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In the absence of mixings with radially excited states and/or no exotic states, asymptotic fiavor

symmetry predicts, for the ground-state pseudoscalar mesons, fx f,——f+"(0)=1, and

mF —ma ——m& —m, etc. In this paper, we assume that the observed small deviations from these

predictions originate mainly from the mixing between the ground states and the 6rst radially excit-
ed states T.hen, new sum rules f+b(0)=cos(8, 8b) a—nd fb/f, =cos(8b —p)/cos(8, —p) are de-

rived, where 8, (a =n, K,D,F, . . . ) is the mixing angle between the ground-state meson a and its
radially excited counterpart a and P is a flavor-independent constant with

~ P ~

& s'/4. The experi-

mentally indicated and theoretically plausible value f+ (0)=0.973 leads to 8x —8 =13' (for con-

venience, 8tt & 8 is assumed) and fx /f = 1.163 to 8 —P= —40'. This value of 8„—P imposes an

interesting restriction on the decay constant fr, fr/f 51.4, for any pseudoscalar meson

P (P =m, K,D,F, . . . ). The recently observed (but still probably preliminary) value of
f (0)=0.73 yields 8o —8x =43' (case I) or 8o —8„=—43' (case II) crudely Th.e observed devi-

ation e:—(m& —m )—(mF —mD)= —0. 165 GeV' from the simple mass formula actually favors
case II and predicts tentative values fo/f„=0. 5 and fr/f =0.7, which can be improved with

the progress of experiment.

I. INTRODUCTION

Very recently, the Mark III Collaboration' has
significantly improved the upper limit of the D-meson
decay constant fD as fD &340 MeV (fn If &2.6) from
their search of D+~p+v decay. They have also report-
ed the branching ratios of the D ~E e+v and
D+ ~E e+v decays, which give information for0

f+ (0). This recent progress on D-decay experiments
rekindles our interest in a unified understanding of
light- and heavy-pseudoscalar-meson decay constants

ft (P =sr, K,D, . . . ) and of the value of their vector-
current form factor f+ (q ) (PP'=Km, DK, . . . ) at

q =0.
A powerful method for studying hadron physics which

contains heavy as well as light quarks is the method of
"asymptotic flavor symmetry" plus "equal-time commu-
tators involving the charges of underlying symmetry
groups. " It treats broken symmetries without using the
language of perturbation theory. Many successful sum
rules have been derived from this method.

However, in many of these sum rules, observed values
show some deviations. For example, the method leads
to the sum rules f =ftc —fD=, f+"(0)=f+—(0)

and m& —m =mF —mD, if there are no2 2=2 2

mixings between the ground-state pseudoscalar mesons
and their radia11y excited states and/or exotic states.
Since glueballs cannot have isospin and/or strangeness
and exotic mesons with J =0 cannot exist in S states,
the above observed deviations suggest the presence of
some mixings between the ground-state pseudoscalar
mesons and their radially excited states.

In this paper we derive new sum rules which include

the effect of radially excited states by using a simplifying
assumption that those observed deviations arise dom-
inantly from the mixings between the ground states and
the first radially excited states. We estimate the mixing
angles 8, Oz, 8D, and 8F from the observed

fz If, f+ (0), and f+ (0) and predict the ratios
fDIf and fF/f„.

A word of caution might be added to our mixing pa-
rameters. There is a subtle difference between our mix-
ing parameters which are defined for the creation and
annihilation operators of physical (i.e., "in" or "out")
particles with infinite momenta and the conventional
ones defined among field operators. Our broken-SUI(X)
sum rules are always obtained by realizing the equal-
time commutators involving the flavor charge V in the
infinite-momentum frame. Our mixing parameters then
appear in the evaluation of the matrix elements of the
charge V in this asymptotic limit, i.e., in the four-
momentum transfer squared q =0 limit, where the effect
of symmetry breaking will be minimum.

