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The linear chiral cr model with quark fields and elementary pion and cr fields is used to describe

static properties of the nucleon and the 6 resonance. To this end baryon Fock states with good

spin and isospin are constructed from summations of components in which three quarks in s states

with the SU(2) X SU(2) quantum numbers of the nucleon and 6 are coupled to multipion states and

a scalar-isoscalar coherent state of the o fields. The multipion states are constructed to have

coherent properties as well as definite spin-isospin quantum numbers. Ignoring the effects of vacu-

um polarization the baryon energy is made stationary, resulting in a set of four coupled nonlinear

eigenvalue equations and a diagonalization procedure between frozen fields. The corresponding
solitonic solutions are used to evaluate the relevant nucleon properties. A comparison is made

with the results from the cloudy-bag model, the projected mean-field chiral-soliton model, and the

Skyrme approach.

I. INTRODUCTION

Quantum chromodynamics (QCD) is the currently ac-
cepted fundamental theory of the strong interaction. '

However, its long-distance, nonperturbative regime has
so far defied easy solutions. Only lattice gauge calcula-
tions have provided some information on this regime,
but the tremendous numerical difficulties strain the capa-
city of available computers. An alternative approach to
correlating low-energy hadronic properties is the use of
effective field theories which replace the complicated in-
teracting quark-gluon system by a simpler one involving
interacting fermions (quarks) and/or appropriate boson
fields.

Recently, there has been much interest in o or soliton
models. These models are similar in spirit to the
Friedberg-Lee model, where, e.g. , a nucleon is described
by a solitonic solution of appropriate effective meson
fields stabilized by the coupling to quark fields. ' The
so-called chiral-soliton models based on the Lagrangian
of Gell-Mann and Levy seem to be particularly suit-
able, ' since they have broken chiral symmetry and
the partially conserved axial-vector current (PCAC)
arises in a natural way through quark and boson fields.

An alternative type of soliton model, also of current
interest, was proposed by Skyrme' and is based on the
nonlinear o. model without explicit quark degrees of
freedom. Instead, the model has a conserved topological
winding number which is interpreted as the baryon num-

ber. Compared to soliton models with explicit quarks it
provides problems with the quantization since its boson
field is defined over a curved function space. Therefore,
a clear definition of Fock states with proper spin and
isospin quantum numbers is difficult and one is forced to
use classical and semiclassical arguments. '4

In this paper we consider the Lagrangian of the chiral
linear soliton model first suggested by Gell-Mann and
Levy. Here the fermion fields are identified with quarks
rather than with nucleons as was done in the original
formalism. The model describes a flavor doublet (isospin
doublet) of quarks interacting with pions (pseudoscalar,
isovector) and o mesons (scalar, isoscalar). The quark-
meson coupling reflects the SU(2) XSU(2) chiral symme-
try of the underlying QCD theory. The self-interactions
are chosen to make the theory renormalizable' and to
allow the chiral symmetry to be realized in the hidden
mode (spontaneous chiral-symmetry breaking). The tr
field has a nonzero vacuum value, which gives the
quarks their (dynamical) mass. The pions are considered
as Goldstone bosons which are given a small mass to
break chiral symmetry explicitly.

The linear chiral-soliton model has been considered
recently by several authors. ' Most of the Fock states
that have been considered are classical and based on the
hedgehog ansatz' for the quark states and pion field.
The resulting solution corresponds to a mean-field
description of the system in terms of coherent states and
does not, therefore, carry a definite angular momentum
and isospin. Very recently projection techniques have
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been suggested' and applied to extract physical Fock
states with proper quantum numbers and to allow there-
fore for the evaluation of observable nucleon proper-
ties.

The purpose of this paper is to provide a static soli-
tonic solution of the linear chiral-soliton model using a
coherent-pair trial Fock state with proper spin and iso-
spin quantum numbers. ' In contrast with the mean-
field projection technique the coherent-pair approxima-
tion provides a systematic expansion method for the
description of a boson field. It is more like a shell model
based on a paired background state and provides, there-
fore, an alternative way to describe boson clouds, which
does not go through a classical state and is, therefore,
quantum mechanical from the start. In addition, it
avoids assumptions like the hedgehog structure of the
quark and pion fields. In this paper we will restrict our-
selves to the coherent-pair approximation with one un-

paired pion in order to expose the techniques required.
We derive energies and other observable properties of
the nucleon and the 6 resonance and compare them
with the outcome of other models and with experiment.
Some preliminary results have already been published in
a recent paper. '

2
2 f2 (2.4)

The model contains then two adjustable parameters: the
mass of the cr field, m, and the coupling constant g
or, equivalently, the dynamical mass of the quarks,
m . They are related via (c) U/Bo ) =ml and

U

(8 U/81r )„=m„as
2 2

2f

rn =gf

(2.5)

(2.6)

Whereas the mass of the pion is accurately known from
experiment (m =0.138 GeV), it is not clear which value
to assume for m since there are various candidates in
the meson and glueball spectrum with the appropriate
quantum numbers. Hence we will consider in this paper
m as a free parameter in the range of 0.3 GeV&m
We will see that the results do not depend very much on
the actual choice of m

The constant Uo is chosen such that at the lowest
minimum of the (tilted) Mexican hat one has
U(o =rr„,1r=0)=0 This y.ields

II. THE LAGRANGIAN 2m' 3N
Up= ,'f„m —2 2Pl —Pl

(2.7}

A simple renormalizable Lagrangian involving fer-
mion fields f(x) and boson fields 8(x) and 1r(x), which
is chirally invariant, has been given by Qell-Mann and
Levy. If one breaks explicitly the chiral symmetry in
order to give the pion a small finite mass, one obtains J„"=P,'y"ysFf+8-&'1r rrr)r'o . — (2.8)

The above Lagrangian is partially invariant under
chiral transformations. The corresponding axial-vector
current is given by

L(x)=g(x)(l y~a„)q(x)+ ,'a~e(x)a„e-(x)

+—'%1r(x) 8 1r(x)

gP(x—)[o(x)+iy&1 1r(x)]g(x)

—U(8(x), 1r(x) }

with the self-interaction U(B', 1r ) given by

(2. 1)

It is partially conserved (PCAC), yielding

9"J„"= m f— (2.9)

