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Kinematical aspects of nonleptonic mnltiparticle decays of heavy baryons
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I derive formulas for analyzing in a model-independent way the nonleptonic multiparticle de-

cays of spin-2 baryons. Two- and three-body decays with up to two vector bosons in the final

states are considered as special cases. All information contained in the polarizations of spinors
and vector bosons is kept. These formulas may also be used to analyze polarized nucleon and
meson scattering.

I. INTRODUCTION

QCD is now widely accepted as the theory of strong
interaction. With the proof of various factorization
theorems, ' it provides the basis for understanding and
improving on the parton model, which is successful in
describing deep-inelastic scattering of leptons and had-
rons as well as other hadronic processes with charac-
teristic scales much larger than a few hundred MeV.
Low-energy processes, on the other hand, reflect the un-
derlying approximate chiral flavor symmetry which is
certainly one feature of the QCD Lagrangian, although
we are yet unable to calculate the low-energy parameters
such as the pion decay constant from first principles.
The most challenging aspects of QCD lies in describing
processes involving intermediate energy scales of a few
GeV where neither perturbative QCD nor approximate
chiral symmetry provides reliable estimates. Experi-
ments in hadron collisions as well as heavy-baryon pro-
duction and decays designed to probe the intermediate
energy scales can thus give us valuable information
about the nonperturbative aspects of QCD. Several re-
cent experiments in exclusive polarized nucleon-
nucleon ' and nucleon-meson" ' scattering processes
as well as the inclusive production of polarized hype-
rons' have suggested a strong "spin dependence" of
the interaction mechanism. Hence, to analyze such ex-
periments as well as the decays of hyperons and heavy
baryons, it is important to include the polarization of the
interacting particles. In this paper we intend to give a
complete set of formulas for systematically analyzing
multiparticle processes involving a pair of baryons and
several mesons in a model-independent way. We shall
give the formulas in the context of heavy-baryon nonlep-
tonic decays and indicate the modifications necessary for
applications to other processes. Only spin- —,

' baryons are
considered at present. In the following section we de-
scribe our notations and method of calculations. The
basic formulas which make explicit the dependence on
the baryon spin states are given. Formulas for the trace
of a pair of fermion bilinears are given in Appendix A.
In Sec. III we consider processes involving one or two
mesons in the final states which are special cases of our
general formulas. Formulas for two-body decays are, of

course, well known; we give them for completeness and
for comparison with the general cases. A brief discus-
sion is given in the final section.

IE. GENERAL CONSIDERATIONS

A convenient choice of p, q in terms of an arbitrary
reference vector Po is the following. Let

h(abed ) =e„, a "b"c~d

and let b ( bcd ) be the four-vector such that

tz 5( bcd )= b, (abed )

(2.2)

for any four-vector a. We define

Ia&a,
b, (a, aza &, a Ia za 3 ) = az a

&

Ia3.a
&

I
a& a2

I
ag a2

Ia3'a 2

I
a& a3

az a3 . (2.3)
Ia3'a 3

This definition can be trivially extended to any number
of four-vectors a „.. . , a„. We also let 6( aza 3,a &a za 3 )

be the four-vector such that

a, i)( aza3, a', a&a&)=b(a, aza3,'a', aza3)

for any four-vector a, . Let

and

cx+ =k].k2+m]m2, ct =k).k2 —m]m2,

5(Pok
& kz 'Pok

&
kz )

Q2
0.+a

(2.4)

(2.5)

We assume the reference vector Po is linearly indepen-
dent of k, , k2 so that h„does not vanish.

Let M(k, n, ,kzo z) be the amplitude for the decay of a
baryon of momentum k 1, helicity o'

&
into another

baryon of momentum k2, helicity cr2 and any number of
yet unspecified mesons. We introduce two spacelike unit
vectors p and q such that

p =q = —1, p q=O, p k, =q k, =O,i=1,2.
(2.1)
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We can choose p, q to be

5('Poklkz ) 5(Pok]kz& 'k ]kz )

Qa a b„a+a
Let us note the following useful identities:

1A.pB.p+A qB.q= d{Ak]kz,Bk]kz),
A+A

(2.6)

(2.7)
M =u, (A, —8]y, +C]P+Cz]]t D,—y yf Dz—y54

+E]4P—F]y~&)uz (2.17)

A],8], . . . ,E„F]in Eq. (2.10) are functions of Lorentz
invariants that we may construct from the momenta and
polarization vectors of the mesons as well as k& and kz.
Our task is to compute M(kcr„kzcrz}M(k]cr], kzoz)
with

5( ABk, kz }
A.p B q —A.q B p =

60

for any four-vectors A, B, where

60——h(pqk] kz ) =++a+a

(2.8)

(2.9)

The choice of p, q in Eq. (2.6) is such that the plus sign
holds in Eq. (2.9). We shall assume this sign convention
in the following.

