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We consider the behavior of the splittings between the L =1 states in heavy quarkonium sys-
tems. With standard assumptions, the ratio of mass splittings, Ry=(M,—M)/(M;—M,), is
shown to grow slowly as we go from the lowest P states to their radial excitations, a behavior
which is in accord with other theoretical calculations and is consistent with experiment. This be-
havior is the opposite of what is expected from a naive argument which we present. We show why
the naive argument fails and how the phenomenological division of the potential into components
which correspond to the exchange of a Lorentz scalar and vector can be made so as to obtain oth-

er behaviors.

The bound states of heavy quarks and antiquarks have
proven to be a key element in our understanding of
strong interactions by giving us a subset of all hadrons
whose spectroscopy we can calculate quantitatively. The
insight thereby gained can then also be used to under-
stand at least semiquantitatively hadronic systems in-
volving light quarks and, if only by the process of elim-
ination, to highlight those states which cannot be inter-
preted as quark-antiquark bound states and which then
must have their origin in more exotic quark and/or

]

gluon combinations.! We consider here a limited but in-

teresting aspect of the spectroscopy of heavy quark-
antiquark systems, related to the character of the spin-
dependent forces. We examine the behavior of the level
splittings between the L =1 states as we go from the
lowest P states to their radial excitations.

The general form for the spin-dependent potential in a
system composed of a heavy quark and a heavy anti-
quark has been shown to be?
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where V(r) is the usual spin-independent potential and V,, ¥, and V, spin-dependent ones. These extra terms origi-
nate in expectation values of color-electric and -magnetic fields which are different than those that enter in the spin-
independent potential and in principle are new objects which are not simply related to ¥ (r).

Nevertheless, it provides some physical insight to consider the nonrelativistic reduction of the four-fermion interac-
tion arising from the exchange of vector and scalar fields between quark and antiquark. In momentum space this is

represented by an interaction:

L;, =5(g)auvv +ﬁ(q2)17y#u17y“v .

(2)

If we do an expansion in powers of v?/c?, the static limit is the spin-independent potential v (r)+s(r), while the spin-
dependent terms give the Breit-Fermi potential, which in configuration space for the equal-mass case is
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The first term, involving —[dv(r)+ds(r)]/r dr, is due to the familiar Thomas precession, and it is followed by usual
spin-orbit, tensor, and spin-spin interactions, each with a coefficient related to v (r) or s(r). We can compare this to
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the more general spin-dependent potential in Eq. (1) in the equal-mass case, rewriting it a bit in the form

S-L | —av(r) ,dVa(r) 1
= 4
Vso(r) 2m? rdr + rdr + 12m

Comparing what is in Eq. (3) to the generic decompo-
sition in Eq. (4) involving V,, V;, and ¥V, we see first
that the spin-independent potential V is given by the
sum of the vector and scalar potentials, v +s. Second,
the spin-dependent potentials V,, V5, and V, are all ex-
pressible in terms of derivatives of only the vector part
of the potential, v. Hence, if v is related to gluon ex-
change and its associated 1/r behavior, then the poten-
tials ¥,, V3, and ¥, are all short range in character.

This encourages the following standard division: the
scalar term is long range and associated with quark
confinement, while the vector term is short range and as-
sociated with one-gluon exchange. The associated physi-
cal picture® has confinement due to a color flux tube that
connects the quark and antiquark; as they rotate around
each other the flux tube rotates along with them. Conse-
quently there are no spin-dependent forces generated
from this part of the potential, aside from the Thomas
term which comes in with a minus sign and is generated
from the spin rotation associated with Lorentz trans-
forming from the center-of-mass to the quark or anti-
quark rest frame. It is from the Coulomb-type piece
that one obtains the spin-dependent terms that we are
long accustomed to in atomic physics: a spin-orbit in-
teraction (minus the piece due to Thomas precession), a
tensor interaction, and a spin-spin interaction. This
description has been very successful with respect to pre-
dicting and interpreting the data on heavy quarkonium
systems and it is within its context that we shall work in
this paper.