In the usual diagonalization of the mass matrix, the
possible q dependence of mixing parameters is never
considered. For the study of deviations of fp and

f+ (0) from symmetry-limit predictions, there are many
papers in the literature with many different approaches.
In this paper, as shown below, we sometimes predict
large configuration mixings. However, it should be not-
ed that the configuration mixing angles estimated below
are those at the asymptotic limit, so that it may not
necessarily imply that there are also such large
configuration mixings in the usual mixing scheme
defined for the field operators. %'hat should really be
compared between the two different approaches are real
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observables, i.e., physical masses, decay constants fp,
vector-current form factors f + (0), and so on.

flavor-symmetry limit as
~
I& ),

~
it2),

~
itr ), . . .. Physi-

cal state
~ a, ) with momentum p can then be expressed

in the limit p~00 by
II. PSEUDOSCALAR-MESON DECAY CONSTANTS

IN THE PRESENCE OF MIXINGS (a, )=+A,, ~8, ), (2.1)

Since our main concern is the study of the subtle effect
of intermultiplet mixing between different excitations, we
reiterate briefly the main point of our version of asymp-
totic flavor symmetry. It assumes that the creation and
annihilation operators of physical ("in" or "out"} had-
rons do transform, even in broken symmetry, linearly
(including, however, the possible particle mixing) under
SUf(N) transformation, but only in the infinite-
momentum limit. Let us consider the annihilation
operators a (p, A, } of physical particles with momentum

p, helicity A, , and physical SUf(N) indices a (m', K, . . . ).
The transformation of a (p, A, ) under the SUf(N)
generator V, can be expressed as [V, ,a, (p, A, }]
=i g&u; hara&(p, A, )+ 5u«(p) In e.xact SUf(N) symme-

try, 5u, «(p) =0 for any value of p and the indices a and

P belong to the same SUf(N) multiplet. However, on
the right-hand side of the above equation the first term
should pick up, in broken symmetry, all the terms linear
in a&(p, A, ). In principle, a& should be taken over all
possible particles P, which have the same J or J as
the particle a, including those which belong to SUf(N}
multiplets different from the one involving a or glueballs
or exotics, etc. A11 the remaining terms are denoted by
5u; z. Our asymptotic symmetry requires that 5u; r
vanish as 1/

~ p ~

'+' (e & 0) as p~ 00. Therefore,
a&(p, A, } can be linearly related to the (hypothetical)
SUf(N) representation operator a (p, A, ) (but only in the
limit phoo) by a (p, A)= g.C (A)a~(p, A) at p~ao.
Here a (p, A, ) satisfies the usual SUf(N) commutation re-
lations with the generator V;. The orthogonal matrix
C then involves SUf (N) particle mixing parameters
which are defined in the asymptotic limit. These mixing
parameters will be determined, in the process of asymp-
totic realization of the constraint algebras involving the
charges (i.e., vector and axial-vector charges) of underly-
ing symmetry groups of QCD, as will be described
below.

We denote the physical ground state, first, sec-
ond, . . . , excited states as

~

a ) =
~
a, ),

~

a') =
~
a2),

~

a" ) =
~

a
& ), . . . , and their corresponding states in the

where A is an orthogonal matrix:

AA =A A =1. (2.2)

+2po(0
~
A„(0)

~
P;(p})=i(F&);p„

=if', (mr;}p„. (2.5)

A and P, transform in the same way under SUf(N).
The equal-time commutation relation between vector
charge V, and axial-vector current A,'„ is given in obvi-
ous notation by

[ A,'„(0),V, ]= A,„(0), (2.6)

where a, b, and c denote the SUf(N) indices and we
consider the case with a&b&c. The matrix elements of
(2.6) inserted between the vacuum (0

~

and the physical
ground-state pseudoscalar-meson state ~0 (bc);p) is
given in the limit p~ ~ by

The matrix element of a flavor charge V
(a = 1,2, . . . ) between the (symmetric) states i, a;

~

and

~ bj ) is of course given by

lim (it,
~

V ~b, )=5;
P~ ce

where the SUf (N) Clebsch-Gordan coefficients have
been omitted for convenience. Then, the value of the
matrix elements of V taken between two physical pseu-
doscalar meson states {,a;

~

and
~ bj ) with p~ 00, which

is equal to f'+,J (0},is given by

lim (a,
~
V,

~

b ) = (F'+ )—,"—=f +b,"(0)=( AB )," . (2.4)
p~ oo

Note that for phoo, i.e., at the limit of zero four-
momentum transfer squared, q =0, f (0) form factors
do not contribute. Here and hereafter, we often omit
the "limit" symbol, since all the computations are per-
formed in the limit p~ Do to take advantage of asymp-
totic symmetry.

The physical pseudoscalar-meson decay constants fr
r

(P; =rr, K,D, F, . . . ) are defined by

g(0) A;„(0 (ac);p){0 (ac};p) V, (0 (bc};p)=(0( A,„(0 (bc);p) . (2.7)

In deriving (2.7), annihilation of the vacuum by the
charge V, (but only in the asymptotic limit) is used.

