${}^{1}P_{1}$ data and the hyperfine interaction in quarkonia

V. Gupta* and R. Kögerler

Department of Physics, University of Bielefeld, D-4800 Bielefeld 1, West Germany

(Received 13 October 1987)

The recent $1 {}^{1}P_{1}$ data for $c\overline{c}$ and $b\overline{b}$ systems are discussed for a general spin-dependent potential given by a short-range vector [V(r)] and a long-range confining scalar [S(r)] potential. It is pointed out that for each $L \ge 1$, the difference between the ${}^{1}L_{J=L}$ level mass and the mass of the center of gravity of the three ${}^{3}L_{J}$ levels is given solely by the spin-spin interaction and so is determined only by V(r), for arbitrary S(r). It is argued that it will be extremely hard to reconcile the present ${}^{1}P_{1}$ data with a simple flavor-independent potential model for quarkonium.

Observations of possible candidates for the ${}^{1}P_{1}$ levels of the $c\bar{c}$ and the $b\bar{b}$ quarkonium systems have been recently reported^{1,2} by the R704 and CLEO Collaborations. The discovery of these levels provides added support for the potential-model approach to quarkonia spectra, where the $q\bar{q}$ system is taken to interact nonrelativistically through a potential of the form

$$U = U_0 + U_{\rm spin} \ . \tag{1}$$

The spin-independent potential U_0 (which may be velocity dependent) will essentially yield the center of gravity of levels with given orbital angular momentum L, whereas $U_{\rm spin}$ contains the spin-dependent terms and gives the splitting both of the 3S_1 and 1S_0 states and of each $L \ge 1$ level into the four states ${}^3L_{L-1}$, 3L_L , ${}^3L_{L+1}$, and 1L_1 . We use the ordinary spectroscopic notation $n^{2S+1}L_J$ to denote the energy levels.

The $q\bar{q}$ interaction potential U is a priori unknown and, consequently, the same is true for the spindependent part $U_{\rm spin}$. However, if $U_{\rm spin}$ results from a nonrelativistic expansion of the Bethe-Salpeter equation, then to order $(v/c)^2$ it will in general have the form $(m_q$ is the common mass of the constituents q and \bar{q})

$$U_{\rm spin} = \frac{1}{m_q^2} [\lambda_1 F_1(r) \mathbf{L} \cdot \mathbf{S} + \lambda_2 F_2(r) T_{12} + \lambda_3 F_3(r) \mathbf{S}_1 \cdot \mathbf{S}_2] .$$
(2)

Here, L and $S=S_1+S_2$ are the relative orbital angular momentum and the total spin operators, respectively, and

$$T_{12} = -4\mathbf{S}_1\mathbf{S}_2 + 12(\mathbf{S}_1\cdot\hat{\mathbf{r}})(\mathbf{S}_2\cdot\hat{\mathbf{r}})$$

denotes the tensor operator. The constants λ_i and the radial functions $F_i(r)$ (i=1,2,3) get determined by the nonrelativistic reduction, once the Lorentz character and the analytic form of the static potential $U_{\rm NR}(r)$ [contained in $U_0(r)$] is given.

There are strong theoretical³ and phenomenological^{4,5} arguments that $U_{\rm NR}$ be of mixed Lorentz character with a "vector" part V(r) and a "scalar" part S(r). The specific forms of V(r) and S(r) are not known, and different models make different choices. Generally,

though, one expects V(r) to contain a short-range Coulomb-type part due to one-gluon exchange, while S(r) is assumed to contain a long-range part responsible for quark confinement. Originally, this confining part was chosen as linear in r,⁶ a choice also favored by lattice calculations.⁷