In order to obtain this result, confirmed by experiment,
the vacuum value of cr had to be chosen as o „=f . The
total Hamiltonian density is

%(r)=-,'I~ (r)'+[Vo(r)]'+& (r)'+[V1r(r)]'j

U(o 1r)= [o(x) +1r(x) 1r(x)—v ]4

—m„f„o(x)+Up . (2.2)

{0
~
o(r}

~
0) =rr, =f

{0
)
1r(r)

( 0) =1r„=0,
(2.3}

The potential U(o, 1r} has the shape of a "Mexican hat"
in the o.-m. plane slightly distorted by the linear term in
o. The parameter v is chosen such that the classical
minimum of this potential occurs for a nonzero vacuum
value of the o. field and a vanishing value of the pion
field:

+ U(o, 1r)+y (r)( i' V)1((r)—
+gf (r)[Po(r)+iPy51= 1r(r)]g(r) .. (2.10)

X [o, (It)e '"'+( —)'a, (k)e+' '], (2.12)

In the above expressions f, o, and 1r are quantized field
operators with the appropriate static expansions

d'k
o (r) =f, [c (k)e '"'+c(k)e+'"'],

[(21r) 2' (k)]'~

(2.11)

d k1r"(r)=
[(21r) 2' (k)]l

with f being the pion decay constant, i.e., f =0.093
GeV. Tllls yields, wltll (BU/BET) =(AU/d1r) =0, fi(r)=g({r ~jm )d„~ +{r

~
njm )"dt. ) .

njm

(2.13)
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(2.14)

P'(r)=i f d k
rv (k)

2(2m )

X [a,t(k)e '"'—( —)'a t, (k)e+r" r]

For the pion field the isospin label t (+1,0) indicates the
three pion fields of an isovector. The corresponding
conjugate momentum fields have the expansions

co (k)
P (r)=i fd k [ct(k)e '"'—c(k)e+'"'],

2(2~)

Here the c(k) destroys a cr quantum with momentum k
and frequency co (k)=(k +m )'~ and a, (k) a pion
with momentum k and a corresponding
co (k)=(k +m )' . The

I
njm & and

I
njm & form a

complete set of quark and antiquark spinors with
angular-momentum quantum numbers and spin-isospin
quantum numbers j and m, respectively. One should
note that the above choices of the expansion bases and
frequencies are not unique.

For the pion field it is convenient to change the basis
by introducing new pion operators

a,i (k)=( i)' —fdQI, Yl (Ql, )ar (k), (2.16)

(2.15) yielding

' 1/2

8 (r)= 2

7r
dkk2 1

2co (k) X Jl(«)[arum (k)+ ( —) +'a
« ~(k)]Yi~ (Q„)

lm

(2.17)

and
' 1/2

P (r)=it . 2

7r

' 1/2
co (k)

dk k2 gjI(kr)[art~(k) —( —) +'a, I ~(k)]Y&~ .
lm

(2.18)

The commutation rules are now

[a«(k), a, , (k')]= 5(k k')5„.5„.5—
k

III. THE FGCK STATE

(2.19)

Thus we assume right at the beginning that deforma-
tion effects are not important. The variational quantities
in q (r) are the upper and lower radial components u (r)
and v (r), respectively.

The Pock state for the sigma field is assumed to be a
coherent state of the form

The objective of this paper is to provide a static
description of the nucleon and the 5 resonance by means
of a variational ansatz on states that have definite angu-
lar momentum and isospin properties. A simple, in fact
too simple, way is to assume the Fock state of a nucleon
and delta to be

I
X&=—exp f d kri(k)ct(k) I0&

l

N

with the normalization coeScient given by

N=exp —,
' f d k q'(k)ri(k)

Clearly the coherent state has the property

(3.4)

(3.5)

and

I
NT3J, & =[a

I nT3J, &+P(
I

n &Sb )r J

+}(I5&~b')»]I0&I»

I
b T3J, & =[a'

I 5T3Jr &+P'(
I
5 &b )r,~

+}'(
I

n &b'). ,;]I
0&

I
»

(3.1)

(3.2)

and

(X
I

P".(r)
I
X & =0 (3.6)

c(k)
I
X & =g(k)

I
X& .

Since ri depends only on k=
I
k

I
the coherent state

I
X & has the quantum numbers of a scalar and isoscalar

state. For parity reasons we have g(k)=ri'( —k) and
hence

Here b is a p-wave isovector pion creation operator for
a state to be defined, cf. Eq. (3.10). The states

I nt3j, &

are SU(6) three-quark configurations coupled in the u-d
sector to nucleonic quantum numbers. '

The two-spinor corresponding to a quark moving in a
spherical 1s orbit is defined by

(X
I
o(r)

I
X& =a(r) . (3.7)

Because of the general properties of the coherent states
we have, furthermore,

(X I:P"(r):
I

X& =0
u (r)

q( )=( (3.3)
and

( X I:cr"(r):
I
X & =cr"(r), (3.9)
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where:: indicates normal ordering with regard to
the vacuum of the c(k). The expectation value
(X ~:8(r):

~

X) can be expressed in terms of ri(k) and
equivalently in terms of o (r). Thus the o (r) will be used
as a variational function, being associated to the degrees
of freedom in the spherical cr Fock state

~

X ).
The

~

0) in Eq. (3.1) is the boson vacuum. The b,
are related to the basis operators a,i (k) as

b, =f dk k g(k)a«(k) (3.10)

with g(k} being a real function representing the varia-
tional degrees of freedom in b, with respect to a,l
Actually, later we have to replace the vacuum

~
0) and

the one-pion states b, ~0) by coherent states ~P )
and

~
P,") with the corresponding quantum numbers in

order to improve the Fock state. This, however, will be
done in the next section. For the simple explanation of
the variational properties it is sufBcient to consider zero-
and one-pion states. Rather than varying g(k) explicitly,
it will turn out to be convenient to vary the function
P(r) instead with

p(r)= f dk k
&

j&(kr) .
2m' [~(k)]~~2

(3.11)

Thus the variational degrees of freedom of the Fock
state ~NT&J, ) or

~
bT&J, ) are u(r), v(r), o(r), P(r)

and a, P, y. The variations are not free, but are subject-
ed to various normalization conditions.