We rewrite (2.7} in the form

g f k(AB )k; fr-—
k

(2.9)

that is,
g(0~ A„~ak&&al,

~
V~b;)=(0~ A„~b;), (28)

b
——, AB (2.10)

where mesons (ac ); and (bc)J are now denoted as a, and
b. , respectively. Therefore, using the notations defined
by (2.4) and (2.5), we obtain

where A and 8 are the mixing matrices for the mesons
a; and b;, respectively. The relation (2.9}implies
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fblf, =(AB )ii+(f, If, )(&& )2i

+(f,-lf, )(AB )„+ (2.11)

We now use a simplifying assumption that as far as
the mixings of the ground-state mesons are concerned,
the mixings with the 6rst radially excited states are most
important compared with the mixings with the second
and higher radially excited states. It is likely in general
that

i A;/ i
with j =i 1 are sizable, while

i A;J. i
with

j+i and j&i+i are relatively small in comparison to

i A; i
with j =i+i (T. his corresponds to the simplify-

ing assumption used in the mass matrix approach that
mixings are caused only through the nondiagonal ele-
ments of mass matrix I;J with j=i +1.) We use this ap-
proximation only when the external states (in realizing
the equal-time commutators) are the ground-state
meso ns.

Therefore, in the estimates of physical parameters of
ground-state mesons, we may approximately write

cosH, sin 8, cosHb sinHb
—sin8, cos8, ' —sin 8b cos8b

fb If.—f+(0)
[fab(0)]2] I/2

f.Ifb —f+(o)
tan(Hb — ) = [fab(0)]2 I

1/2

tan(8, —P)=— (2.21)

(2.22)

where + signs correspond to 0, &0& and 6I, )Ob, respec-
tively.

Using the fairly well-known observed value '

f+ (0)=0.973+0.027 (2.23)

[ i f+(0) sinHc
i
=0.216+0.003 from the K, 3 decay and

V,„:—sinHc ——0.222+0.003] into formula (2.14), we get

8» —8.=(13 3+ s'. b'» (2.24)

fK If„=153.3 MeV/131. 8 Me V = 1.163,

we can obtain

(2.25)

where, for convenience, we have chosen 8» )8, and er-
rors —13.3' and +5.6' have come from errors +0.027
and —0.027 in (2.23), respectively. From the relations
(2.21) and (2.22) with the usually accepted value (see Ref.
9)

so that

AB

Then we obtain, from (2.4),

cos(8, —Hb } sin(8, —Hb )
—sin(8, —8b ) cos(8, Hb )—(2.13)

f ~ If„=tan(p —8„)=0.82+0"»,
8 P (39 5+50.5)o

fK'IfK tan(I( —8» }=049 +—0.22

8» —P= —(26. 1+,
1 2)

(2.26)

f + (0)= cos(8, —Hb ),
f+ (0)= —f+ (0)= sin(8, —8b ) .

From (2.11) we then obtain

(2.14)

and

fb If, = cos(8, —8b ) —(f, If, ) sin(8, —Hb ) (2.15)

f, Ifb = cos(8, —Hb )+(fb lfb ) sin(8, Hb ) . —

Eliminating f, /fb from (2.15) and (2.16), we get

(f, If, ) (fb Ifb)—
tan(8, Hb ) =——

1+(f.If. )(fb Ifb) '

(2.16)

(2.17)

which leads to

tan(8, —P) = f, /f, , —

tan(Hb —$)= fb Ifb— (2.18)

where the fiavor-independent parameter P can be
identified with [considering the symmetry limit in (2.18)]

The upper value of f+ (0) in (2.23), 0.973+0.027=1,
leads to 8» —8 =0, 8 —/=8» —p= —90', and f„lf
=1. Therefore, errors following from the +0.027 value
in (2.23) are not consistent with our f» /f „ input within
our model. It will perhaps be more practical to regard
errors in (2.24) as 8» —8 =(13.3+5.6)'.

Although these numerical values should not be taken
too seriously since they are sensitive to the input value '

of f+ (0), it is, at least, likely that the the value 8 —P
lies in the range from —45' to —35'. Then, from (2.20)
we obtain an interesting bound on the pseudoscalar-
meson decay constants fp (P =K,D,F,B,.. . ):

fp/f „=cos(Hp —P)/cos( —40') & 1.4 .