In this paper we also assume that U_{NR} consists of a vector and a scalar part, but avoid as much as possible any specification of V(r) and S(r). For a general potential $U_{NR} = V(r) + S(r)$, the radial functions are

$$F_1(r) = \frac{V'}{r} - \frac{1}{3} \frac{S'}{r} , \qquad (3a)$$

$$F_2(r) = -V'' + \frac{V'}{r}$$
, (3b)

$$F_3(r) = \nabla^2 V , \qquad (3c)$$

whereas the λ_i take the values

$$\lambda_1 = \frac{3}{2}, \quad \lambda_2 = \frac{1}{12}, \quad \lambda_3 = \frac{2}{3}.$$
 (4)

In the following we discuss some consequences of the spin-dependent potential as given by Eqs. (2)-(4). We analyze the splittings of the spin-triplet and spin-singlet states and particularly the question how the new results on the ${}^{1}P_{1}$ states fit into this potential approach.

I. S-WAVE MASS SPLITTING

This is given by the $S_1 \cdot S_2$ part in Eq. (2) and one has, to first order,

$$M({}^{3}S_{1}) - M({}^{1}S_{0}) = \frac{2}{3m_{a}^{2}} \langle \nabla^{2}V \rangle_{0} , \qquad (5)$$

where the subscript indicates that the expectation value is taken for the (unperturbed) L=0 state wave function ψ_s . The empirical regularity⁸

$$[M({}^{3}S_{1})]^{2} - [M({}^{1}S_{0})]^{2} \simeq \text{const} , \qquad (6)$$

which works for practically all (light and heavy) $I \neq 0$ mesons has been investigated recently^{9,10} and suggests that

$$\langle \nabla^2 V \rangle_0 = \operatorname{const} \times \mu$$
, (7)

37

740

© 1988 The American Physical Society

where μ is the reduced mass of the system. For our purpose we note that $\nabla^2 V$ alone is responsible for these mass splittings. We will come back to the consequences of (7) later on.

II. $L \ge$ MASS SPLITTINGS

For a given $L \ge 1$ we denote the mass of the three ${}^{3}L_{J}$ levels by M_{J} (J = L - 1, L, L + 1) and the mass of the ${}^{1}L_{J=L}$ level by M'_{L} . Then, treating U_{spin} to first order, one obtains, for a completely general (not only vector and scalar) potential U_{NR} ,

$$M_{L-1} = m_L - (L+1)\lambda_1 A_{L1} - \frac{2(L+1)}{2L-1}\lambda_2 A_{L2} + \frac{1}{4}\lambda_3 A_{L3} ,$$
(8a)

$$M_L = m_L - \lambda_1 A_{L1} + 2\lambda_2 A_{L2} + \frac{1}{4}\lambda_3 A_{L3} , \qquad (8b)$$

$$M_{L+1} = m_L + L\lambda_1 A_{L1} - \frac{2L}{2L+3}\lambda_2 A_{L2} + \frac{1}{4}\lambda_3 A_{L3} , \quad (8c)$$

$$M_L' = m_L - \frac{3}{4}\lambda_3 A_{L3}$$
, (8d)

where m_L is the common mass given by U_0 , and the constants A_{Li} denote the expectation values

$$A_{Li} \equiv \frac{1}{m_q^2} \langle F_i(r) \rangle_L, \quad i = 1, 2, 3 .$$
 (9)

In the case of pure vector + scalar potential these constants together with the λ_i are given by Eqs. (3) and (4).

In previous papers,¹¹ Eq. (8) was used to derive sum rules connecting the four masses for some cases of interest by noting that the three A_{Li} are not independent. The key observation was that

$$\langle \nabla^2 V(r) \rangle_L = \left\langle V'' + \frac{2V'}{r} \right\rangle_L ,$$
 (10)

if V is no more singular than 1/r near r=0. [Note that the $\delta^3(\mathbf{r})$ term, if present in $\nabla^2 V$, does not contribute to the expectation value for states with $L \ge 1$.]