First, the quark states must be normalized

4m f dr r [u (r)+v (r)]=1 . (3.12)
0

Second, the boson operators b, have to be normalized,
which requires

sea of negative-energy orbitals. A crucial quantity to in-
dicate the importance of the vacuum polarization of the
negative-energy Dirac sea continuum is m R =gf R,
where R measures the size of the soliton. For m R &&1
(in practice for m R ~2.5) the negative-energy continu-
um leads to a baryon-number density, which is more
diffuse than that obtained from the valence orbit alone.
The solitons studied here have an effective m R =2-3
and, therefore, the vacuum-polarization effects are cer-
tainly there; however, they should not be so big as to in-
validate the qualitative results of our model. The expli-
cit calculations of Kahana and Ripka' ' indicate that
for this range of m R values the properties of the soliton
are affected to about 20% by the polarization of the sea
quarks. Clearly this point deserves further studies which
are, however, beyond the scope of this paper.

IV. SYMMETRY-CONSERVING COHERENT STATES

If the Fock state of the system is formulated as Eq.
(3.1), one allows at most for one-pion excitations of the
vacuum. This cannot be suScient since terms such as
:2r: would have a vanishing expectation value. There-
fore the Fock state of the pions should have components
involving excitations of many bosons. One possibility
would be to write down explicitly one-pion, two-pion,
etc., excitations coupled to the proper quantum num-
bers. Another, more promising way consists of con-
structing "coherent" states with the proper angular
momentum and isospin quantum numbers. ' We will
discuss this possibility separately for L =0 and L&0
partial waves. The concepts are then easily generalized
to tensor product spaces such as spin and isospin spaces.

f dk k'g'(k)=1
0

Since g(k) can be extracted from P(r) by

g(k) =4[co(k)]' f r j &(kr)p(r)dr,
0

the normalization condition reads

8n f dr r P(r)gr(r)=1

with

P (r) =f"cg(r, r')P(r')r' dr' .

The kernel co(r, r') is given by

(3.13)

(3.14)

(3.15)

(3.16)

A. Coherent states of L =0 partial waves

&(r)= X O.I.(r)I'I'.sr(fl. )[c'I.sr+( )"c.l. sr—]
aLM

(4.1)

where a is any quantum number other than angular
momentum L and its third component necessary to
define the state completely. If we define

~ Q ) to be the
coherent Fock state made up from L =0 quanta, we
have

Consider a multipole expansion of the form (2.19) of a
general boson field

co(r, r') =—f dk k co(k}J',(kr)j, (kr'} .
0

(3.17)
~Q )=Nexp g —,'A, c co ~0)

a
(4.2}

For E~ao this kernel is ill defined. However, when it
is applied to a well-behaved pion function P(r) the K can
be assumed finite and the P (r) is well defined.

Since the o coherent state
~

X ) is normalized from
the beginning, the last normalized condition is

with some amplitude A, . Since
~ Q ) is an eigenstate of

the annihilation operator c 00,

(4.3)

it follows directly that

~2 +p2 +y2 (3.18) (Q
~
X(r)

~ Q ) = Yoo(Q„) g p~(r)A,
Actually, the present approach neglects from the start
any contributions to the energy from the quark Dirac =X(r) . (4.4)
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The function X(r) is to be identified with the classical
mean field in the same way as cr(r) of Eq. (3.9) represent-
ed the classical o field. In fact, the above equations
show that assuming a coherent state of the form (3.6)
and of the form (4.2} is exactly the saine thing. Alto-
gether it is clear now that the coherent states

I Q & and

I
X& carry the quantum numbers of the vacuum since

they are constructed out of scalar operators.

8. Coherent states of L&0 partial vraves

from which we can deduce

„(2n —1)!!(L—2)!!
(L 2—+2n )!!

(4.12)

x "(L —2)!!
„(L 2—+2n )!!(2n)!!

If we assume
I
P & to be normalized (P

I
P & =1 then

f0=fo(x) is defined by the series

=(L —2)!!2~B"coshx (4.13)

I
P &=+,(CL ci }"I0&,2n! (4.5)

The simple property mentioned at the end of the pre-
vious paragraph obviously does not hold for coherent
states built up from creation operators of L&0 partial
waves. In addition, for L+0 partial waves an eigenvalue
equation of the form (4.3) cannot be true. Hence the
states we are going to construct bear certainly some
coherence and show some corresponding properties;
however, they are not coherent states in the strict sense.

We construct a coherent-pair state with the quantum
numbers of the vacuum from L+0 partial waves by

B coshx
a=x

L B& coshx
(4.14)

We note the following general properties of
I
P & and

I
Ps~i &: Both are eigenstates of the scalar operator CL CL

with eigenvalue x. Furthermore, one needs the matrix
elements

with g=(L+1)/2, B,=B/By=(1/2x)B/Bx and y=x .
Normalization of the state

I PM &, (Psr I Psr &=1 defines

the parameter o in Eq. (4.7) as
' 1/2

where

CL, 'CL, — — C ~L,MC ~L,
t. t Mt t

M

P Id dIP &=(P Idt.dtIP &=x

and similarly

(4.15)

for a particular a. The a is arbitrary but fixed. In the
applications the lowest Seld excitation corresponding to
a =0 will be preferred. In the following we will drop the
index a. A coherent state

I Psr & can be defined as

(4.7)

with some coefficient a, yielding

(4.16}

The mean number of uanta is given by the expectation
value of the operator = QMcrsrcrM yielding

(4.17)

with

sr & = g CIM(CL CL )
I
0&

a „0 2n+I ! (4 8)
1 By coshxc'= —1+2x2 '
L B» coshx

(4.18)

Applying czar to
I Psr & again and projecting out the

state with vacuum quantum numbers yields

The x plays the role of a coherence parameter. Accord-
ing to Eqs. (4.5), (4.8), and (4.12) one sees that for x ~0
the one-boson limit is obtained:

g cist I PM & =Lb
I
P (4.9)