In terms of p, q, the general invariant amplitude
M(k]o ],kzo z) in four dimensions can be written as

where A
&

means taking complex conjugate and changing
the polarization )], of any vector boson into )],

' in the ar-
gument of A, . The various traces involving the fermion
bilinears u &u „u2uz are given in Appendix A. From Eq.
(A14), one can see that only the following combinations
of A&, B&, . . . , E&,F, appear in MM:

A =+a+ A]+i+a F„8=+a 8, +iQa+E],
(2.18}

C=i+a C]+Qa+Dz, D=i+a+D]++a Cz .

M =uz(A]+B, ys+C]+Czf+D]fys+Dzkys

+E]A+F]Ny s}u i
(2.10}

Defining 7 by 9 = A, 9 =8, P'=C, and 9 =D we
have, from Eq. (A22),

where u, =u(k„o, ), uz —u(kz, oz) are the spinors
describing the helicity eigenstates. The convention we
choose for helicity eigenstates are such that the spinors
u(k, o ) and antispinors U(k, cr ) satisfy the relations

u(k, cr)u(k, cr')= —,'(m+k){d cro+8'y, o, )

v(k, o )U(k, o'}=—,'(m —k)(d' oo+d'y5cr;)

(2.1 1)

(2.11a)

where oo is the 2X2 identity matrix, cr,. the usual Pauli
matrices, cr, =o zcr, o z, and e'(k ) are the four-vectors

eo(k}=—k, m =k0 1 2

m
(2.12}

ezk =
/k /( [k /+k,

x(0, k„k„k,( f
k

/

+—k, )+k„',
—k, { /k f+k, }), (2.14)

1
e (k)= ——(k ~, k

m '/k/ (2.15}

In the above,
~
k

~

is the absolute value and k„,kr, k,
are the components of the three-momentum k. For a
vector particle, we also use the four-vectors e'(k) to de-
scribe its polarization states e(k, )],):

e(k, A, }=e"(k) . (2.16)

e'k = 1

/k [(/k /+k, }

X(0, —k, ( [ k
/
+k, )—k, k„k,k„(

f
k

/ +k, )),
(2.13)

M(k, cr „kzcrz}M(k]o ],kzo z }

=[&g".z(~]4]..[(+z).g~& ]. ~

=[&'g'0(+])h],[(4z),go&P~], , (2.19)

where g'~& are constants equal +I or ki as given in Eq.
(A13); (S])„(Sz), are 2X2 matrices defined in Eq. (A2)
and S]„=(4'])s(4'z), . Note that for given aP or ab,

g~ has only four nonzero entries so that the right-hand
side of Eq. (2.19) contains no more than 64 terms. If we
sum over initial and Snal spins of the baryons, only
terms involving (/] )0 and (Sz)o are nontrivial so that

y M(k]cr], kzcrz}M(k]cr], kzo z}=4V 9. (2.2())'

cT),F2

This simple structure shows up, for example, in
e+e ~W+W or qq~W+W (Ref. 30}, no matter
how complicated the underlying interactions one as-
sumed.

If one of the baryons is changed to an antibaryon,
' then we have to interchange a+ and a in Eq. (2.18)
and change 4', , S'2, and g & according to the rules stated
in Appendix A, Eq. (A23} and below. Equation (2.19)
remains valid. If both baryons are changed to anti-
baryons, then the only changes needed are S]~et],
Sz~Sz where 4'„4'z are defined in Eqs. (A23} and
(A25).

The polarization density matrix p of a spin- —, particle
is specified by P' such that p= 2]P'o, . It is customary
to normalize p so that P =1. In the basis of helicity
eigenstates which we are using, P is related to the longi-
tudinal polarization while P' and P are related to the
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transverse polarizations. Let p, =—,'Pl'o, be the spin

density matrix of the first baryon. Then we have

(Pl) 'M(kiril k2a2)M(kiril k2 2)
I I

1
(m2k, +m, k2), k

1
(m3k, —m, k2) .

