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Using only the known short-distance behavior of quantum chromodynamics it is possible to
prove that, for sufficiently large quark mass m, and fixed antiquark mass, the dimeson (Q%H
must be stable against strong decay into two mesons. The binding energy is %m a1+0(m~hH].
We then study systems in which Q is ¢ or b, using the many-body confining interaction that comes
from a Born-Oppenheimer approximation to the MIT bag model. The calculations were per-
formed using the Green’s-function Monte Carlo method. The 1% isoscalar dimeson T (bbid) is
bound by ~70 MeV with respect to two B mesons; it can only decay weakly, therefore. The cal-
culations of the dimesons (ccg ') and (bcg § ') are more uncertain, but indicate that the latter may

also be bound.

1. INTRODUCTION

One of the important topics in particle and nuclear
physics is the role of the color degree of freedom. Only
limited information about this question can be obtained
from ordinary mesons and baryons because there is only
one color-singlet state available to the gg and g° systems.
The simplest system for which color is a dynamical vari-
able consists of two quarks and two antiquarks, which
can exist in two independent color-singlet states.

Knowledge of the color variable can provide interest-
ing information about the state of the system by compar-
ison with two separated mesons, which are both in
color-singlet states. In the color basis that we work in
this corresponds to probability % for the (66) state and
probability 1 for the (33) state. We shall later see a
four-quark bound state in which these numbers are ap-

proximately | and 2, respectively, indicating a large

4
departure of the color wave function from that of two
noninteracting mesons. The relation between these color
probabilities and the masses of the quarks is a central
theme of the present work.

In a number of papers' ¢ it has been suggested that
the dimeson (Q2F g ') is stable against breakup into the
two mesons (QF)+(Qg ') provided the mass m of Q is
large. Since some of these papers make purely phenome-
nological assumptions about the nature of the interac-
tion in the four-quark system, the physical basis for the
result is not obvious. We have recently argued® that for

sufficiently large m the dimeson must be bound, and in.

Sec. IT we show how this result follows from minimal as-
sumptions that are consistent with quantum chromo-
dynamics.

The bulk of the present paper is concerned with the
search for bound dimesons in which the light particles
are either @ or d, and the heavy particles ¢ or b. [In Ref.
6 there was a similar study in which all four quarks are
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heavy, e.g., (¢2¢?), which is indeed expected to be
bound.] There are new physics questions that arise
when light quarks are considered. First of all, is the po-
tential energy that we use, which was derived from a
Born-Oppenheimer approximation to the MIT bag mod-
el,” valid when some of the quarks are light? One aspect
of this question applies to any potential model, and that
is whether or not there are important nonstatic correc-
tions to the confining part of the potential for rapidly
moving quarks. In the present paper we assume that the
same potential that we used for heavy quarks”® applies
for light quarks as well. The details of the potential are
discussed in Sec. III. Since the light quarks are relativis-
tic we use 3; (p?+m?2)'/? as the kinetic energy operator,
and our Green’s-function Monte Carlo method for solv-
ing the four-body two-channel Schrodinger equation is
described in Sec. IV. The results are presented in Sec.
V, and summarized in Sec. VI. The hyperfine interac-
tion is discussed in an Appendix.

II. THE LARGE-MASS LIMIT

We want to show that, independent of the detailed na-
ture of the confining interaction, the potential energy

V= VCoulomb + Vconfming (2.1)

leads to a bound dimeson for sufficiently large quark
mass if the masses of the antiquarks are held fixed. The
Coulomb potential is given by

F" .Fj
VCoulomb = 2 as - ’

i>j Tij

(2.2)

where F; is the color SU(3) generator for the ith particle
and a; is the strong coupling constant. Spin-dependent
terms arising from one-gluon exchange are omitted for
now since their presence does not affect the conclusion.
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The only assumption we need make about the confining
potential is the trivial one that it remains finite when
two particles come close together. In particular, we do
not assume that it can be written as a sum of two-body
potentials; indeed, such an assumption would violate
theoretical expectations as well as produce unphysical
van der Waals forces between hadrons.

The essential ingredient for the proof is the fact that
the Coulomb potential between two quarks in a color 3
state is attractive, since F;-F I has the value —2 in that
state. As the mass of those quarks increases they come
closer together under the influence of that attraction and
their relative wave function becomes hydrogenic with a
Bohr radius a corresponding to a reduced mass m/2 and
a coupling constant 2a,/3:

3
mag

a = (2.3)

The energy associated with the QQ subsystem, therefore,
is

E(QY)=—1ma?. 2.4)
The key point is that none of the other energies in the
four-body system are proportional to m since all the oth-
er relative momenta involve antiquarks whose masses are
fixed. Consequently,

EQ’37")=

—ima[1+0(m~N)]. (2.5)

Furthermore, the last mentioned argument about the
other energies being bounded in the large-m limit applies
equally well to the individual mesons (Qg) and (Q7').
In this limit, therefore,

E(Q9)+E(Q7")-E(QF g )=imal[1+0(m 1],
(2.6)

which proves that for sufficiently large m the dimeson
must be bound. A logarithmic reduction in a, as m in-
creases, due to asymptotic freedom, does not alter this
conclusion.