P & IO&,
I

Ps'i& CL~sr 10& .
x~0 x~0

(4.19)

cL.cz~
I
P & =x

I
P (4.10)

with x=Lab. We shall show that x is a convenient
coherence parameter in terms of which a and b can be
determined. If we demand that IP }=IP & then Eq.
(4.10) is an eigenvalue equation which implies the re-
currence relation

with L =2L +1 and some coefficient b. The pair of Eqs.
(4.7} and (4.9) yields the equation

+1
)t+mbt

m, t= —1

(4.20)

It is easy to incorporate the coherent states
I
P & and

I
P &, as they are defined in this section, into the ansatz

for the Fock state of Eqs. (3.1) and (3.2). One only has
to generalize the above formulas for the tensor product
of two spaces, spin and isospin. Thus one uses the p-
wave pions of Eq. (3.10):

x(2n+1)
L +2n

(4.11}

and constructs the states
I
P & and

I P," & from the
b, . One also has to replace the factors L =2I.+ I by
L =(2L + 1)(2T+1)=9. This yields then explicitly
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and

' 1/2
1 (105+45x +x )sinhx —(105+10x )coshx

—(15+6x )sinhx+(15+x )coshx

1 —(945+420x +15x )sinhx+(945+105x +x )coshxc=—1+
3 (157+45x +x )sinhx —(105+10x )coshx

' 1/2

(4.21)

(4.22}

The 6nal trial Fock state for the nucleon is then assumed to be

INT3J, &=[t
I
nT3J, & II' &+p( In & II'"&)r,j, +7'(

I
&& II'"&}TJ, ] I

&& (4.23)

and analogously for
i

AT3 J, &. Actually for x ~0 this ansatz goes into the one-pion approximation as it is written in

Eq. (3.1).

V. THE VARIATIONAL PRINCIPLE

The objective of this section is to seek the minimum of the energy of the nucleon

Ez ——(NT3J, i fd rent'(r):
i
NT3J, & (5.1)

by variation with respect to u(r), u (r), o (r), p(r) and a, p, y subjected to the normalizations. The variation looks for
stationary states corresponding to space localized solutions, which are more bound than three free quarks, i.e, whose
energy is Etv (3gf„. These are the solitonic solutions.

By a lengthy but straightforward calculation the total energy of the system can be evaluated as

Z„=4+ r r'E„r
with

'2
1 der

Ett(r) =—
2 dr

+ [o (r) v] —m f„o—(r)+Uo+3 u +—
U —u +go(r)[u (r) u(r—)]2 22 2 du 2 du 2 2

4 dr r dr

+[9a (ah+a )+9(p +y )(ab+c )]
d 2+ p —[9a (ab —a )+9(p +y )(ab c)]Jr—(r)

A2
+ I

—"x +72x[a a +(p +y )c ]jp (r)+ —ap(a+b)gp(r}u(r)U(r)(nii(d d)" iin &

+ —ay( a+b)gp(r) tt(r)v(r)(5i (Idd)" [in &+[9a (ab+a )+9(p +y )(ab+c )]1, (o (r) —v }p (r)
4

V3
(5.3)

with

(d d)", = —g ( —,'mi —,'m2 —,
'

—,'lm)( —,'ti —,'t2 —,
'

—,'lt)
m&m2

For fixed a, p, and y the functional variations are ex-
pressed by

5 f dr r IE&(r)—3e[u (r)+v (r)]—It/(r)p (r)] =0,

(5.4)

where the d, creates a quark in the lowest s state with
spin and isospin projection m and t, respectively, andd, =( —) +'d, . Using explicit quark wave func-
tions' one obtains eventually

(5.6)

where e and ~ are Lagrange multipliers that enforce the
normalization conditions (3.12) and (3.15).

The variation of most of the terms is rather straight-
forward. Only the variation of the term P (r) requires
some comments. An easy calculation yields

5 f dr r P (r)=2 f dr r P&(r)5&(r)

with

(ni[(d d}"i[n&=—5,
(nf/(d d}"/i5&= —4&2,

(5/i(d d)" ii5&= —10 .

(5.5)
P&(r)= f dr'r' co(r, r')P (r')

f dk k (k +m„)j&(kr)P(k), (5.8)
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where

P(k)= J dr r j &(kr)P(r) .
v(r)=

2 r

' 1/2

K i y2 (pr ) (5.16)

Because of the structure of P&(r) one can show that

d 2 d 2
P&(r)= m„—

z
—— + 2 P(r) .

dry r dr r2
(5.9)

with p=(g f„e)—' and K, r2, E&&2 being the modified
Bessel functions of the third kind. '

These equations together with the conditions at r =0
yield the boundary conditions for the solution of the
equations. At r =0 they are

Using this feature the variational equations for the nu-

cleon can be evaluated straightforwardly:
v (r)=0, P(r) =0,

T
(5.17)

= —(go +e)v ——23ga5(a +b )Pu,

dv 2= ——v —(go —e)u + —', ga5(a +b )(t v,
dr r

(5.10}

+A(o , v—)o+2A, (x+N )P o
r dr

+3g(u v) rn —f—

and for large values of r they are

[r(gf e)' '+—1 l(gf„—e)' ']u (r)

(gf —+e)'~ rv(r)=0,

(2+2m r+m~ )((}+r(1+m„r) =0,
T

r +(o —f )(1+m r) =0 .
do'

(5.18)

(5.19)

(5.20)

dP 2dg 2, x
1 — m2(}}

dr r dr y
' N

1+ A, (o —v)P
N„

+ (-', x+N„)A, p — guv —Kp
2x, i i a&(a+b)

with

—(P+ -', &2y ) (5.11)

and the average pion number

N =9a a +9(p +y )c (5.12)

—Nt P

e
o (r) =f„+const X

m r
(5.13)

These are four nonlinear coupled ordinary differential
equations with eigenvalues e and ~. They consist of a
Dirac equation where o and P appear as potentials and
two IQein-Gordon equations with uU and u —v as
source terms.