The new observation we want to make here concerns a relation between the mass \overline{M}_L of the center of gravity (COG) of the three ${}^{3}L_J$ states and the mass M'_L of the corresponding spin-singlet state. In fact, one gets from Eq. (8), again for a completely general potential,

$$\overline{M}_L \equiv \frac{(2L-1)M_{L-1} + (2L+1)M_L + (2L+3)M_{L+1}}{3(2L+1)}$$

$$=m_L + \frac{1}{4}\lambda_3 A_{L3} . \tag{8e}$$

This together with Eq. (8d) gives

$$\overline{M}_L - M'_L = \lambda_3 A_{L3} . \tag{11}$$

That is to say, the center of gravity of the three triplet states ${}^{3}L_{J}$ differs from the singlet ${}^{1}L_{L}$ state solely due to the spin-spin interaction. That is true for all values of $L \ge 1$ and for the arbitrary potential $U_{\rm NR}$. This remarkable result is due to the fact that the spin orbit and the tensor separately cancel in the center of gravity for arbitrary L. The particular case for L=1 has been noted by many authors earlier.¹²

If we restrict ourselves to pure scalar and vector potentials, Eq. (11) takes the specific form

$$\overline{M}_L - M'_L = \frac{2}{3m_q^2} \langle \nabla^2 V \rangle_L ; \qquad (11a)$$

i.e., only the vector part is responsible for this mass difference. In case one would also allow for a pseudoscalar potential P(r), the expectation value in Eq. (11) would be changed to $\langle \nabla^2(V + \frac{1}{2}P) \rangle_L$.

Equation (11a) will play an important role in our discussion. It has the immediate consequence that if V is pure r^{-1} , then, for all $L \ge 1$, $M'_L = \overline{M}_L$ for an arbitrary scalar potential S.

III. ANALYSIS OF P LEVELS (L=1)

From Eq. (8) one can solve for A_{Li} (i=1,2,3) and for m_L in terms of the four masses. Thereby the parameters A_{L1} and A_{L2} can be determined in terms of the ${}^{3}L_{J}$ masses alone. Only A_{L3} given by Eq. (11) requires the additional knowledge of M'_{L} . Note that the expressions for A_{L2} and A_{L3} would only contain the vector potential and therefore could tell us more about it.

Masses are presently known for L=1 states, namely, for the 1P levels of the $c\overline{c}$ and $b\overline{b}$ systems and for the $2^{3}P_{J}$ levels of the $b\overline{b}$ system. So we restrict ourselves in the following to L=1. In this case we get, from (8),

$$18A_{11} = 5M_2 - 3M_1 - 2M_0 , \qquad (12a)$$

$$-6A_{12} = 5M_2 - 15M_1 + 10M_0 , \qquad (12b)$$

$$2A_{13} = 3\overline{M}_1 - 3M'_1$$
 (12c)

Using the available data^{1,2,13} the values of A_{11} , A_{12} , and A_{13} are listed in Table I. Knowledge of A_{11} , A_{12} , A_{13} allows us to separate the expectation values $\langle V'/r \rangle_1$, $\langle V'' \rangle_1$ (providing information on the vector potential) and $\langle S'/r \rangle_1$. The corresponding numerical values are given in the lower part of Table I. We note the following.

(a) A_{11} , A_{12} , $\langle V'/r \rangle$, $-\langle V'' \rangle_1$, and $\langle S'/r \rangle_1$ are all positive and decrease with increasing constituent mass m_q . The signs of these expectation values suggest that V may be a concave function, which is the choice usually made for detailed fits of the spectra.⁶ As to the sign of $\langle \nabla^2 V \rangle_1$ (or, equivalently of A_{13}) no decisive calculation can be drawn from the data at the moment, since this quantity is practically zero for $c\bar{c}$, whereas it is positive for $b\bar{b}$. From simple scaling arguments (see later) one would expect it to have same sign in both cases. This will definitely be so, if V is a pure power in r:

$$V = -Cr^{-\epsilon} \quad (\epsilon > 0, C > 0) \ . \tag{13}$$

It is interesting to note that in this case the positivity of $\langle \nabla^2 V \rangle_1$ (as required by the $b\overline{b}$ data) implies the bound $\epsilon < 1$.