Note that the argument for stability presented above
would fail if one or both of the antiquarks has the same
mass as the quarks, as, for example, in the equal-mass
case (Q2Q?). In such a system all relative momenta are
comparable, and since the Coulomb attraction between
Q and Q in the color-singlet state is twice as strong as
that between Q and Q in the 3 state, the QQ pairing is
the preferred one. While this does not prove that there
is no bound dimeson for this system, it is consistent with
the fact that we have not found any.®

III. THE HAMILTONIAN

To derive the static potential energy for a system of
quarks from the Born-Oppenheimer approximation to
the MIT bag model, one is supposed to solve for the glue
field and the correct bag surface for every set of posi-
tions of the quarks. The surface is deformed, in general,
but it was shown in Ref. 7 that when all the quark sepa-
rations are comparable and =1 fm, a spherical approxi-

mation to the bag is adequate. Making a dipole approxi-
mation to the homogeneous part of the Green’s function
for a sphere yields’

vV —a s i K Dy
Si>j i V2

where (3.1)

N
D= 2 F,»l',»

i=1

is the color-dipole-moment operator. The string tension
k is determined by the bag constant B and o, via

32 172
E2LAp

k=
3

(3.2)

The subscript S on the potential indicates that it is ex-
pected to be valid at small distances. Note that as a re-
sult of the square-root operation in Eq.(3.1) the confining
term is indeed a many-body potential.

It is the fact that Eq. (3.1) applies to any number N of
quarks and/or antiquarks that enables us to calculate the
energy of individual mesons and dimesons on the same
footing.® For the two-body system, the potential be-
comes

aS
v~ ——4—T+(%)1/2kr

3.3
3 (3.3)

which shows that the effective string tension at small dis-
tances is only ~0.8 of its value at very large distances
where the bag becomes a tube of flux. "’

Even though the dimesons we shall be discussing are
smaller than 1 fm, a portion of the wave function ex-
tends farther out, so to be quantitative it is necessary to
also consider the behavior of the potential at larger dis-
tances. The portion of configuration space that is most
important for this purpose consists of one (Qg) pair
separating from the other. In this region the bag be-
comes deformed and must even be capable of undergoing
fission. This is a difficult technical problem that we have
not yet solved, so we do not know the correct form of
the potential at intermediate distances. What we shall
do instead is to use some physical arguments to write
down the potential matrix at large distances, and then
use a simple parametrization to make a smooth transi-
tion. 1°

The natural color basis for discussing this transition is
the one in which the separating (QgF) pairs are either
both in color singlets or both in color octets coupled to
an overall singlet. Labeling the two quarks as 1 and 3,
and the two antiquarks as 2 and 4, and calling R, 3, the
distance between the midpoints of the two pairs, the
color basis for this geometry is chosen to be

¥, = | [(12)'(34)']") ,

(3.4)
ve= | [(12)3(34)%]") .

For R, 3, R 1 fm we expect the potential to become
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VP (rip)+ VP rs) o
o SkgR 334

Vi9(12,34)= (3.5)

The significance of the various matrix elements is as fol-
lows. The diagonal element in the singlet-singlet state is
the sum of the two potential energies within the indivi-
dual (Qg) pairs, with no interaction between them. The
diagonal element in the octet-octet state is the confining
part of the bag-model potential energy between two oc-
tets. Referring to Eq. (3.2) shows that k ~(F?)!/2, and
consequently

kg Fg-Fyq
k = | FyF5

172 172

3

V) (3.6)

_3
=

The factor f has the value (2)'/? at small values of the
separation of the two octets, where a spherical bag is
valid, and becomes unity at large separations, where a
tube of flux develops.

Concerning the off-diagonal element O, it must fall off
sufficiently rapidly with distance so that there are no van
der Waals forces, and this means at least exponentially.
Not knowing the correct strength for this term we sim-
ply set O=0. As our method of combining Vg and V
(see below) involves a Gaussian weight factor, the full
potential ¥V does have an off-diagonal element with
Gaussian falloff at large distance.