For large r the cr and P fields behave as

For fixed values of a, p, y the above differential equa-
tions with the corresponding boundary conditions are
solved by using the program package COLSYS in the way
described in Refs. 6 and 22. The equations have a solu-
tion for any value of e and K. Strictly speaking, we are
confronted with a set of nonlinear integro-difFerential
equations because the P (r) is related by the integral
(3.16) to P(r) To do .this explicitly in the internal itera-
tions of COLSYS would be extremely time consuming.
Fortunately, the system allows for an iterative solution:
For a given e and a we start with a reasonably guessed
((}r(r) and solve the equations keeping it fixed. From the
resulting P(r) we evaluate a new P (r) according to Eq.
(3.16) and solve the differential equations again. In the
actual calculations one has to introduce a relaxation fac-
tor, i.e., one works with

P "'"(r)=pP"'"(r)+(I p)P" (r), —

where p has to be taken between 0.3 and 0.5 to yield
convergence after about maximally 50 iterations. By
this a complete solution of Eqs. (5.10) for a given e and K

is obtained. The one with the proper normalizations
(3.12) and (3.15) is found then by a systematic variation
of e and K. The corresponding fields u(r}, v(r}, o(r),
and P(r) are now "frozen" and used in order to deter-
mine the a, P, y by a diagonalization of the energy ma-
trix:

and

p(r)=constXe 1 1+
m 1 m r

(5.14)
H

Hp

H„

H p H

Hp~ Hp P =E P
H p H

(5.21)

u(r)=
' 1/2

IC
& y2 (pr )

2 r
gf. +e
gf e— (5.15) The matrix elements can be obtained from Eq. (5.3} and

are given, e.g., as H~ 4n fdr r E &(r) w——ith
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E (r)=ED(r)+9(ah+a )

'2

+ —P'(r)
dr r2

9(—ab —a )P~(r)+38k, a P (r)

VI. NUCLEON PROPERTIES

The Fock states calculated in the previous sections
can be used to evaluate various baryon properties. Elec-
tromagnetic properties, such as charge radii and magnet-
ic moments, are calculated by taking the appropriate
moments of matrix elements of the electromagnetic
current

+9(ah+a )A, [o (r) —v ]P (r), J ", (x ) =gy "q~P i (—8+,&"8, 8—, d"8+, ) (6.1)

Epp(r)=ED(r)+9(ab+c )

'2
dP 2
dl' p'

+—P (r)
with

2 1+s3 1 1 —v3
(6.2)

9(ab —c)Pr (r—)+18Acg. (r)

+9(ah +c )A, [o (r) —v ]$2(r),

For @=0 this yields the charge distribution of the pro-
ton

p() =a (u +v )+p [—,'(u +U )+ 4pp ]

E p(r)= (a+b)gg(r)u(r)U(r)(n))(a a)"[)n &,
3

(5.22)

—(a+b)gy(r)u(r)U (r) &8~((a'a )"
~~n &,

3

Err(r) =E&ii(r), E&r(r) =0,

+y'[-', (u'+U'} —-', 00, ]

and, for the neutron,

Pn "
, =p'[-', ( '+ '}—-', 00, ]

+y'[ ,'(u'+U'—)+—',00,]-

(6.3)

(6.4)

and
In a similar way the operator for the magnetic moment
is given by

Eo(r)= — + [cr (r) v] m—„f o—{r)
p(r)=-,'[rXJ, (r)] . (6.5)

+ Uo+4k, x P (r)+3e . (5.23}

The matrix element of its z component between the Pock
states

~
N, J,= —,', T3 ———,

'
& and

~
N, J,=—2, Ti ————,

'
&

yields the magnetic moment of the proton and the neu-
tron. Explicitly their distribution reads

Since the fields u, U, o, and P depend on the initial
choice of a, p, y we have to solve the problem iterative-
ly. In practice, five apy iterations are sufficient, in a few
cases about ten.

The equations in this section describe the proton and
neutron. Since the formalism is based on Racah algebra,
there are only minimal changes in the equations in order
to describe the 633 resonances in terms of the Fock-state
equation (3.2). One simply has to replace

P " ruu
(54a +8p +40y +32&2py)

4n.e 81

+ (4p'+y')4'2e +1
11

( —36a —2P 20y —32&2P—y )
4me 81

2

(4p2+ y2)$2

(6.6)

(6.7}

(nf[(ata)" [Jn &= —5 —5,

( 6ff(a ta )"f/n & = —4&2 —2&2 .

If one does this replacement simultaneously in the equa-
tions of motion and in the expression for the total ener-

gy, one does, in the terminology of nuclear physics, a
"projection before the variation. " If one solves the
equations of motion for a nucleon (delta) and calculates
with these fields the energy of a delta (nucleon) by re-
placing. the doubly reduced matrix elements, then one
has a "projection after the variation. "

J„'=j,'y&r-q+~Xa~f . - (6.8)

The actual numbers of g~ and gz are taken from the z
component in space and the third (or zeroth) component
in isospace. Since the vector part yields just —„one ob-
tains altogether

The axial-vector coupling constant, measured in neutron
p decay, is a matrix element of the space part of the
isovector —axial-vector current (2.9). Explicitly one is in-
terested in g„/gv, where g~ is the corresponding matrix
element of the isovector-vector current
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gv
=2(NJ, = ,'T—3———,

' [:f ( ,'pk—y T,f+e"r)'e' e—'"r)'e)d r:
~
N, J, = —,', T3= —,'), (6.9)

yielding

gv
=4~ f drr 2 2a+27p+27y+ 27 py (u, v )+ ap(a+b)

d
5 2 5 z 25 2 32&2 2, 2 8

b
do'

(6.10)

The nNN coupling constant can be evaluated in two different ways, as a matrix element of the pion field, ir(r), or of
the pion source current

J =(cY'r)„+rn )rr= —ggiysrf —A. (d +i f„)n—, .

yielding

(6.11)

=(,N, J, =—,', T3 ————,
' ~: f d rzJ „(r):

~
N, J, = —,', T3 ————,')

N
(6.12)

or

=m„(N, J,=—', T3 ———
—,
' ~: f d r zN (r):

~
N, J, = 2, T3 ———

—,
' ) .