Let us focus on the splittings of the 3P, states, i.e., the
quark-antiquark states with L =1 and J =0, 1, or 2.
The spin-orbit and tensor terms cause this splitting, and
within the picture of vector and scalar exchanges their
contributions to the 3P, state masses are*

M(3P2)=A7+a—2b/5 , (5a)
MQCP)=M—a+2b , (5b)
M(*Py)=M —2a —4b , (5¢)
where the matrix elements a and b are defined as
1 ds dv
a_2m2<_rdr+3rdr>’ (6a)
1 dv d%
B 12m2<rdr_dr2> ' (6b)

We can summarize the relative values of the matrix ele-
ments in terms of one number by forming the ratio
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If only the Coulomb-type vector part of the potential
v(r) is present, R, =0.8. As the strength of the scalar
term s(r) is increased, there is more cancellation be-
tween the two terms on the right-hand side of Eq. (6a)
and the matrix element a decreases, as then does R.

This brings us to the question at issue in this paper.
How should the ratio R, behave as we go from one set
of P states to another? A naive argument goes as fol-
lows. The 2P states are characterized by an average ra-
dius which is larger than that of the 1P states (and simi-
larly for the 3P compared to the 2P, etc.). Therefore
these states should “live” more in the confining,
Lorentz-scalar part of the potential and the value of the
ratio R, should be smaller for the 2P (sometimes called
X') as compared to the 1P (X) states of a given quarkoni-
um system. This argument can be cast in a more quanti-
tative form by noting that if v(r)«1/r, then all the
terms in Eq. (6) that involve v are proportional to
(1/r3), while if s (r) < r the term in Eq. (6a) involving s
is proportional to {1/r) and the whole discussion boils
down to the assertion that naively (1/r)/{1/r%)
should increase as we go from the 1P to 2P states.

This argument is wrong. It disagrees with evidence
provided by the bottomonium system where almost all of
the theoretical predictions’~!® would have Ry <R,.
Furthermore, the most recent experimental results!! also
tend in the same direction, with R, =0.67%+0.06 and
R, =0.69+0.05.

How does the naive argument go wrong? It is a some-
what subtle point. Even though it is true that {r?) is
bigger for the X’ than the X states, it does not necessarily
follow that (1/r)/(1/r3) is bigger. The latter state-
ment depends on the potential. With Coulomb wave
functions, it does indeed grow, as {1/r)/{1/r3)=6r}
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FIG. 1. The ratio Ry for the potential of Eichten et al. as a
function of the scaled, dimensionless variable K for the X and
X' states, respectively. The arrows indicate the values of K
corresponding to charmonium and bottomonium with m,
=1.84 GeV and m;, =5.17 GeV, respectively.
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for the X states and 9r2 for the X’ states (rp being the
Bohr radius). But with a three-dimensional harmonic-
oscillator potential this same quantity is a factor of %
smaller for the X’ states. The wave function does spread
out in space; {r) and {r?) increase for the X’ states, but
the ratio {(1/r)/{1/r*) does not. By numerical calcu-
lation it appears that more generally (1/r)/{1/r®) in-
creases with radial excitation when the potential is of the
form V(r) < —r® with a <0, and conversely, it decreases
when the potential is of the form V (r) < r® with a > 0.
The more interesting question now is what happens in
the physical case when the potential has both
“Coulomb” (one-gluon-exchange) and confining (linear)
components. From the above discussion we expect that
the ratio of mass splittings will tend to decrease when
the wave functions are mostly sensitive to the one-
gluon-exchange part of the potential and will increase
when they are sensitive to the confining part. This is
indeed the case, as is seen by studying the situation in
various regimes with the potential of Eichten et al.:!