Since the potential energy depends only on the posi-
tions and color charges of the sources, it must be sym-
metric under the interchange of all coordinates of the
two quarks or the two antiquarks; hence we also need a
second quantity V;(14,23) obtained by interchanging
24 in Egs. (3.4) and (3.5). [Note that Eq. (3.1) already
possesses this symmetry.] We now combine the small-
and large-distance components of the potential smoothly
by taking

VO =v®[1-W(12,34)— W (14,23)]

+V{N(12,34)W (12,34)
+Vi¥(14,23)W(14,23) , (3.7)
where
W(ij,kD=O(BR} 1 —ri—rk)
X[l—exp( _R,%-,k]/dz)] . (38)

The O function is defined to be 1 if its argument is posi-
tive and zero otherwise, and B <2 guarantees that the
two ® functions occurring in Eq. (3.7) are mutually ex-
clusive, i.e., at most one of them can be nonvanishing in
any given geometry. The parameter d in Eq. (3.8) deter-
mines (along with ) the relative amounts of the small-
and large-distance portions of the potential, and accord-
ing to the discussion above we choose d=1 fm but also
show some results with d=0.5 fm and d = .

Since light quarks (m ~0.3 GeV) are quite relativistic
under the influence of this potential, we use the “‘semi-
relativistic” (SR) operator (p?>+m?2)!/2 for the kinetic en-
ergy:

Ex=3Vp*+m? (SR). 3.9)
i
For some cases we also report results with the nonrela-
tivistic (NR) expression:
Ex=3 (p?/2m;+m;) (NR).

il

(3.10)

The interaction parameters and masses used in this
study are given in Table I below. In addition to the
spin-independent potential given by Egs. (3.3) and (3.7)
we also include, as a perturbation, the hyperfine interac-
tion. The details are presented in the Appendix.

IV. CALCULATIONS

In order to determine the binding energies of the
dimesons, it is necessary to calculate the ground-state
energy of both the mesons and dimesons. Accurate vari-
ational methods have been used to determine the ground
state of the Q7 systems. By diagonalizing the Hamiltoni-
an within a suitable subspace, the energy is easily deter-
mined within ~1 MeV. For the dimesons, we have used
the Green’s-function Monte Carlo (GFMC) method to
project out the ground-state energy. The GFMC
method is exact in principle, yielding ground-state ener-
gies subject to only a statistical error.

The Schrédinger equation may be solved numerically
for the meson’s ground state when a nonrelativistic ki-
netic energy expression is used. The semirelativistic ki-
netic energy operator is nonlocal, however, involving all
powers of the momentum. Therefore, we use variational
methods to solve for the ground state.

We take the trial wave function for the meson to be a
sum of Gaussians:

Y= zciexp[—(rgq/b,-)z] . 4.1)

The ranges b; of the Gaussians are variational parame-
ters, and their relative strengths are determined by first
obtaining an orthonormal basis from the set of Gauss-
ians and then diagonalizing the Hamiltonian matrix in
this basis. A Gaussian form is chosen to simplify the
evaluation of the matrix elements. The kinetic energy
matrix elements are evaluated in momentum space, and
the potential-energy terms in coordinate space.

The method has been tested by varying the range and
number of Gaussians. Typically, 7-10 Gaussians are
used, and this seems to provide a ground-state energy
accurate to approximately 1 MeV. For comparison, we
have also calculated the meson’s ground state using a
simple one-parameter wave function:

Y=exp(—ary) . 4.2)
In the semirelativistic case, this trial function gives an
energy only slightly (5-10 MeV) higher than the sum of
Gaussians, while in the nonrelativistic case the energy is
within 1-3 MeV of the exact result. The two types of
wave functions are compared in Fig. 1. The principal
difference appears to occur in their small-r behavior.
The semirelativistic kinetic energy operator produces a
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FIG. 1. The ground-state wave function of the b meson.
The solid curve is obtained from a sum of Gaussians [Eq. (4.1)],
while the dotted line is a single exponential. The dashed line is
the nonrelativistic wave function.

divergent wave function (although not probability) as
r—0, and the one-parameter exponential wave function
cannot reproduce this behavior. The nonrelativistic
wave function is also shown. As is apparent in the
figure, the semirelativistic Hamiltonian gives a
significantly smaller radius.

The calculations of the ground-state properties of the
dimesons are more difficult. Standard variational Monte
Carlo methods!! are first used to determine an upper
bound to the true ground-state energy. The Metropolis
method is employed, and both channels are summed at
each point in the walk.

The variational wave function of the dimesons is taken
to be

p=[exp(—a.rp—ary—apr)+(1<3)]Y;
+cmlexp(—acry—acryg—apr;y) —(103)]d ,

(4.3)

where 15 () indicates a coupling of a 3 and 3 (6 and 6)
to a total color singlet. The variational parameters are
a., a3, and c,. This wave function accurately
represents the system in the limit of two separated
mesons. For the case a;;=0, we obtain an antisym-
metrized product of two meson wave functions, each of
which is represented by an exponential in the pair sepa-
ration. The parameter c,, will give a probability for the
66 channel that is twice that of the 33 channel in this
case.