N
(6.13)

Explicitly these expressions read as

=4' f dr r —ap(a+b)A, (f —o (r)](() (r) —xA, 2a+ p (r)
N 3 3 3 3

+gu ( r )v ( r )(90a + 10p +50y +64&2py ) /81 (6.14)

from Eq. (6.12), and as

=m 4' ap(a+b) f dr r p(r) (6.15)

GeV & m (2. 1 GeV. In this range there are reasonable
values for the energies and the observables and in all
cases solitonic solutions of the equations of motion exist.

from Eq. (6.13). A. The soliton

VII. NUMERICAL RESULTS

The present model contains two free parameters: the
coupling constant g (or the asymptotic quark mass
m =gf ) and the o mass rn . The g is varied between
4.0 (g (6.5 and the m in the range 0.3

The successive iterations between colsYs and the di-
agonalizing of the Hamiltonian between frozen fields
gives us a solution of the model for a chosen value of the
coherence parameter x. The total energy should show a
minimum with respect to x which defines the final solu-
tion. This is indeed the case as the curv|: in Fig. 1

1..5 ~ ~ ~ ~ i ~ ~ ~ ~ i ~ ~ ~ ~ i l ~ ~ ~ i ~ ~ ~ ~

1.0-

1 0 2

8 = 5.00 m~ = 0.7 GeV

0.0-

5

—1.0-

1.0-
—1

Coh. par. x

~ 5 f ~ ~ ~ i ~ ~ ~ ~ i ~ ~ ~ i ~ ~ ~ ~ i ~ ~ ~ ~
—1.

0.0 0.5 1.0 1.5 2.0 2.5

r [fm]
FIG. 1. The mass of the solitonic nucleon solution vs the

coherence parameter x. The evaluation is performed for

g =5.00 and m =0.7 GeV. The unit of the mass is GeV.

FIG. 2. The quark fields u(r), U(r), the o. field, o.(r), and
the pion field, P(r), are plotted vs the radial coordinate r. The
calculations are performed for g =5.0, m =0.7.
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1..0 ~ r ~ ~ [ T ~ ~ ~ i I 'I ~ ~ I ~ 0 ~ I I I I ~ ~ sigma znass m~
0.3 0.6 0.9 1.2 1.5 1.8 2.1

Oi9 — ~ ~ i « i ~ ~ i ~ . i . . I

0.5-
6$

~ A

0..0 ~ I ~ ~ i ~ ~ ~ \ i ~ ~ I ~ i V ~ ~ 0 i I ~ ~ ~

0.0 0.5 1.0 1.5 2.0
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2.5
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a
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p, 04-

4

FIG. 3. The pion field, P(r), and the corresponding momen-

tum field, P~(r), are plotted together with the quark density,
u (r)+U (r), vs the radial coordinate r. The calculations are
performed for g =5.0 and m =0.7.

shows. For a typical soliton the corresponding fields are
presented in Fig. 2. For r & 2 fm all fields basically show
their vacuum values and the total soliton has an exten-
sion of about r =0.6-0.7 fm. The wall of the o field is
not very steep in contrast with many results of the
Friedberg-Lee model. The pion fields P(r) and P~(r) are
displayed together with the quark density in Fig. 3.
They are nonzero everywhere with negligible values for
r &2 fm. The P (r) is altogether steeper than P(r),
which requires some care in the numerical evaluation.

B. Trends

There are some simple trends of the energies and ex-
pectation values with regard to the variation of g and
m (see Fig. 4). For fixed m the mass of the system de-
creases with increasing g since the coupling between
quarks and mesons becomes stronger. Actually it can

Coupling constant g

FIG. S. The proton square charge radius is plotted vs the o
mass (g =5.37, solid line) and vs the coupling constant
(m =0.7 GeV, dashed line). The experimental value is given

by a dotted line.

reach even negative values for larger g indicating a clear
limitation of this model. The inclusion of sea quarks
would prevent this instability. The radius of the soliton
shrinks with increasing g since the pion pressure grows;
this is shown in Fig. 5. A similar effect takes place with
the magnetic moments and the axial-vector constant of
Figs. 6 and 7. Actually, with increasing g the relative
contribution of the mesons to the various expectation
values grows as seen from the average pion number in
Fig. 8. However, this meson part is relatively small and
overpowered by the decreasing quark contribution such
that the overall effect follows the trend of the quarks.
The increased coupling of the quarks to the mesons re-
sults also in a decreasing eigenvalue e of the quarks, see
Fig. 9, although the square radius of the quark distribu-
tion is reduced.

There are also some simple trends of the above quanti-

0.3
1.4

1J3

sigzna znass m~
0.6 0.9 1.2 1.5 1.8 2.1 z 0.3 0.6

3.0, r

sigma znass m~
0.9 1.2 1.5 1.8 2.1

i ~ ~ i ~ ~ I ~ ~

expt.

1.2-
N
N 1.1-

4 —expt.

2.5-

1.0-

0.9-

0.8--
4

xpt.

Coupling constant g

0 2.0-

1.50
a 4
C4

Coupling constant g

FIG. 4. The masses of the nucleon and delta for m =0.7
GeV are plotted vs the coupling constant g (solid lines) and for

g =5.37 vs the o mass m (dashed lines). The corresponding
experimental numbers are indicated by dotted lines.

FIG. 6. The magnetic moment of the proton is plotted vs

the coupling constant g (m =0.7 GeV, solid line) and vs the cr

mass m (g =5.0, dashed line). The magnetic moments are

given in units of the nuclear magneton.
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00

sigma mass m~
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Q

A
0.0

Coupling constant g

FIG. 7. The axial-vector coupling constant g& /gz is plotted
vs the coupling constant g (m =0.7 GeV, solid line) and vs

the sigma mass m, (g =5.0, dashed line).