V(r)=—_;'[i+kr= —0.52 + r

r (2.34 GevV—1)2’

(8)

with the two coefficients having been adjusted to fit the
charmonium spectrum, although the model does a quite
adequate job in describing bottomonium as well. The
Schrodinger equation can be put in dimensionless form
by using the variables p=uBr =r/ry and K =k /(B’u?),
where p is the reduced mass and rz =1/Bu is the Bohr
radius of the corresponding purely Coulomb potential
problem.
Figure 1 shows the ratio of mass splittings

M(CP,)—M(P))
Ry= 3 3
M(P)—M(P,)

for the 1P and 2P levels of the potential of Eichten et al.
as a function of the scaled variable K. The critical as-
sumption, even if it is the most straightforward one, has
been made that the —pB/r piece of the potential is a
Lorentz four-vector and the kr piece a Lorentz scalar for
all values of r. As is to be expected from our previous
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FIG. 2. The ratio Ry for the potential of Eichten et al. for
small values of the scaled, dimensionless variable K for the X
and X' states, respectively. The arrow indicates the value of K
corresponding to toponium with m, =50 GeV.

TABLE I. R, for charmonium and bottomonium computed
using the potential of Eichten et al.

State Ry [experiment (Ref. 11)] Ry (theory)
X, 0.48+0.01 0.538
Xe 0.588
X 0.67+0.06 0.717
X, 0.69+0.05 0.727

discussion, Ry <R, when K is large and the confining
part of the potential plays a dominant role even for the
lowest bound lying states. Indeed, it is only for very
small values of K that we get an inversion of this behav-
ior and Ry > R,.. Inspection of Fig. 2 indicates that this
happens for K < ;.

The charmonium and bottomonium systems corre-
spond to values of K indicated by the arrows in Fig. 1
(corresponding to m,=1.84 GeV and m,=5.17 GeV)
and are well within the region where Ry <R,.. The
values of R, that correspond to these two situations are
shown in Table I.

The agreement with experiment is quite good for both
charmonium and bottomonium considering that nothing
about spin-dependent effects was used as an input in the
choice of parameters. For charmonium, however, the
absolute magnitude of the X, splittings is about a factor
of 2 smaller than experiment.

For quark masses above ~ 13 GeV with the potential
of Eichten ez al., which corresponds to K = 3, the situa-
tion will change and R, will be smaller for the X’ instead
of the X states. But even with very high mass quarks,
for sufficiently high radial excitations which “live” pri-
marily in the confining part of the potential we expect
the situation to revert back again to larger values of R,
as we go up in principal quantum number. This is seen
in Table II, where we have again used the potential of
Eichten et al. with the same assumptions except we con-
sider the case of toponium with m, =50 GeV. The cor-
responding value of K is indicated by the arrow in Fig.
2.

The values of Ry, do indeed decrease until we get to
the 5P state, and then increase again, but we need to
look at four or five significant figures to see the effect.
The situation is completely dominated by the Coulomb
piece of the potential and all values of R, are very close

TABLE II. R for toponium computed with the potential of
Eichten et al. and m, =50 GeV.

State R,
1P 0.797 63
2P 0.796 89
3P 0.796 56
4P 0.796 45
5P 0.796 42
6P 0.796 44
P 0.796 47
8P 0.796 51
9P 0.796 56
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TABLE III. Various theoretical predictions for R,.

R’b =0.67+0.06 Rx’ =0.69+0.05

b

Model R,(c =0.48+0.02
Beavis (Ref. 5) 0.97
Buchmiiller (Ref. 6) 0.61
McClary and Byers (Ref. 7) 0.35
Moxhay and Rosner (Ref. 8) 0.42
Gupta et al. (Ref. 9) 0.50
Olsson and Suchyta (Ref. 10) 0.55

0.96 1.0

0.76 0.75
0.45 0.48
0.42 0.42
0.64 0.67
0.78 0.79

to 0.8. Moreover, the absolute magnitudes of the mass
splittings are on the order of tens of MeV, making them
hard to measure to the needed accuracy.

