(p ~ = + ~. A'( i
''' ii.' ~3

1 1 33
I

(B1)

where p'=Ap and R; is the Wigner rotations.
This rather complicated momentum-dependent trans-

formation law can be simplified by adopting an informal
version of the procedure of replacement of the S ma-
trix by the "M function. " For this aim, we display the
helicity dependence by factorizing out of the light-cone
spinor wave function (A9) of each particle, the remain-

ing M function

qipi(1 2 3) u(1) [Cu(2)]ru(3) u(p A)sM

then transforming simply under the Lorentz group
(dropping the four-momentum delta function}

M(p„p2, p3) =S,(A '}SN(A ')M(p»p2, p3

xS,(A)S, (A) .

In order to construct eight independent invariant spi-
nor amplitudes J& we must realize that for any interact-
ing system there is only one four-momentum [viz. , the
nucleon momentum p"=(p+, pi, (pj+m )/p+)] at our
disposal for the contractions with the y matrices. Be-
cause there is no single-particle p;, four-momenta of in-

dividual quarks do not exist. It is worthwhile to stress
that in the invariant amplitudes X& the whole informa-
tion about the total momentum p is only retained in the
invariant mass m~.

Now, notice that among the complete set of 4)&4 ma-
trices, ten are symmetric (i.e., y„C, rr„„C) and six are an-

tisymmetric (i.e., C, y4C, ysy„C) where a„„
=i[y„,y„]/2. Taking this into account, for the three-
quark state of positive parity one gets four invariant spi-

Msnor amplitudes 7 =Ik, k =1, . . . , 4 which are sym-

metric, and four amplitudes 7 "=—Jk, k =1, . . . , 4
which are antisymmetric under interchange of the first
two quarks (1~2). They are given in Tables I and II, re-
spectively.

Ms I
Now if we write P—:P +P ", then we obtain the

spinor representation of the three-quark light-cone states
given in (10).

We complete this discussion by noting that by a num-
ber of Fierz transformations one can get the isospin pro-
jections ' [see Eq. (12)] of the spinor amplitudes II, and

Jk, viz. ,

As such M is a Lorentz invariant which is a direct prod-
uct of 4&(4 matrices, i.e., I,zI 3, composed of particle
momenta and y matrices. With the parity invariance,
there is 8 = ( 2 X —,

' + 1 } /2 independent M functions each
multiplied by an invariant function of momentum

0(pl p2 p3)'
When the interactions between quarks are turned on,

the above spinor representation is still valid, since the in-
variant wave functions (Bl) remain invariant under the
kinematical subgroup of the Lorentz group of the in-
teracting system. Hence, we have the following spinor
representation of the wave functions in (9):

Ii ——Ii,
I2 —I2,
I3 ——(I3+I4 )l3+ mN ( —2I i +Iq ) /12,

I4 2(I3+I4 ) /3+——m~(2I, I2 ) /12, —

J, =( —2Ii+I2)/4,

Jz I3+I4+m~(2I——i +I2 )l4,
J3 ——(2I i +I2 )!4,
J4=Ii .
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