{2.30)
G')l7) CT2CJp

where

=29 V~go~b(p, )b,

m1
(p, )b=(1, k p„p p„iq p,

~O
' ' b'

(2.21)
A1, 0, satisfy the relations

i&a p A, =+a q Q, ,

i Qa+p Q, =+a q A, .

Using A1, 01, we have the relations

(2.31)

3

P, = —g P,e'(k, ),

b =0,3, 1,2, (2.22)
a

k+.A1,k+ X, —
a+ —a

{2.32)

9 =Xll+
a+ a—

—1 1 —2 2e = —e, e = —e, —3 3e = —e (2.23)
1 a

P=YO—
a+ —a

a+
k ~ Y1 + k 01,

a+ —a
The polarization density matrix of the second baryon
p2 ———,'P2a, is given by

m2
X P2e k2 c3 k clp+lc2q, (2.24)

6o

where

1 9 = —lp A 1,
Qa

1 V= —qQ1,
+a~

1 p = —lp 'Ql

(2.33}

(2.34)

(2.35)

g aisP lb

cpa p iSg Ob p
(2.25)

Using Eq. (A12), one can show that P2 as well as the
right-hand side of Eq. (2.21) are real. For unpolarized
source, we find the polarizations of the final-state
baryons to be

pa@13 io

c;= fof Pl=0. (2.26)

The invariant amplitude M is usually not given in the
form of Eq. (2.10}. Instead, M may arise in the form

M =u2[xo+ I'ors+&1+ I'iys+-,'( V, V, —V, V, )

l
uggysu, = — u25—(pqyy )u, =i

2 a+
Q2u1

(2.36)

where we used relations similar to Eq. (2.8), but with the
roles of p, q and k+, k interchanged. Similarly, we find

' 1/2
l

u, gysu, =—u, &(qyyy )u 1
= —1'

6
u 2ibu 1

Let us now explain why of the eight form factors
&„8,, . . . , E„F, only four combinations 9' appear.
For on-shell spinors u1, u2 we have

' 1/2

+-,'{&1Z1 —Zl &1 )rslu 1 (2.27) (2.37)

where Xo, Yo are scalars and X1,Y1, U&, V1, F1,Z1 are
vectors. In general, there can be several tensor and
pseudotensor terms, but their treatment is exactly the
same as the single term we retain.

The above form of M is related to our form factors 9'
through the combinations

upfu 1
=I

Q3lfu 1
= —l

' 1/2

u2$5u 1

QPrsu 1

(2.38)

(2.39)

Al ——Xl+(k ~ U, )V, —(k V, )U1+ih(. k W, Z1)

b( ~ F,k k+ ),a —a+
(2.28)

where

+l a —a+
b(.X,k k+ ), (2.29)

Q, =F, +( k+W, )Z, —(k+ Z, )W, +iA(.k+U, V, )

These relations provide useful consistency checks on the
formulas given in Appendix A.

Let us examine more closely the eases when only
(pseudo}scalar mesons are involved. Of the four complex
form factors 9', there are only seven observables since
the overall phase is not observable. From the explicit
forms of g'& as given in Appendix A, we see that by
measuring the diagonal elements of polarization correla-
tions of the initial and fina baryons, . i.e., 9' 9~g'& for
a = 1,2, 3, and the total decay rate we can obtain the ab-
solute values

~

9'
~

. The three independent relative
phases of 9' can then be obtained by measuring the de-
cay asymmetry for polarized source or by measuring the



S.-C. LEE

polarizations of the final-state baryons with unpolarized
source. More details will be given in the next section
when we consider three-body decays with no vector
mesons in the final state.

Next consider the cases with one vector boson in the
final state. The momentum and polarization vector of
the vector boson are p, and ez(p, ), respectively, where

ez(p1) are four-vectors defined in Eqs. (2.12)—(2.15). In-

stead of V, we shall write Vz which makes explicit the

dependence on the polarization vector ez(p, }. 9' now

stands for (7& )'. To expand 9&, we choose a complete
basis of four-vectors as we did in Eq. (2.6), but with

p&, k] play the roles of k&, kz and we choose kz now as

the reference vector P0. Explicitly, the basis consists of

p, ,k, and

jLV

pv

I /2
iX I

p —Ipv s

a+
' 1/2a'