Similarly, using the recently observed value '

f+ (0)=0.73+0.05,

(2.27)

(2.28)

obtained from the D ~E e+v and D+ ~K e+v de-
cays [ i f+ (0)

i i V,„i
=0.51+0.07 and V„=0.974

+0.001] we get

tank =fa2/f. i =fb2/fb i
= (2.19)

HD —8» =+(43.1+4.'i)' (2.29)

fb cos(Hb —P }

f, cos(8, —P)
(2.20)

Since it is likely that
i fp2 i

&
i fp& i, the angle P may be

restricted to
i P i

&n!4. From (2.15), (2.16), and (2.18)
we can readily obtain

where errors —4.4' and +4. 1' come from errors +0.05
and —0.05 in (2.21), respectively.

This value (2.29) in turn yields a sizable value

i f+ (0)
i
=

~

sin(HD —8») i
=0.26 for the possible de-

cay D~E'ev. However, the rate of the decay becomes
very small [I (D~K'ev)II (D~Kev)=5. 1X10 '] be
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cause of the phase volume factor and this D ~K'ev de-

cay is probably diScult to observe. Here, we have tenta-
tively assigned K(1460) to K' in the above computa-
tion.

According to the choice OD & ez or OD & Oz, together
with the values given in (2.26},we can predict

observed deviation from the mass sum rule
mz —m =mF —mz curiously favors case II as will be
discussed in the next section.

III. POSSIBLE MODIFICATION
OF THE SUM RULE mF —m& ——m& —n

Case I: 8D —P=(17 0+4 )+».z)'
~

fDIf =1.24+0.03+Dos,

(2.30)

(2.31)

By inserting the exotic charge commutation relation
[ V» o=(d Idr) V» 0 and V» 0= V3 =—V6 i V—7, etc ].

or
[V —0, V50] =0 (3.1}

Case II: 8& —{{}=—(69.2+4', +f, 2)',

fD If =0.4620.09+0'ts

(2.32)

(2.33)

between the asymptotic states &m,
+

~

and
~

FJ+ &, we ob-
tain using asymptotic Qavor symmetry, a sum rule

y&~+
~ V, .~K„+&&K„+

~ V, .~F,+&
k

Here the errors ( —4.4l+4. 1) and ( —63.9l+11.2) in
(2.30) come from &0.05 in (2.28) and +0.027 in (2.23),
respectively.

Although it may be tempting to imagine 8D &8», the

=X&~;I VD. IDk &&Dk'i V;. IF; &,
k

which yields

g(m„; m»k)[—U(n)U(K) ]+[U(K)U(F) ]kj ——g(mzk mg—z)[U(m)U(D) ]k[U(D)U(F) ]kj
k k

(3.3)

or

U(n )rM2U(n ) U(K)r—M»2U(K)= U(D) MDU(D) U(F) M~—U(F), (3.4)

where U(P) denotes the mixing matrix among the mesons P, and (M~);1 =5;imp
Qf course, when ail of the U(P) are unit matrices (i.e., there are no mixings) we recover the simple mass-squared

4 2 2 2 2spacing mF — D= a&-
However, the observed values of these masses show a slight deviation from the equal-spacing rule:

e—:(m + —m + ) —(m + m+ )=——(0.165+0.012) GeV

In the present model the deviation is given by

= —[ cos(8~ —'8 )] '[(m» m» ) sin(8—» —8 ) sin(8» —8+ )+(mD —mD ) sin(8D —8 ) sin(8D —8~)],

(3 5)

(3.6)

which is readily derived from (3.3) via

m~&+mz& ——[U(n')U(F) ]&&'g Im»k[U(K)U(m) ]k&[U(K)U(F) ]k&+mDk[U(D)U(n) ]k&[U(D)U(F) ]k&I . (3.7)
k

Since mz' —mz &0 and mD. —mD g0, the observed2 2 2 2

value of e requires (8» —8„}(8+—8» ) & 0 and/or
(8D —8„}(8~—8D }& 0 (we restrict 8 to the range

~

8
~

&n/4). This suggests that in the choice of the
values of OD —0 discussed in the previous section, case
II (8D —8„=—40') is favored for the explanation of the
observed value (3.5).

For the numerical study of e, it is useful to eliminate
OF —8& and mF —mF from our sum rules, since experi-
mental information is not available for these quantities
at present.