(b) Comparison of the magnitudes of $\langle V'/r \rangle_1$, $\langle V'' \rangle_1$, $\langle S'/r \rangle_1$ for the 1P levels of $c\bar{c}$ system with the corresponding values for the $b\bar{b}$ system suggests that all these expectation values scale (as a function of the reduced

TABLE I. Numerical values (in MeV) of the various expectation values which determine spinsplitting calculated using the known 1P level masses. Input-mass values used for $c\overline{c}$ ($b\overline{b}$) are $M({}^{3}P_{0})=3414.9\pm1.1$ (9859.8±1.3), $M({}^{3}P_{1})=3510.7\pm0.5$ (9891.9±0.7), $M({}^{3}P_{2})=3556.3\pm0.4$ (9913.3±0.6), and $M({}^{1}P_{1})=3525.4\pm0.8$ (9894.8±1.5).

	$1P(c\overline{c})$	$1P(b\overline{b})$
$A_{11} = \frac{1}{m_q^2} \left(\frac{V'}{r} - \frac{1}{3} \frac{S'}{r} \right)_1$	23.3±0.19	9.5±0.25
$A_{12} = \frac{1}{m_a^2} \left(-V'' + \frac{V'}{r} \right)_1$	121.6±2.24	35.6±2.83
$A_{13} = \frac{1}{m_a^2} \left\langle V'' + \frac{2V'}{r} \right\rangle_1$	0±1.28	8.1±2.30
$\frac{1}{m_a^2} \left(\frac{V'}{r} \right)_1$	40.6±0.84	14.6±1.21
$\frac{1}{m_a^2}\langle V''\rangle_1$	-81.1±1.6	-21.1±2.05
$\frac{1}{m_q^2} \left\langle \frac{S'}{r} \right\rangle_1$	51.7±2.50	15.3±3.68

mass $\mu_q \equiv m_q/2$) as μ_q . Consequently, one would expect that $\langle \nabla^2 V \rangle_1$ has the same scaling behavior. Suppose again now that the vector potential V(r) is pure power as in Eq. (13). Then $\langle \nabla^2 V \rangle_1$ would scale as

$$\langle \nabla^2 V \rangle_1 \sim \mu_a^{(\epsilon+2)/(\nu+2)} . \tag{14}$$

Here, we have assumed that there exists an "effective" scaling power ν , determined by the full potential $U_{\rm NR}(r)$, such that a length scales as $\mu_q^{-1/(2+\nu)}$. Clearly, the μ_q scaling suggested by the 1P data implies

$$\epsilon \simeq \nu$$
 (15)

v will in general depend on the relative magnitude of the parameters of V(r) and S(r), and it could as well be the power of the scalar confining potential $S(r) = \text{const} \times r^{v}$ (v > 0). There are, in fact, some indications from the J/ψ and Υ families¹⁴ that the scalar confining potential solely determines the scaling behavior. In particular, a value v=1 is possible and leads, via Eq. (15), to the canonical form of the charmonium potential⁶ $U_{\text{NR}} = -\frac{4}{3}\alpha_s 1/r + \lambda r$. It is interesting to note, that the same conclusion as in Eq. (15) has been arrived at⁹ by considering the mass splittings of the L=0 quarkonia levels and clearly ties up neatly with Eq. (7).

(c) The new information^{1,2} on the masses of the ${}^{1}P_{1}$ states, or equivalently on $\langle \nabla^{2}V \rangle_{1}$ does not fall in line with the above points, since A_{13} apparently shows a mass dependence completely different from A_{11} and A_{12} : One would naively expect that \overline{M}_{1} - M'_{1} should decrease with m_{q} , while the opposite seems to be the case. Furthermore, the scaling behavior $\langle \nabla^{2}V \rangle_{1} \sim \mu_{q}$, induced in (b) above, would suggest that

$$(\overline{M}_1 - M'_1)_{c\overline{c}} \simeq \frac{m_b}{m_c} (\overline{M}_1 - M'_1)_{b\overline{b}} \simeq 16 \text{ MeV}$$

in manifest contradiction to the experimental finding that the left-hand side is zero. Even on reducing the value of $(\overline{M}_1 - M'_1)_{b\overline{b}}$ by 2 standard deviations (2σ) one

would expect $(\overline{M}_1 - M'_1)_{c\bar{c}}$ to be about 6 MeV, still more than 4σ off from the experimental value. So, it seems that it will be extremely hard to reconcile the present ${}^{1}P_1$ data with a simple potential model for quarkonia.