(2.44)

ez (pz). 9' now picks up two indices and becomes 9& z
2 1 2

while J becomes (9', , )'. Choose again a basis, say,
1 2

p1 pz p -b( k. 1p1pz} q -5(k1p1pz, .p1pz) and normal-
ize p', q' so that (p') = —l, (q') = —1. From p„pz we

construct orthogonal vectors p+,p as we did for k&, kz
in Eq. (2.30). Let us define the tensors 7"„j„sothat

a'
~pv=, p pp -v~-

9+

5( p1k, kz}

[b(p 1k,kz, p1k1kz )]'

h(p, k, kz;.p, k1)

[ —h(p, k, ;p, k, )h(p, k, kz;p, k, kz )]'

(2.40)

~'+ =p ~ pz+M ~M2, ~' =p
& pz —M &Mz

M ] Mz the masses of the two vector bosons. We can
now expand 9'z z.

1 2

(2.45)

+a 1 eh, (pl ) p +a 2elL(pl ) q (2.41)

a, are now functions of Lorentz invariants constructed
from four-momenta of the various particles involved and
are independent of the polarization vectors e&(p1}. The
measurable quantities are P&P~&,'g'p. If we sum over po-
larizations of the vector boson we obtain

3 2
PaPPeg ab y a aa Peg ab

A. =1 i =0

Note that the Hermitian matrix % p defined by

2

= ga'a '

(2.42)

(2.43)

is degenerate. There exists four nonlinear relations
among its elements. Instead of the usual 16 real degrees
of freedom for 4)&4 Hermitian matrices, & p has only
12 real degrees of freedom. Hence, only half of the in-
formation is contained in the polarization summed cross
sections. In principle, only 12 measurements out of the
16, i.e., & pg'p, are needed to determine % p. If the
vector boson is a massless gauge boson, then we may set
ao =0. & P now has only 8 real degrees of freedom
which is again half of the total degrees of freedom con-
tained in a& and az.

The above considerations for the one-vector-boson
cases works only when there are more than two particles
in the final state. For two-body decays, there are only
two independent four-momenta involved. This is a de-
generate case and will be considered in the next section.

Consider now the cases when there are two vector bo-
sons in the final state. The momenta of the vector bo-
sons are p „pz and their polarization vectors are ez (p, ),

I

where M, is the mass of the vector boson. We can now
write

M)
ao e, (p

[—h(p, k, ;p, k, )]'

This should be compared with the previous case of a sin-

gle vector boson.
If we sum over polarizations of both vector bosons, we

get

a ~» ah a P» ah
z.&z,zg ap g ij aij g ap

1 2 IJ

(2.47)

By measuring these 16 quantities we can determine
% P=g;j a;ja,Pj' but these account for only a fraction of
the total degrees of freedom.

We can proceed to consider cases with more vector
bosons. However, it is clear that for each fixed a, the
parametrization of 9' involves only bosons and depends
on how many vector bosons are considered. This is a
problem of interest in its own right and will not be con-
sidered further here.

III. T%'Q-BQDY AND THREE-BQDY DECAYS

A. Two-body decays

The cases of two-body decays are degenerate in the
sense that there are only two independent four momenta
out of the three external particles. As a result, there is
no "natural" way to choose a referegce vector P0 to
define p, q without referring to particles or apparatuses
outside the three-particle system. Let us first discuss the
well-known case when only scalar mesons are present in

a;. are functions of kinematical invariants and are in-

dependent of the polarizations e&,ez . The measurable
2

quantities are now 9& z 9&,',g'p. If we sum over polar-

izations of one of the vector bosons, say, sum over A,z,
we get

X ~z.,zP a, z,,g P
= X a jaPj» ~~ ex (P1)"e

z (P1) g P
2 J

(2.46)
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the final state. In this case, in the amplitude M as given
in Eq. (2.27}, only X0, F0 are nonzero and they are con-
stants as the only kinematical invariants we can con-
struct in this case are constants. Hence of the four form
factors 9', only 9 and 9 are nonvanishing. Instead of
the seven independent real quantities to be determined in
the general case, we now have only three: nainely,

I
9 I,

I
7 I, and the relative phase of 9 and 7 . From Eq.