FIG. 9. The eigenvalue e of the quarks is plotted vs the cou-

pling constant g (m =0.7 GeV, solid line) and the sigma mass

m (g =5.0, dashed line).

ties for varying o mass but fixed g, as can be seen from
the dashed curves in Figs. 4-9. Basically, all quantities
level off for increasing m . The reason is very clear.
For m ~no the self-interaction becomes so repulsive
that the equilibrium of the system lies on the chiral cir-
cle o +n f =0. —

C. Physical results

The g and m have been varied in order to obtain
rough agreement of the theoretical expectation values of
observables with the experimental data. Because of the
neglect of the sea quarks and of center-of-mass correc-
tions the results are not expected to be accurate to more
than 20-30%; thus, the fitting of g and m to the data
was not done very carefully. For a few typical results
we present the numbers in Table I. They show an
overall reasonable agreement with the experimental data.
The distributions of the magnetic moments and of the

charge are given as examples in Figs. 10 and 11. The
delta-nucleon splitting appears somewhat too small;
however, it is not clear whether this is an advantage or a
disadvantage of the model. There are certainly contribu-
tions of one-gluon-exchange terms to this splitting,
which are neglected presently. The axial-vector coupling
constant is in good agreement with experiment. This is
actually an important property, in particular, for a
chiral model as the present one. The magnetic moments
are too small; however, their ratio is very good. The
square radii of the neutrons are also too small. Both
these facts indicate that the pion component of the total
Fock state is probably not large enough, a feature which
will be discussed later in more detail. It should be men-
tioned that the above results are obtained using the ex-
perimental values for f =0.093 GeV and m„=0.138
GeV. There is some discrepancy in the pion-nucleon
coupling constant g zz. If one uses the Goldberger-
Treiman relation and evaluates the g zN as

sigma mass m~
P.S 0.8 0.9 1.2 1.5 1.8 2.1

p 6 't 0 s v w
/

~ ~

40
0.5-

p4
~ IH

0.3
4

Coupling constant g

FIG. 8. The average pion number N is plotted vs the sigma
mass (g=5.37, dashed line) and vs the coupling constant g
(m =0.7, solid line).

(GT) MNgA /gV
g mNN

then one obtains rather good agreement with experi-
ment. On the other hand, the evaluation of Eq. (6.12)
yields values which are by 40% too large, and of Eq.
(6.13) which are by 60% too small. As Birse pointed
out, the difference between Eq. (6.12) and Eq. (6.13) and
the violation of the Goldberger-Treiman relation corre-
sponds to a virial theorem of the kind discussed in Ref.
23. These virial theorems are time derivatives of expec-
tation values of various operators. Differences should
vanish for an exact eigenstate of the Hamiltonian. The
extent to which an approximation satisfies these virial
theorems provides a test of the approximations used.
The above discrepancy, which occurs also to some extent
in other models, ' shows that the present calculations
need to be improved, probably by adding components
with more impaired pions. In the framework of the pro-
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TABLE I. Results of the chiral model for the nucleon. For three sets of the coupling constant g
and the cr mass m the results of the present coherent-pair-approximation (CPA) model are compared
with experimental numbers. Given are the nucleon mass E&, the delta mass E&, the ratio of the
axial-vector coupling constant gz, to the vector coupling constant gz, the pion-nucleon coupling con-
stant resulting from g„and the Goldberger-Treiman relation, g'&z', the g ~z from Eq. 16.14), the
magnetic moment of the proton and the neutron, p~ and p„, respectively, their ratio (p~/p„), the
square radius of the proton ( r')r, and the square radius the neutron ( r )„. Please note that the cal-
culations are performed with f =0.093 GeV and m =0.138 GeV. The numbers are compared with

the outcome of projection calculations of Fiolhais et al. (Ref. 24).

E„(GeV)
Eg (GeV)
E —E (GeV)

g~ ~gv
(GT)

g mNN

g rrNN

p, (pN)

(r~&, ifm')
(r )„(fm )

CPA
g =6.00

m =0.7 GeV

0.915
1.176
0.261
1.36

13.9
19.2
1.88

—1.27
1.49
0.45

—0.01

CPA
g =6.11

m =1.2 GeV

0.938
1.215
0.276
1.45

14.6
22.5

1.85
—1.25

1.48
0.42

—0.01

CPA
g =5.37

m =1.2 GeV

1.071
1.291
0.219
1.45

16.69
22.7

1.85
—1.25

1.48
0.47

—0.01

Projected hedgehog

g =5.37
m =1.2 GeV

0.871
1.023
0.152
1.78

17.95
16.94
2.57

—2.23
1.15
0.53

—0.08

Experiment

0.938
1.232
0.294
1.23

12.4
13.6
2.79

—1.91
1.46
0.65

—0.12

jection theory it has been shown recently that with a
generalization of the hedgehog ansatz the Goldberger-
Treiman relation and the pion virial theorem are
satisfied.

The relative contribution of the mesons and the
quarks to the above expectation values can be obtained
from Table II. Generally the mesons contribute rather
little to the final values. Because of strong coupling and
the nonlinearity of the problem this does not mean that
they can be ignored from the start; however, their final
direct contribution is small. The only exception is the
axial-vector constant for which the value comes 30%
from the mesons and 70% from the quarks.

Altogether in the present model one has about
X =0.5 pions per nucleon. This agrees with the esti-
mates of Thomas who has used the results of deep-

inelastic neutrino and antineutrino scattering to obtain
an upper bound of 0.5 pions per nucleon, although the
uncertainties are rather large.

VIII. COMPARISON NUCLEON AND DELTA

For simplicity in Table I the delta isobar was not cal-
culated self-consistently, but the same fields u (r), U(r),
etc. , of the nucleon were used in both angular-
momentum and isospin coupling schemes. However, for
g =5.0 and m =0.7 GeV we performed an accurate
comparison whose qualitative features are supported by
test calculations with various parameter sets. The re-
sults are presented in Table III. In summary it turns out
that the nucleon-delta splitting gets a bit reduced by the
self-consistent treatment of the delta and that the quark

0
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—.02-
~ W

~ 04 I ~ ~ « i ~
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0.06-
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0.0 0.5 1.0 1.5 2.0

r (frn)

FIG. 10. The charge distributions for the proton and neu-
tron are plotted vs the radial coordinate r.

FIG. 11. The distributions of the magnetic moment for the
proton and neutron are plotted vs the radial coordinate r.
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TABLE II. Contributions of quarks and mesons. For the solution with g =6.00 and m =0.7 GeV
the contributions of the quarks and of the mesons to the observable quantities are given. Considered

are the axial-vector coupling constant, the vector part of the magnetic moment, the quadratic radius

of the charge distribution of the proton and of the neutron. The CPA results are compared with the
outcome of projection calculations of Fiolhais et al. (Ref. 24).