(d) Of course, it is possible that the short-range vector potential V(r) is such that $\langle \nabla^2 V \rangle_1$ be zero for $c\bar{c}$ and not for $b\bar{b}$, or even change sign in going from $c\bar{c}$ to $b\bar{b}$. But this would require fine-tuning of the parameters of V and seems unlikely for a flavor-independent potential. It is clearly impossible for a simple power-law potential of the form Eq. (13). Explicit model calculations¹⁵ using a running coupling constant with $V(r) \sim \alpha_s(r)/r$ also support the expectation that $(\overline{M}_1 - M'_1)_{c\bar{c}}$ should be much larger than $(\overline{M}_1 - M'_1)_{b\bar{b}}$.

(e) Since $\overline{M}_1 - M'_1 |_{b\overline{b}} = 5.4 \pm 1.5$ MeV is quite small, it is possible that some corrections not considered so far may account for the different values of $\overline{M}_1 - M'_1$ for $c\overline{c}$ and $b\overline{b}$ systems. Two possibilities come to mind.

(1) Higher-order relativistic corrections. It is known from charmonium calculations (e.g., third paper in Ref. 6) that the magnitude of $O((v/c)^2)$ relativistic corrections is about 5-6% of the nonrelativistic binding energy. Assuming that the next order is of the same relative size we expect the $(v/c)^4$ corrections to be less than 1.5 MeV for $c\bar{c}$ and negligible for $b\bar{b}$ for a given level. The contribution to the difference $\overline{M}_1 - M'_1$ would be even smaller.

(2) Unitarity corrections. Coupling to inelastic channels^{16,17} ($D\overline{D}$, $D^*\overline{D}$, ...; $B\overline{B}$, ...) can yield rather large corrections to the mass of an individual level. Model calculations¹⁷ find corrections of about 180 MeV (44 MeV) for the 1P states of $c\overline{c}$ ($b\overline{b}$) system. However, since the contribution to each level is nearly the same, the correction to the difference $\overline{M}_1 - M'_1$ is very small, in fact it is found to be less than 0.5 MeV in each case.

So to us it seems that there are only two reasonable possibilities.

(i) $\langle \nabla^2 V \rangle_1 = 0$ for both $c\bar{c}$ and $b\bar{b}$ suggesting that $\nabla^2 V = 0$ and V(r) is practically a pure Coulomb poten-

<u>37</u>

tial. As pointed out earlier, Eq. (11) then implies $M'_L = \overline{M}_L$ for all $L \ge 1$, and for arbitrary scalar potential. This would imply that the ${}^1P_1(b\overline{b})$ level should lie at 9900.2±1.7 MeV rather than at 9894.8±1.5 MeV. Using the $2{}^3P_J$ masses¹³ it would further predict the $2{}^1P_1(b\overline{b})$ mass to be 10261.6±1.7 MeV.

(ii) $\langle \nabla^2 V \rangle_1 = \text{finite}$ for both $c\bar{c}$ and $b\bar{b}$ systems. This would mean V cannot be a pure Coulomb potential. Further it would be extremely hard to understand in a simple and natural way the increase of $\overline{M}_1 - M'_1$ with μ_q as implied by the data. From Eq. (11a), such an increase would require $\langle \nabla^2 V \rangle_1$ to scale at μ_q^{α} with $\alpha > 2$. Using the scaling arguments given in (b), for a simple power potential, Eq. (14) would give $\epsilon + 2 = \alpha(\nu + 2)$ with $\alpha > 2$. It is practically impossible to satisfy this condition with reasonable values of ϵ and ν . For positive ν one must have $\epsilon > 2$ which yields a too strong singularity of V(r)near the origin. On the other hand, for $0 < \epsilon < 2$, one needs

$$-\frac{2(\alpha-1)}{\alpha} < \nu < \frac{-2(\alpha-2)}{\alpha}$$

so that v < 0 for $\alpha > 2$. Thus an increase of $\overline{M}_1 - M'_1$ would go against the rest of the evidence.