A number of calculations of the splittings of the P
states have been done, each with its own prescription for
the Lorentz structure of the potential. As can be seen
from Table III, they have varying success in accounting
for the data, although several are in quite good accord
with experiment.

This brings us to the more general question of the
division of the potential into pieces with different
Lorentz transformation properties. When a calculation
of the potential is made from first principles, for exam-
ple, with lattice-gauge-theory techniques, then this ques-
tion will have a definitive answer. Until that time we are
left in the somewhat unsatisfactory state of having to
make a prescription that is in accord with theory and ex-
periment as it is known at any given time. When we did
this for the potential of Eichten et al. above, it was *“‘nat-
ural” to make the Coulomb piece arise from exchange of
a Lorentz four-vector and the confining linear piece cor-
respond to exchange of a Lorentz scalar. But is this so
natural at all values of »? It surely does not follow from
any known physics that the 1/r behavior from one-gluon
exchange at short distance should be continued to all r
and, moreover, its Lorentz character maintained in what
is, after all, a phenomenological potential.

In order to see how sensitive the splittings of the P
states are to our assumptions and to see if, in particular,
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FIG. 3. The ratio Ry for the Richardson potential with the
division into scalar and vector parts as in Eq. (12) as a function
of the distance a for the X (solid line) and X’ (dashed line)
states of charmonium, respectively.

we could have come to opposite conclusions about the
behavior of R, with a plausible input, we have done the
following computation.

We start from the Richardson potential'?
Vin=—3T A |ar— LA ©
33-2n, Ar
with
© —a
fli=1-4 =% __e° (10)

1 g InXg*—1)+?

In momentum space it can be written in a more trans-
parent form as one term:
127 1

= 4
Vigh=—— , (11
‘g 3 33—-2n; ¢*In(14-¢%/A?)

where we take A=0.398 GeV and n; is the number of
light quarks at the relevant momentum scale for renor-
malization (taken equal to three). There is no obvious
way to separate things into vector and scalar pieces,
even though the Richardson potential was designed to
have the correct behavior at both short and long dis-
tances. For our purposes we make the arbitrary division
that

r2/a2)

v (r)=VRicharason(7)(e (12a)

and
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FIG. 4. The ratio R, for the Richardson potential with the
division into scalar and vector parts as in Eq. (12) as a function
of the distance a for the X (solid line) and X' (dashed line)
states of bottomonium, respectively.



r2/a2)
’

5 (r)=VRichardson(r)(1—e (12b)

where a is a distance scale which provides the smooth
division between a vector character at short distances
and scalar character at large distances. By construction,

VRichardson =v(r)+s(r).

In Figs. 3 and 4 we have plotted R for the charmonium
and bottomonium systems, respectively, as a function of
the distance scale a using Egs. (5), (6), and (12) and
masses m,=1.49 GeV and m, =4.88 GeV appropriate
to the Richardson potential.

These two figures make it clear that it is possible to
invert the usual ordering in which Ry <R, by choosing
the distance parameter a large enough, i.e., making the
potential vector in character out to fairly large distances.
The price is in getting values of both R, and R which
are not far from 0.8, the value associated with a
Coulomb potential, which is in disagreement with the
data for both charmonium and bottomonium. A value
of a around 0.5 F is needed to fit charmonium and about
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half of that for bottomonium, with the absolute magni-
tudes of the mass splittings coming out in good agree-
ment as well.

We do not propose this as a serious method to calcu-

‘late the splittings of the P states in quarkonium systems.

Aside from being arbitrary, it does not give quantitative
agreement using a single value of a with the known data.
However, it does show us that other assumptions about
the Lorentz character of the heavy-quark potential are
possible and that one can obtain different behavior for
R, depending on the assumptions one makes. Turning
it around, the behavior of R, as we go from the lowest P
states to their radial excitations is sensitive to the
Lorentz character of the exchanges between heavy
quarks as it depends on their distance and can be used as
a tool to understand this more detailed and more quanti-
tative feature of the potential.
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