CPA

g =6.00
m =0.7 GeV

Quar ks Meson s Quarks

Projected hedgehog

g =5.37
m =1.2 GeV

Mesons

g~ ~gv

pp (pg)
&r &r (fm )

&r'&„(fm')

0.943
1.415
0.430
0.017

0.416
0.158
0.021

—0.021

0.98
1.34
0.36
0.09

0.80
1.23
0.17

—0.17

distribution of the delta shows a larger extension than
that of the nucleon. In the present model the latter is an
efFect of about 15% for the squared quark radius & r & .
Presently the extraction of form factors of the nucleon
and delta from experiment are not accurate enough to
see if this result is or is not correct.

IX. COMPARISON WITH OTHER MODELS

TABLE III. Comparison of nucleon and delta. Listed are
the mass, the mass splitting, the squared quark radius, the
squared charge radius, the mixing coefficients a, P, y and the
quark eigenvalue. The 5+ (nsc) indicates the non-self-
consistent calculation of the delta and the 6+ (sc) the self-
consistent one, where the minimization of the energy is per-
formed for the delta rather than for the nucleon.

M (GeV)
m, —m„(GeV)
&r'&q
&r'&

a

r
e (GeV)

Proton

1.08

0.57
0.58
0.82
0.38
0.43
0.14

6+ (nsc)

1.26
0.18
0.57
0.59
0.82
0.43
0.38
0.14

5+ (sc)

1.22
0.14
0.66
0.67
0.84
0.47
0.26
0.21

It is interesting to compare the nucleon Fock state in
the present approach with those used in other models.
Here we consider four models which also include pionic
degrees of freedom: the cloudy-bag model, the mean-
field model of Birse and Banerjee, the projected chiral-
soliton model, ' ' and the Skyrme model. '

In the cloudy-bag model the hadrons are described
in terms of massless quarks confined inside a bag. The
quarks are coupled to the pion field at the surface of the
bag in order to maintain axial-vector-current conserva-
tion. The pion field is described by a nonlinear cr model
whose linearized version is actually treated perturbative-
ly provided the bag radii are larger than 0.8 fm. Actual-
ly there are striking similarities in the results between
the cloudy-bag model and the present one. Both are in
good agreement with experiment and both give quark
wave functions with rms radii of 0.7 fm. If pions are
treated to first order one obtains an average number of

0.5 pions per nucleon for bag radii of 0.8 fm. This is
comparable to our results, although our coherent pion
state contains multipion components.

Birse and Banerjee solved the linear chiral cr model in
the mean-field approximation using the hedgehog ansatz
for the quarks and for the pion field. After the variation
they performed an approximate projection on angular
momentum and isospin ignoring in this procedure the
contribution of the pions. Birse' and Golli and Rosi-
na' have evaluated this model further, performing prop-
er projections even before the variation in the hedgehog
approximation. Fiolhais et al. generalized the
hedgehog and performed spin and isospin projections as
well. Since these authors used exactly the same La-
grangian used in this paper, one can directly compare
their numbers with the outcome of the present ap-
proach (see Table I). For g =5.37 and m =1.2 GeV
the hedgehog mean-field energy is E;„„=1.119 GeV,
projection after the variation yields for the nucleon
Ez ——0.924 and the projection before variation
Ez ——0.871 GeV. The present approach only allows,
in this terminology, projection before the variation and
yields E~=1.071 GeV, which is about 200 MeV less
bound than the corresponding EN ". The reason for this
discrepancy probably lies in a di8'erent treatment of the
pion cloud, since in our model we have considered only
one unpaired pion. As has been shown recently there
are noticeable contributions from states having two,
three, and higher numbers of unpaired pions. Since
those contributions are ignored in the present approxi-
mation, the neutron squared radii are very much smaller
than in the projection formalism. The ratio of the mag-
netic moments is better in our model, on the other hand,
since the pions contribute only negligibly (see Table II)
which causes the absolute value of p to be too small.

Another approach, which has received much attention
recently, is the Skyrme model. ' In contrast with the ap-
proaches discussed so far the Skyrme model does not in-
clude explicit quark degrees of freedom but only effective
fields having the quantum numbers of a pion and a o.

meson. The stable solitons of the model with topological
winding-number 1 are identified with baryons. Those
Skyrmions are subjected to some sort of semiclassical
quantization procedure to extract observable quantities.
If one compares the results of Adkins et al. ' with those



37 CHIRAL MODEL OF THE NUCLEON AND 5 ISOBAR: THE. . . 767

of Jackson et al. one realizes that the Skyrmion models
sufFer under the dilemma either to reproduce g„and f
and to fail in the nucleon and delta masses, or to repro-
duce the masses and to fail in g„and f . The nontopo-
logical models as, e.g., the present one seem not to have
this problem although a clear conclusion cannot be
drawn since the comparison is not based on identical fits.

X. SUMMARY AND CONCLUSIONS

The linear chiral-soliton model, involving quark fields
and elementary pion and 0. fields, has been solved in or-
der to obtain a description of static nucleon and delta
properties. To this end Fock states with good spin and
isospin properties were constructed whose fermion part
consists of three quarks in a spherical s orbit with
SU(2) X SU(2) nucleon and delta wave functions. The bo-
son part of the Fock state consists of a spherically sym-
metric scalar coherent state for the 0. field and coherent
pair states of pions with definite spin and isospin quan-
tum numbers. Using these Fock states, ignoring sea-
quark effects and center-of-mass corrections, the station-
ary state of the system was found variationally; the solu-
tion involved solving four nonlinear coupled differential
equations with two Lagrange multipliers and an associat-
ed diagonalization procedure.

The resulting nucleon-delta splitting is about half the
observed value suggesting the need for residual, spin-

dependent gluonic interactions. The calculated nucleon
properties appear in reasonable agreement with experi-
ment. This is true in particular for the axial-vector cou-
pling constant, to whose value the mesons contribute by
more than 30%. The other properties of the nucleon are
to 10% affected by the mesons. This seems to be too
small as the neutron charge radius indicates. Altogeth-
er, the approach suggests about half a pion per nucleon,
a number being in agreement with first-order perturba-
tion theory of the cloudy-bag Lagrangian. However, the
problems in satisfying the virial theorems and the
Goldberger-Treiman relation are an indication that a
better description of the pion cloud is required before a
comparison with experiment can be considered success-
ful. In the present approach this entails the inclusion of
a larger number of unpaired pions. The techniques
spelled out in this paper are directly applicable for this
extension.
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