(2.21) and the explicit form of g'II, we find that the
differential decay rate for a polarized source is

where

—2Re9 V

I
&

I

'+
I

&'
I

'
—21m' V

I
&

I

'+
I

&'
I

'

I
&

I

'+
I

&'
I

'

(3.5)

dI = [ I
9

I
+ I

7
I

2 —2Re9 9 (PI)3]d@3,
1

(3.1}

where dt's is the two-particle invariant phase-space ele-
ment. In the rest frame of the decaying particle,
e'(ki}=(0,—1,0,0), e (kI)=(0,0, 1,0), e (k, )=(0,
0,0, —1) so that

P, =(o,e, )

and we find from Eq. (2.22} that

Computing the covariants b(P, kikz, k, k2) and
6( PI kik2) in the rest frame of k I, we get back the usu-

al formulas for the polarizations of the decayed
baryon. '

Now we turn to the case when the final-state boson is
a vector particle. In the amplitude M in Eq. (2.27}, only

Xo Yo X
& Y& are nonvanishing. Moreover, both X&, Y&

must be proportional to eI (PI). The on-shell condition
of the vector boson implies

e&(PI) k, =e&(p&) kz .

m&
(P, )3—— k P, =

I PI I
cos8, (3.2)

It follows from Eqs. (2.32)-(2.35) that we may write

where 8 is the angle between PI and k& in the rest frame
of k, . Hence we recovered the we11-known formula ' in

this case. For the polarization of the decayed baryon,
we find from Eqs. (2.24) and (2.25) that

)
M ] 3 3

M
+~=a ei(p, ).k„PI=a eI„(p, ) k, ,

60

PI, —— [a ei(p, ) p I'a e—I„(PI) q],1 1 1 . ~ 2

v'2 (3.6)

and

a+(Pi )3

1+a(P, ),
(3.3}

[a eI, (pI ).p I'a ei(pi—) q],2

2

1 1
cip Ic2q = — y 4(PIk, kz, k, ki )1+a P, 3 a~a

1—P 6( P,kiki) (3.4)

where p, q are chosen as in Eq. (2.6) with some reference
vector Po. a are constants since, as in the previous
case, there are no nonconstant Lorentz invariants one
can construct from k, , k2,p, .

Let us first sum over the polarizations of the vector
boson. We find that

0I2 0—3

—0 3
I

3II
0 0

0

—,'(
I

a'
I
'+

I

a'
I

')

Rea 'a

0
Rea'a '

—,'(
I
a '

I

'+
I
a '

I

'}

* aP

(3.7}

where a,P=0, 3, 1,2.
The differential decay rates follow from Eq. (2.21):

The polarization of the decayed baryon in this case is
given by

dI = [a a —2(Rea a + Rea'a )(P, )3]d42 .
1

=k

(3 g) aild

a3+a3(P i }3
2=C3 1+aI(PI )3

(3.9)
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1 1
C 1P —lC2 6(P)k, kq,' k)k2)

I+a&(P, )3 a+a

and (P, )3 is again given by Eq. (3.2). a&'s now satisfy
the relation

—,'(o')+&2) +&4+&5=4(1+~3)2 (3.12)

1—a5 ( P)k)k2)
60

where

—2Re(a a +a'a )
a1 ——

gag a

Q2=
—2 Re(a Oa —a 'a )

gag a

a4 —— Q5 ——
gaa a

—2Im(a a
g~a

I

a'
I
'+

I
a '

I

'-
I
a '

I

'-
I

a'
I

'
Q3= 7

g g

(3.10)

(3.11)

If the polarization of the decaying particle is known
or is at our disposal, then we can measure all
a, ,i =1,2, . . . , 5 as well as g g . The only quantities
we cannot measure from these polarization-summed
cross sections are the relative phase between, say, a and
a ' and the difference

I
a '

I

—
I
a

I
. On the other

hand, suppose we are trying to measure the polarization
of the decaying particle. In the case of scalar meson, we
have only to measure the decay asymmetry and the lon-
gitudinal polarization of the final-state baryon as can be
seen from Eqs. (3.1)—(3.3). This is not the case for vec-
tor boson in the final state. Measuring the quantities in
Eqs. (3.8)—(3.10) as a function of cos8 will give us a2
and a, I P, I, i =1,3,4, 5. We can now use the identity
Eq. (3.12) to obtain

, i&2+I I Pl I +3 I Pl I
—+(r 2+3 I'Pi

I &i I pi I ) +4(1—~2)(~4
I Pi I +~s I P& I )& ~

1 —Q2
(3.13)

9q ———a 5q3, Vq ———a 5x3,0 3 3

Vq ——— (a 5~2+ia 5g)),1 1 1 ~ 2

2
(3.14)

5x2+ ia2 ~ 1

v'2

It follows that we have

When
I
a ' I, I

a
I

are small compared to
I
a

I
and

I
a I, we find that we have to take the plus sign in Eq.