Among the above-mentioned two alternatives our preference is for (i) as it offers the possibility of having a simple potential to understand quarkonia spectra.

In summary, we have argued that the presently available data for the $1^{1}P_{1}$ level of the $c\overline{c}$ and the $b\overline{b}$ systems are difficult to understand theoretically as they stand. The values given for the masses of these states have been obtained from a very difficult experiment and we realize that these values are still tentative.^{1,2} The remarks above are to point out the need for further experimentation in this regard.

ACKNOWLEDGMENT

V.G. was supported by Ministerium für Wissenschaft und Forschung des Landes Nordrhein-Westfalen.

- *On sabbatical leave from Tata Institute of Fundamental Research, Bombay 400005, India.
- ¹C. Baglin et al., Phys. Lett. B 171, 135 (1986).
- ²CLEO Collaboration, T. Bowcock et al., in Proceedings of the XXIII International Conference on High Energy Physics, Berkeley, California, 1986, edited by S. Loken (World Scientific, Singapore, 1987).
- ³E. Eichten and F. Feinberg, Phys. Rev. D 23, 2724 (1981); D. Gromes, Z. Phys. C 26, 401 (1984).
- ⁴A. Martin, Commun. Nucl. Part. Phys. **16**, 249 (1986), and references therein.
- ⁵W. Buchmüller, in Proceedings of the International Europhysics Conference on High Energy Physics, Bari, Italy, 1985, edited by L. Nitti and G. Preparata (Laterza, Bari, 1985); see earlier references therein.
- ⁶B. J. Harrington, S. Y. Park, and A. Yildiz, Phys. Rev. Lett. 34, 168 (1975); E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T.-M. Yan, *ibid.* 34, 369 (1975); R. Barbieri, R. Kögerler, Z. Kunszt, and R. Gatto, Nucl. Phys. B105, 125 (1976).
- ⁷K. Wilson, Phys. Rev. D 10, 2445 (1974).

- ⁸A. Martin, in *Proceedings of the XXI International Conference on High Energy Physics*, Paris, 1982, edited by P. Petiau and M. Porneuf [J. Phys. (Paris) Colloq. 43, C3 (1982)].
- ⁹M. Frank and P. J. O'Donnell, Phys. Lett. 159B, 174 (1985);
 D. B. Lichtenberg, Phys. Lett. B 193, 95 (1987).
- ¹⁰K. Igi and S. Ono, Phys. Rev. D 32, 232 (1985).
- ¹¹V. Gupta and A. Khare, Phys. Lett. **70B**, 313 (1977); V. Gupta and B. Ram, Phys. Rev. D **34**, 3524 (1986); M. G. Olsson and C. J. Suchyta III, *ibid.* **35**, 1738 (1987).
- ¹²See, e.g., R. H. Dalitz and S. F. Tuan, in *Proceedings of the Eleventh Hawaii Topical Conference in Particle Physics*, 1985, edited by S. Pakvasa and S. F. Tuan (World Scientific, Singapore, 1985).
- ¹³Particle Data Group, Phys. Lett. 170B, 1 (1986).
- ¹⁴C. Quigg and J. L. Rosner, Phys. Rep. 56, 167 (1979).
- ¹⁵K. Igi and S. Ono, Phys. Rev. D 36, 1550 (1987).
- ¹⁶E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Phys. Rev. D 17, 3090 (1978); 21, 203 (1980).
- ¹⁷K. Heikkilä, N. A. Törnquist, and S. Ono, Phys. Rev. D 29, 110 (1984).