As the quark mass increases, the parameter a,; be-
comes large, and the wave function of Eq. (4.3) will de-
scribe independent orbits of the light quarks around the
heavy quarks. In this limit, the parameter c,, will be
very small, since there is a Coulomb repulsion between
the heavy quarks in the 66 channel. Results of varia-
tional calculations of the bbiid meson are shown in Fig.
2, which illustrates the transition from a bound dimeson
to two isolated mesons. The minimum variational ener-
gy is plotted as function of the heavy-quark separation
parameter (1/a,;) for several choices of the cutoff pa-
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FIG. 2. Variational calculations of the minimum energy of
the bbizd system as a function of the meson separation parame-
ter ai3'. The energies are plotted as solid curves for three
choices of the cutoff parameter d (squares correspond to
d = «, triangles to 1.0 fm, and circles to 0.5 fm). The size of
the symbols corresponds to the statistical error of the Monte
Carlo calculations. The dashed line gives the magnitude of the
ratio of the amplitude in the 66 channel to that in the 33 chan-
nel for d=0.5 fm (right-hand scale). Two isolated mesons cor-
respond to a ratio of V' 2. Parameter set C1 was used in these
calculations, and the dotted line represents the sum of the ener-
gies of (biz) and (bd).

rameter d. Interaction parameter set Cl (see Table I)
was used in each case, along with a slightly modified
form of the cutoff.

The variational energy passes through a minimum as
the two heavy quarks are separated. For larger separa-
tions (and a finite cutoff d), the energy will increase to
the variational energy of two isolated mesons, each
parametrized by an exponential in the internal coordi-
nate. The relative amplitudes of the 33 and 66 states are
also plotted in Fig. 2. For small separations, the ampli-
tude in the 66 channel is very small due to the Coulomb
repulsion. The magnitude of the amplitude in the 66
channel gradually increases, approaching V'2 times that
of the 33 channel for large separations, which is the
correct ratio for two isolated mesons.

Results for the ttZd dimeson are shown in Fig. 3. In
this case the a; associated with the ¢t color Coulomb at-
traction has been reduced to 0.32 to take into account
the effects of asymptotic freedom. For this heavy-quark
mass, the dimeson is deeply ( ~700 MeV) bound, and the
minimum variational energy is obtained with a tightly
bound QQ pair ((11_3l =~0.03 fm).

The variational parameters for a variety of dimeson
systems are given in Table III below. The effects of the
semirelativistic kinetic energy expression are seen in a
comparison of the values of a, obtained for the bbiid
dimeson with parameter sets B and C. The semirela-
tivistic interaction (B) produces a smaller overall size for
the wave function of the light quarks.

The major deficiency of this variational wave function
appears to be the fact that there is no correlation be-
tween the two light quarks. In the nonrelativistic case,
this correlation can be trivially included and the varia-
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FIG. 3. The variational energy of the ttid dimeson vs the
separation parameter ap;'. The energy of two isolated t&
mesons is 0.45 GeV on this scale.

tional ground-state energy reduced. For a semirelativis-
tic kinetic energy, this additional correlation greatly in-
creases the difficulty of Fourier transforming the wave
function and calculating the kinetic energy. Therefore,
we rely upon the Green’s-function Monte Carlo method
to introduce these correlations.

The variational energy of these wave functions is
larger than that of two separated mesons in some cases,
and therefore could in principle be reduced by setting
a;; to zero. However, we use the Green’s-function
Monte Carlo method to determine the true ground state,
which has a very small overlap with the wave function
of two separated mesons.

Green’s-function Monte Carlo methods are very
attractive for this study because we are primarily in-
terested in the ground-state properties of the system.
Two difficulties are immediately apparent, however, in
applying standard methods to the dimeson system. The
semirelativistic kinetic energy operator necessitates the
use of a different Green’s function. We employ the
short-time approximation in these calculations, where
the full Green’s function (R’|exp(—HA7)|R) is ap-
proximated by the product of a free particle Green’s
function G(R,R’,A7r) and exp(—VAr). The nonrela-
tivistic Green’s function is

12—16

3/2
G(R,R’,Ar)= ﬁzl / exp( —mc2Ar)
4 m At
X exp ——(—':fi—— , (4.4)
4 ?n- AT
with
AR=|R-R’| . 4.5)

For the semirelativistic kinetic energy operator, the
Green’s function is

41 Ba?

G(R,R’,AT)= K,[a(1+B8%)'?],
D= Gy AR 45 ele+B) ]
(4.6)
where
fic AT
B="\r 4.7)
a=mcAR /# , 4.8)

and K, is a Bessel function of order 2.