(3.3). Hence, if we can use a continuity argument, the
plus sign should be taken in Eq. (3.3). The sign of P,
can, of course, be determined by just examining the cos8
dependence of various measurable quantities. Thus, for
the purpose of determining the polarization of the decay-
ing particle, we need not measure the polarization of the
final-state vector boson or its correlation with other
physical quantities. However, we do have to measure, in
general, the polarization of the decayed baryon.

Now we take into account the polarization of the vec-
tor boson. For this purpose we need explicit expressions
for P&V~&. It is convenient to choose P, as the reference
vector for p, q. In evaluating the Lorentz invariants in
Eq. (3.6), we choose the direction of the three-
momentum of the vector boson as the positive z axis and
choose P, to lie in the x-z plane with positive x com-
ponents. With these conventions we find

and

Ia2I2
7 V~=-

g'g

g'g '

1
1 2

g lg2

'ap
g lg2

g g-21
Ia2I2

Ia2I2
a'g ' a,P=1,2

(3.15)

0- 2
i

~3~1 3—2v'2 a a

g'g ' 'ap

g'g '

r

g'g '

~3~2 ~ 3—1g g

g'g ' ap

g g

(3.16)

a=0, 3,P=1,2,

where we have written only the nonzero elements in
V&9'~z for various A, , A, '. To obtain

I

a'
I

—
I
a

I
and

the relative phase of, say, g and g '+g, we have only
to measure V, V, —V2V2 and V3(V, —iVz) which re-
quires observing the correlations of the decay products
of the vector particle.

It is interesting to look at the case when the vector
boson is a massless gauge particle. Then we have
a =a =0. In Eq. (3.11), we find now

2Reg'g 2

a3= —1

I
a '

I

'+
I

a'
I

'
(3.17)
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Hence, the decayed baryon is longitudinally polarized if
we do not observe the polarization of the vector boson.
On the other hand, assume the vector boson is linear po-
larized with A, =l. Using the explicit form of pi p, in

Eq. (3.15) we find now

1 1
C1P —lC2$ = a6 6(P,k, ki; k, k2)1+a,(P, )3 a+a

1—a7 6( P 1 k ik2 ), (3.18)
0

4 dk 2dp id(cos8)d P,1

128m
(3.21)

where 8 is the angle between Pi and the three-
momentum of the decayed baryon and d 43 is the invari-
ant phase-space elements of the final-state particles. We
evaluate the phase-space volume elements and the
Lorantz invariants in the large parentheses in Eq. (3.20)
in the rest frame of the decaying baryon and find

where a+a
~(P 1p 1 k 1 k2) = —

I &1 I
sin8 sing, (3.22)

I&'I'+ I&'I' I&'I'+ I&'I'
(3.19)

1

a+a ~(p 1k ik2 Pikik2 }

Hence, the transverse polarization of the decayed baryon
need not vanish in general.

8. Three-body decays

Three-body decays will illustrate most features of the
general multibody processes. With three independent
four momenta of the four external particles, we can con-
struct two independent Lorentz invariants which are not
constants. We may choose them, for example, to be the
energy of the decayed baryon and one of the bosons in
the rest frame of the decaying particle. Our form factors
will depend on these two variables.

Let us begin with the case when no vector bosons are
in the final state. We choose the reference vector to be

p1, the four-momentum of one of the mesons observed,
in constructing p and q in Eq. (2.6). From Eq. (2.21), we
can write down the differential decay rate

(3.23)

where 8 is the angle between Pi and kz and p is the an-
gle between the plane of the decayed products and the
plane containing P, and kz. More precisely, if we
choose the direction of k2 to be the positive z axis and
choose P, to lie in the x-z plane with positive x com-
ponent, then P is the azimuthal angle of p, . In the
phase-space element of Eq. (3.21), we have integrated out
an irrelevant angle. Using the following shorthand nota-
tion

—2ReP"P" —2 ImP"P"
papa ' P" papa

1u, v=0, 3, 1,2; 1M&v, (3.24)

I

P'
I

'+
I

P'
I

' —
I

P'
I

' —
I

P'
I

'
y3=

dl = P P —2Re(P P +P'P )
I P, I

cos8
1

b,(P,pik, k2}—2 Im( P"P +P'P )
&a+a a„

+2Re(P P' —P P )

I
P'