For the case of 2X2 mixing matrices, relation (3.4}
leads to

d cos5 —c cosy =b cosP —a cosa, (3.10)

2 2 2 2 z 2 2where d =mF —mF, c =mD —m» b =mz' —m&,
a =m —m, 5=28~, y=28D, P=28», and a=28 .
The first relation (3.8) has been derived from the trace of
(3.4}, the second relation (3.9) from the 12 (or 21) com-
ponent of (3.4), and the last relation (3.10) from the
difference between the 11 and 22 components of (3.4).
The relations (3.9) and (3.10) imply a relation
d —c=b —a among the two-dimensional vectors a
(

~
a

~

=a, arga=a), and so on. Therefore, in (3.9) and
(3.10), we can replace each angle 8z by 8& —8 . Then,
we get

2e=(d c) (b —a), — —
d sin5 —c siny=b sinP —a sina,

(3.8)

(3.9)
tan(5 —a) = b sin(P —a)+c sin(y —a)

b cos(P —a)+c cos(y —a) —a
(3.11)
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a =m ~ —m =1.67+0.26 GeV

b =m&. —m& -1.89 GeV
(3.13}

where we have used m ~ =1.3+0. 1 GeV and mz'-1. 46
GeV. On the other hand, there are no data for c. We
take very tentatively

c =mD —mg) -1.55 Gev 2 (3.14)

by assuming experimentally well-satisfied equal spacing
rule m z —mp —const and its plausible counterpart
m v rn p =—const (which can, in fact, be derived in the

present formalism), i.e., mD —mn =(mn, —mD+ )

+(m ~ —m„)—(m ~ m), an—d by tentative identifying
D'(2420) with D". (The predictions of 8+ and e are
not very sensitive to the value of c.) Then, case II,
8~ —8~ = —43. 1, yields

8p; —8 = —15.6' (8~—8D-14.2'), (3.15)

d =m+. —mF -0.939 GeV (3.16)

e= —0.414 GeV (3.17}

d = ( [b sin(P —a)+c sin(y —a)]
+[b cos(p —a)+c cos(y —a) —a] )' . (3.12)

From (3.8) and (3.12) with input values a, b, c, p —a,
and y —a, we can estimate the value of e.

Present data show

m —m =(mx' mx ) cos2(8x —8 }2 2 2 2 (4.3}

1.67+0.27 GeV for the left-handed side and
=1.69 GeV for the right-handed side. In the forrnula-
tion of asymptotic flavor symmetry, the masses of flavor
multiplets in the symmetry limit never play a role, since
we always deal only with physical "in" or "out" fields.
However, if we nevertheless assume that physical masses
and symmetry masses are related by the simple relations
inferred from the usual diagonalization of mass matrix,

and f+ (0)=0.73 have been used. For the errors, see
(2.23) and (2.28). Moreover, in the estimates of 8~ and

fz, mD. —mD -1.55 GeV has tentatively been assumed.
Therefore, these numerical values should not be taken
too seriously at present.

The argument can be extended to B mesons in a
straightforward way. In this connection, the recent re-
sult of Suzuki' that f~ is not larger than f in his mod-

el is interesting to us.
A recent experiment' has made remarkable progress

toward an upper bound of the value of fD, and we hope
that more data soon become available to check the valid-

ity of our sum rules. Similar experiments in B-meson
decays are also eagerly awaited.

In this paper we have estimated the values of 8p
Finally, let us speculate on 8~ themselves, although we

cannot predict the values of 8& from asymptotic symme-

try alone. The experimental values yield, for the rela-
tion

The predicted value of
~

e
~

is somewhat larger in corn-
parison with the observed value (3.5). We, however,
consider that the value (3.17) is not so unreasonable in
view of our crude estimate based on the still preliminary
experimental data. (In contrast, if we take case I,
8D —8z -43.1', we obtain 8F —8 =52.2', 8F —8D
= —4.2', and a=+0.291 GeV, and we cannot obtain a
negative value of e.)

From relation (2.20) and the value (3.15) of 8+, we

predict crudely

m ~ —m „=(m e2
—m e, ) cos28„,

mx —mx ——(my~ —mg, ) cos28x,2 2 2 2

the empirical relation (4.3) suggests

2 2 2 2
e2 e1 ™Ez ™/1

and

8 =0.

(4.4)

(4 5)

(4.6)

f~lf =0.74 .

IV. CONCLUSIONS

(3.18) This is probably a very natural result since SU&(2) is a
good symmetry in SUf (N). Then, we may deduce

/ =39.5' from (2.26} and obtain

In conclusion, under the approximation we have used
for the model of mixings we have presented arguments
which prefer the choice BD & BF & 8~ & Bz ..

tang: fp& Ifp &

-0.82, —

which also seems reasonable.

and

8~ —8~-13, 8~—BF-16, BF—BD ——14'
~ (4.1)
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