This Green’s function differs from the Gaussian pri-
marily in that there is a long-range part whose range is
equal to the inverse of the mass and independent of the
time step. The magnitude of this long-range part is pro-
portional to the time step, however, so that the Monte
Carlo root-mean-square step size is the same as in the
nonrelativistic case. In the limit of large m A7 and small
AR /(#c A7), the two Green’s functions become identical.
The nonrelativistic and semirelativistic Green’s functions
are compared in Fig. 4.

The other difficulty in treating these systems is that
there are two coupled channels (the 33 and 66 color
states). A straightforward extension'* of standard'®'
methods is sufficient to treat these systems. The ex-
ponential of the potential is evaluated by diagonalizing
the interaction at each step in the walk. The standard
difficulties associated with fermion systems'® are largely
absent in these calculations. Since we are searching for
the lowest-energy state of any spatial symmetry, the ran-
dom walks converge to the physical ground state. Al-
though negative weights do eventually appear due to the
spatial antisymmetry in the 66 channel, the increase in
noise is very slow. Consequently, the ground-state ener-
gy may be easily determined before large statistical er-
rors are introduced.
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A T T T
0.0 02 04 06 08 1.0

Green's Function
20000
1

10000
.

mAT = 0.10

0

T T
0.00 0.01 0.02 0.03 0.04 0.05
AR (fm)

FIG. 4. A comparison of the nonrelativistic (solid lines) and
semirelativistic (dashed lines) Green’s functions for two values
of mAr. The mass is 5 GeV in both cases. The product
m A7=25 is much too large for this system, but is shown to il-
lustrate the correspondence of the two Green’s functions for
large times.



V. RESULTS

The results of our calculations are summarized in
Tables I-VI. We first discuss the results for the mesons,
and then the binding energy of the dimesons with and
without the hyperfine interaction.

Several sets of interaction parameters®® have been
used in these studies so that the model dependence of
the results can be determined. The various choices of
parameters are given in Table I. Set A provides a good
fit to (bb) and (cT) spectra; sets B and C only fit (bb).
The labels of the different parameter sets are chosen so
that all sets labeled by the same letter produce the same
meson ground state. Different numbers indicate
different interactions in the transition region, which only
affects the dimesons. Table II gives the ground-state en-
ergies of various mesons with different parameter sets.
Results are given for the spin-independent interaction.
The change in energy of the S=0 state due to the
hyperfine interaction is given in the last column. As in-
dicated in Table II, the spin average of the light-heavy
experimental meson energies do not agree well with the
calculated values. (For the bb meson, we have assumed
an experimental hyperfine splitting of 80 MeV, since the
energy of the 7, is not known.) The agreement with ex-
perimental meson masses could be improved somewhat
by reducing the light-quark mass, as shown in Fig. 5.
The discrepancy cannot be entirely eliminated in this
manner, however. We proceed with the expectation that
the errors will largely cancel when calculating the
difference in energy of a dimeson and two mesons. In
addition, we have performed calculations with two very
different sets of interaction parameters.

A. No hyperfine interaction

Results for the dimesons are presented in Tables
IIT-V. Table III gives the variational parameters that
were used for the GFMC calculations of the dimesons.
These parameters were not carefully optimized for every
case, since GFMC converges to the ground state for any
trial wave function that is not orthogonal to that state.
In particular, the dimeson wave functions were not
changed for different cutoffs of the four-quark interac-
tion in Eq. (3.8).

Tables IV and V present the ground-state energies of
the various dimesons, omitting the hyperfine interaction
(in both mesons and dimesons). The ( gbﬁt? ) dimeson has
nearly the same binding as the (bcizd) and (cciid) sys-
tems, as seen in Table V. The b quark is not heavy
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FIG. 5. Energy of the ciz meson as a function of the light-
quark mass (interaction parameter set A).

enough for the bb Coulomb attraction to completely
dominate [Egs. (2.3)-(2.5)] the other energies in the
problem.

Table IV shows that the 66 channel has the smallest
probability for the bbizd dimeson, as expected from the
arguments given in Sec. II. Even for this case, however,
the 66 channel is significant. The semirelativistic kinetic
energy operator allows the wave function of the light
quarks to be restricted to a fairly small region, so that
the separation between the heavy quarks is not negligible
compared to typical light-heavy quark separations.

Prior to the introduction of hyperfine perturbations,
the bbiid dimeson is bound by approximately 90 MeV.
This result does not depend strongly upon the choice of
interaction in the transition region [Eq. (3.5)]. Parame-
ter set Bl yields a smaller binding energy, approximately
40 MeV. The spin-independent interaction also results
in bound bcizd and ccizd dimesons, with only a slight de-
crease in binding energy as the mass of the heavy quark
decreases. The most obvious change in the system as the
heavy-quark mass decreases is the increase in magnitude
of the 66 component of the wave function, as indicated
in Table IV. For two isolated mesons, the probability of
the 66 component would be twice that of the 33 com-
ponent.