I

'—
I

P'
I

' —
I

P'
I
'+

I

P'
I

'
a a

I

P'
I

' —
I

P'
I
'+ P'

I

'—
I

P'
I

'
y2=

(3.25)

b,(p, k, k2;P, k, kz)
X d43,a+a

(3.20} we can write the differential decay rate as

1 1dI =
0 p p {1+I P, I [(a03+a,2)cos8 —(p02 —p3, }sin8sinp~(ap, —a3 )sin8cosp]J dk dp d(cos8)dp .

k1 01 32
128 4

(3.26)

The polarization of the decayed baryon follows from Eq. (2.25). We have, for the longitudinal polarization,

a03 a 12 + I p] I [7 3 co$8 (ppi p32 )sin8 sin(j}+ ( ap2 a 3 1 }sjn8 cosp ]
PP=C3 =

1+
I &1 I [(a03+a12)cos8 (~02 1831)s'n8s'n4'+(api a32)»n«os']

and, for the transverse polarization,

(3.27)
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p02+p31+ I
Pl I [ (ppl+p32}cos8 —y 1 »n8 sing+(pp3 —p12)sin8 costI)]

c) =
+

I Pl I [«03++12)cos8 (pp2 —p31)sin8 sing+(apl —a32)sin8 cosp]

(~pi+ l232 }+
I Pl I [(&02+ a31)cos8—(p03+p12)sin8 sing —y2 sin8 cos((t]—lc2 =

1+
I Pl I [(~03+a12)cos8—(p02 —p» }sin8 sing+(apl —a32)sin8 cosp]

(3.28)

(3.29}

Note that c
&

gives the transverse polarization perpendicular to the decay plane and c2 gives the transverse polariza-
tion ln the decay plane. Conversely, P2 and P2 give the transverse polarization perpendicular to and in the plane of
P, and k2, respectively.

If the angle (t is not observed, we have to integrate over P in the numerator and denominator in Eqs. (3.27)-(3.29)
separately. The resulting equations are similar to the cases of two-body decays. If

I P, I
is not known, by measuring

the decay asymmetry and the longitudinal polarization of the decayed baryon, we can obtain, in principle,

(i203+i212) I Pl
I y3 I Pl

I 1203 1212

Contrary to the two-body case where a, 2 vanishes, in general, we cannot extract
I
P, I

from these measurements
alone. It is necessary to measure the transverse polarization of the decayed baryon or to observe the (() dependence of
the decay rate and the longitudinal polarizations.

Note that the formulas in Eqs. (3.26) —(3.29) are general in the sense that they can be applied no matter how many
scalar mesons are in the final state as long as we observe only the decayed baryon and one of the decayed mesons
while we integrate out all other dynamical variables.

Next we consider the case when there is one vector boson in the final state. The form factors P are parametrized
by a as in Eq. (2.41). a, depends only on two independent kinematical invariants which we may choose to be the en-

ergy of the decayed baryon and the vector boson in the rest frame of the decaying baryon. Calculating the scalar
products of four-vectors in Eq. (2.41) we obtain

93 —ap, 7, =a; since a2 co—s03, Pz a 1
cosco——+a 2 sin03 (3.30)

where co is the angle between the plane of the decayed products and the plane containing P, and the vector boson. It
is related to 8 and P, which appear in Eqs. (3.21)-(3.23), by

—sin8 sing
slnN= . 2[sin 8sin P+(sink, cos8 csok—si n8c soP} ]'~

sinA, cos8 —cosA, sin8 cosP
cosco =

[sin Hsin (() + ( sinkcos8 —cosksin8cosg )2]' ~2

where A, is the angle between the decayed baryon and the vector boson and is constrained kinematically to be

Is'2 I

' —
I pl I

'—
I k2

I

'
2

I pl I I
k2 I

It is convenient to use the helicity eigenstates of the vector boson. Defining

(3.31)

(3.32)

Pg —(91+72 ), a g
———— (a; +122 ), Pp ——9'3,

we have

Pa e
—i A,(co+a /2)u a

A + 0 (3.33)

For given helicity state A, of the vector boson, the differential decay rate and the polarization of the decayed baryon is
given by formulas almost identical to Eqs. (3.26)—(3.29). We have, for example,

(dI )z —— aia2 [1+ I P, I [(a03+a,2)cos8 —(p02 —p»)sin8sinp+(apl —a32)sin8cosp]I
k',

X dk2dp, d(cos8)dp,
128m

where no summation over A, is implied and

(3.34)