There is a greater uncertainty in the ccizd dimeson
arising from uncertainties in the interaction. As de-
scribed in Sec. III, the potential energy as the dimeson
separates into two mesons in not well determined by the
dipole approximation to the bag [Eq. (3.5)]. Therefore,

TABLE I. Interaction parameters used for the dimeson calculations. All energies and masses are given in GeV and all distances
in Fermi. The column kinetic energy (KE) tells whether the nonrelativistic (NR) or semirelativistic (SR) kinetic energy expression
is used. Interaction set A3 is the same as A1 except that the Gaussian cutoff [Eq. (3.8)] is squared, producing a sharper cutoff. The

final two columns are the parameters in that equation.

Parameter set a B! KE m,,my m, my m, d B

Al,A3 0.370 0.245 SR 0.35 1.364 4.781 60.0 1.0 2.0
A2 0.370 0.245 SR 0.35 1.364 4.781 60.0 1.0 0.5
Bl 0.495 0.145 SR 0.35 1.685 4.970 60.0 1.0 2.0
Cl 0.495 0.145 NR 0.35 1.685 4.970 60.0 1.0 2.0
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TABLE II. Ground-state properties of various mesons. The third column gives the variational pa-
rameter a [Eq. (4.2)]. The ground-state energies are obtained with the parametrization given in Eq.
(4.1). The calculated and experimental masses are spin averages of the S=0 and S=1 state, and the
last column gives the change in energy of the $=0 state due to the hyperfine interaction. All energies

and masses are in GeV.

Variational
Parameter Quark parameter E (without AE
set content a fm™1) hyperfine) M o M et (hyperfine)
Al cit 33 0.535 2.25 1.97 —0.111
ba 4.0 0.427 5.56 5.31 —0.044
cCc 4.1 0.318 3.05 3.07 —0.076
bb 8.4 —0.135 9.43 9.44 —0.020
Bl cl 2.9 0.162 2.20 1.97 —0.103
bt 3.6 0.088 5.41 5.31 —0.053
cc 4.4 —0.070 3.30 3.07 —0.085
bb 10.4 —0.552 9.39 9.44 —0.032
C1 bu 2.2 0.229 5.55 5.31
bb 8.8 —0.478 9.46 9.44
tu 2.2 0.226 60.58

our results depend to some extent on what parametriza-
tion is chosen for the interaction in this region, as shown
in Table IV. The cciid meson is larger than the bbizd
and consequently more sensitive to the interaction in this
region.

B. With hyperfine interaction

We now examine the effect of including the hyperfine
interaction according to the prescription given in the
Appendix. The ground state of each meson is split into
a pair of levels with the S=1 state shifted upward by 1
the amount the S=0 states moves downward. The latter
numbers are given in Table II.

The hyperfine shift in the dimesons is shown in Table
VI for each spin assignment. There does not appear to
be a simple argument to determine which spin state is
lowest in energy. The factor (m;m; )~!in Eq. (A1) tends
to make the light-light pair dominate over the light-
heavy pairs; but the spatial matrix elements are smaller
for the former, and there are four of the latter. It turns
out that in the (bbg g ') system the lowest-energy state
has the spin assignment (524,513,5)=(0,1,1) where S13

TABLE III. Variational parameters used for the dimeson
calculations. The form of the wave function is given in Eq.
4.3).

Parameter Quark
set content a;; (fm™') a, fm~") Cm
A bbad 4.5 3.0 1.4
beud 3.0 3.0 1.4
cciid 2.5 3.0 1.4
B bbud 4.5 3.0 1.1
C bbud 4.0 2.0 0.6

ttiad 32.5 2.0 0.3

is the spin of the two heavy particles, S24 is the spin of
the two light particles, and S is the total spin. Since the
space-color wave function is antisymmetric under the in-
terchange of § and § ' [see Eq. (4.3)], the S24=0 state is
available only to an isoscalar pair. For the (bcg g ') and
(ccq @ ') systems, on the other hand, the lowest state has
S24=1, which must be an isovector.

The hyperfine levels are also shown in Figs. 6-8. Ex-
amination of Fig. 6 shows that each level of (bbg g ') is
lower in energy than the threshold for two mesons
(bg )+ (bg ') with the same total spin. The ground state
(0,1,1) of the dimeson, being 70 MeV below the BB
threshold, is stable against all strong and electromagnet-
ic decays. The (1,1,0) state can only decay electromag-
netically and will therefore be a sharp resonance. The
same is true of the (1,1,1) state, which is very close to
the BB threshold but cannot decay strongly because of
parity. The (1,1,2) state can decay strongly to BB but
the angular momentum barrier will probably keep it nar-
row.

Figure 7 shows the corresponding level diagram for
the (ccg g ') dimeson. Here the ground state (1,1,0) is 60
MeV above the DD threshold and can only be a broad

TABLE IV. A comparison of results for the bbizd and cciid
with different potential cutoffs [Egs. (3.7) and (3.8)]. The third
column gives the relative probability of the 66 channel, defined
such that (¥ |ve)+ (5| ¥5,)=1. No hyperfine interac-
tions are included.

Quark Parameter
content set (Yez | ¥g) Energy (GeV)
bbid Al 0.2340.01 0.765+0.004
A2 0.26+0.01 0.756+0.003
A3 0.23+0.02 0.773+0.008
cciid Al 0.3340.01 0.995+0.007
A2 0.41£0.01 0.955+0.005
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TABLE V. The ground-state energies of the dimesons, and
their binding energies with respect to two separated mesons.
The hyperfine interaction is not included in either the dimesons
or mesons. All energies are in GeV. The statistical errors in
the Monte Carlo calculations are approximately 10 MeV in all
cases.

Parameter Quark
set content E Binding energy
Al bbad 0.765 0.09
beiid 0.875 0.09
cciid 0.955 0.08
resonance. The (0,1,1) and (1,1,1) states, on the other

hand, can only decay electromagnetically. The energies
of this system, and also the mixed dimeson (bcg g '), are
more uncertain, however, since they depend more sensi-
tively on the model parameters.

The level diagram for (bcg g ') is shown in Fig. 8. The
ground state (1,1,0) is degenerate with the BD threshold
within the numerical accuracy of the calculations. The
(0,1,1) state and the lower mixture of (1,0,1) and (1,1,1)
are about 20 MeV above the BD threshold, and will de-
cay electromagnetically.

VI. SUMMARY

For sufficiently large quark mass m (and fixed anti-
quark mass 7 ), the dimeson (Q?7?) must be stable
against strong decay. The color Coulomb attraction of
the two quarks in the color 3 state dominates all the oth-
er energies in the problem.

We have employed a confining interaction derived
from a Born-Oppenheimer approximation to the MIT
bag model in order to estimate the binding energies of
various dimesons. Generalizations of Green’s-function
Monte Carlo methods have been introduced to allow us

160
- e e T — 1
sol- —
~ B*B -------
> (1,1,2)
2
w
(1,1,1)
o} Y R — —_— —
(1,1,0)
(0,1,1)
-80
s=0 s=1 s=2

FIG. 6. Hyperfine structure of the bbg g ' system. States of
two mesons are indicated by dashed lines and dimesons are
shown as solid lines labeled by (S ., S4;,S) where S is the total
spin. The levels on the left omit the hyperfine interaction.

320
D¥D¥ccmcmee mmmmeee ameo]
240 —
------- (1,1,2)
~~
2> 160 —
= 0*D ---mmm-
w
(1,1,1)
(0,1,1)
80— —
(1,1,0)
o DD --=---- —
S=0 S=1 S=2

FIG. 7. Hyperfine structure of the ccg g’ system. See cap-
tion to Fig. 6.

to treat the semirelativistic and coupled channel (see also
Ref. 14) aspects of the dimeson systems. These methods
should prove very valuable in many quark model appli-
cations. _

We find that the 1% isoscalar dimeson T (bbiid) (Ref.
17) is bound by ~70 MeV in this model, with only a

240
=)o
160 _______ —
0*8 --=----
S (1,1,2)
[+]
2
w (-,-,1)
80}— EEE— —
8*D --—----
--1)
(0,0,0) —_—
(1,1,0) 0,1,1)
ol B D ======C —
S=0 S=1 S=2

FIG. 8. Hyperfine structure of the bcg g’ system. See cap-
tion to Fig. 6. The dimeson levels labeled (—, —,1) are mix-
tures of the (1,0,1) and (1,1,1) states.
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TABLE VI. A comparison of the energy of the dimeson states with that of two isolated mesons.
The dimeson states are labeled by (5,4,5;3,5), where S, is the combined spin of the light antiquarks,
S 3 is the spin of the pair of heavy quarks, and S is the total spin. The third column lists the change
in energy due to the hyperfine interaction. The fourth column gives the difference between the energy
of the dimeson and the lowest-energy state of two mesons (pseudoscalar), and the last column shows
the difference between the dimeson and the lowest state of two mesons with the same spin (see text).

All energies are in GeV.

Quark

content (S824,513,5) AEy, E —E, (two mesons) E —Eg (two mesons)

bbud (1,1,0) —0.020 —0.02 —0.02

(0,1,1) —0.065 —0.07 —0.13

(L,1,D 0.005 0.00 —0.06

(1,1,2) 0.040 0.04 —0.08

beud (1,1,0 —0.060 0.00 0.00

(0,0,0) —0.050 0.02 0.02

0,1,1) —0.045 0.02 —0.04

0.84(1,1,1) —0.54(1,0,1) —0.040 0.03 —0.03

0.54(1,1,1) + 0.84(1,0,1) 0.015 0.08 0.02

(1,1,2) 0.055 0.12 —0.09

ccad (1,1,0) —0.080 0.07 0.07

0,1,1) —0.045 0.10 —0.05

(1,1, —0.035 0.11 —0.03

(1,1,2) 0.070 0.22 —0.08

small dependence on the interaction in the transition re-
gion (the dimeson separating into two mesons). This
particle can only decay weakly. The (ccizd) dimeson is
not bound, while the (bcizd) dimeson is a borderline
case, but these results are more uncertain. In addition,
there are S=1 states in all systems that can only decay
electromagnetically. The calculations with the b quark
indicate that its mass is not large enough for the
Coulomb attraction in the 3 state to completely dom-
inate.

The ground-state energy obtained with Green’s-
function Monte Carlo methods is significantly lower
than the variational upper bounds obtained with the trial
wave function, Eq. (4.3). For example, the GFMC
ground-state energy is approximately 50 MeV below the
variational reuslts of Fig. 2, for the same Hamiltonian.
With the semirelativistic Hamiltonians, the decrease in
energy is even larger, typically around 100 MeV.
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TABLE VII. The color matrix elements used in these calcu-
lations. F;-F;=F,F, for distinct values of i, j, k, and .

Pairs (33| F;-F;|33) (33|F,-F;|66) (66|F,-F;|66)
13,24 -1 0 L
12,34 —1 1/vV2 -3
14,23 ~1 —1/V2 -3

APPENDIX: HYPERFINE INTERACTION

The effect of the hyperfine interaction has been includ-
ed in first-order perturbation theory in our calculations.
Typically, this interaction is written as'®

3
2 8 (ru)
VH=———as2Fi'Fj0’i'0’j .

375 m;m;

(A1)

The delta function in quark separation cannot be used
with the semirelativistic kinetic energy operator, howev-
er, since the wave functions diverge at zero separation.
By introducing a form factor at each quark-gluon vertex,
one can make the replacement

8%(r;;)—>N exp(—r}/d?), (A2)

where the normalization N is such that the volume in-
tegral of the interaction is unchanged. Previous studies
of mesons and baryons'® have indicated that the width
of the Gaussian necessary to fit the experimental
hyperfine splitting changes with quark mass. This
change is presumably associated with the Compton

TABLE VIII. The spin matrix elements used to compute
the hyperfine interaction (see the Appendix). The matrix ele-
ments of the other pairs may be obtained from (o,-0,) by
symmetry arguments.

State (S3,5,5) (0,03) (oy04) (o,°0;)
(000 | 0,0, |000) -3 -3 0
(110|0;-0,| 110) 1 1 -2
(111 |o;°0; | 111) 1 1 -1
(112 0;°0;]112) 1 1 1
(011|0;-0,|011) -3 1 0
(101|0,-0;|101) 1 -3 0
(101]0;-0;]111) 0 0 V2
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wavelength of the quark.

We have adopted a similar attitude in this work, ad-
justing the range of the interaction to give a rough fit to
the meson splittings. For pairs consisting of one light
and one heavy quark, we use a range of 0.25 fm, while
for pairs of heavy (¢ or b) quarks we use d=0.15 fm.
The resulting meson hyperfine splittings are given in
Table II.

It might be expected from Ref. 19 that the range asso-
ciated with two bottom quarks should be significantly
smaller. We have experimented with a shorter-range
(0.07-fm) interaction for the bbiid dimesons. This
change produced only a very small change in energy, ap-
proximately 1-2 MeV.

There are only two possible spin states for the spatial
ground state of the meson. The expectation value of the
hyperfine interaction can be easily calculated from Eq.

(A1). The situation is somewhat more complicated for
the dimesons, however.

There are many possible spin states of the dimeson
system. We have chosen to use the basis where the spin
of the two light quarks are coupled to a definite spin S,,,
the two heavy quarks are coupled to a spin S;, and
finally these two spins are coupled to a total spin S. The
color and spin matrix elements used in our calculations
are given in Tables VII and VIII.

It is important to remember that not all of these spin
states are physical (antisymmetric) in every four-quark
system. For example, two identical quarks in a com-
bined space-color-symmetric state must be in an an-
tisymmetric spin state. For this reason, a dimeson sys-
tem such as bbizd has more possible states than bbii.
Of course, still more states are accessible to a bciid
dimeson.
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