—2Re(a~zaz' )

jMV a ae ' pp"
a&a&

—21m(a~la z' )

aaaa+ (no sum over A, ) . (3.35)

Similarly, y,". is defined by replacing 7 by al in Eq. (3.25). The polarization of the decayed baryon is then obtained
from Eqs. (3.27)—(3.29) by replacing a„„,p„„,y; with a„„,p„„,y;.
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For massless gauge vector bosons, we have to set ao =0 and restrict A, to take only the values 1,2 in Eq. (2.41). The
differential decay rate and the polarization of the decayed baryon for given helicity k=+ of the vector boson are
given by the same formulas as in the massive case. We can also define polarization for the massless vector boson in
the same way as we did for the spin- —, baryons. It is straightforward to write down the polarization of the vector bo-

son from Eq. (2.21) or more generally from Eq. (2.19) if we do not sum over the spins of the final-state baryon. We
shall not give the explicit formulas here.

Finally, let us discuss briefly the case when both final-state bosons are vector bosons. It should be clear by now that
for given helicity eigenstates of the vector bosons, formulas in Eqs. (3.27)—(3.29) still apply. We have only to modify
the definitions of a„,p„„,y, properly. For the differential decay rate, we have to modify the factor V V' in Eq. (3.26)
as well, as we did in Eq. (3.34). To see the correct modifications, we have to work out 7'J,ei, (pi )&e& (pz)" as defined

1 3

in Eqs. (2.44) and (2.45). This is best done in the center-of-mass (c.m. ) frame of the two vector bosons. Defining

~p ( ~l, iL i ~zz. ~ —~z;k — ~k, l —~z.z ~ ~oz. ~3iL ~

tz& J
—— ,—(a; diaz }, aj + —— —(a i+ia z),

(3.36)

we find

Pz z
———exp i()i, , +Az) ——g a& z, X„Az—+,0, —

1 2 2 1 2
(3.37}

where g is the angle between the decay plane and the plane containing the vector bosons and the polarization P, of
the decaying baryon in the c.m. frame of the two vector bosons. Given the helicities A,

&
and A, 2 of the two vector bo-

sons, only the combinations

&z. z pq'z ——az z aSz'z (no sum over iL, A, z)
1 2 1 2 1 2 1 2

appear in the decay rate and the polarization of the decayed baryon. For example, we have

~1~2 ~1~2 ~1~2 ~1~2
(dI )z z

—— oaz z az'x, t I
+

I
'Pi

) l(izo3 +tziz )cos()—(Poz Pzi
1

where

—2 Re(a Iz' z a Pz )

+(aoI ' —a&z ')sinecosg]] zdkzdpid(cosa)dg,
128m

—2 Im(a & z a &'& )12 12
(no sum over X,A, z) .

(3.38}

(3.39)

To conclude this section we remark, without giving ex-
plicit formulas, that the angle g appearing in Eq. (3.36)
is a function of kz, p, , and P appearing in Eq. (3.26). To
derive this relation we have only to relate Lorentz in-
variants involving the various momenta and the polar-
ization four-vector Pi [see Eq. (2.33)] in different refer-
ence frames.

IV. DISCUSSIONS

We have derived formulas for analyzing, in a model-
independent way, multiparticle scattering or decay pro-
cesses involving a pair of polarized spin- —, baryons, any
number of scalar mesons and up to two polarized vector
bosons. We use helicity eigenstates of the baryons so
that our formulas are I orentz covariant. The formulas
are applied specifically to the multiparticle decay of
baryons which will be relevant for charm and bottom
baryon decays.

The two-body decays are degenerate cases of our gen-
eral formulas. In the case when the final-state boson is a

l

vector particle, we find that measuring the decay asym-
metry and the longitudinal polarization of the decayed
baryon alone is not enough to determine the polarization
of the decaying baryon in contrast with the case when
the final-state boson is a scalar particle.

The three-body decays are typical of the more general
situation. Besides the angle 8 between decayed baryon
and the polarization P, of the decaying baryon, the
difterential decay rate and the polarization of the de-
cayed baryon depend on another angle P which is the
angle between the decay plane and the plane containing
P, and the decayed baryon. If P is not measured, then
we may define asymmetry of the decayed baryon with
respect to the polarization P, as usual. The formulas for
decay asymraetry and polarization are similar to the
two-body case. We cannot, however, determine the po-
larization of the decaying baryon by just measuring the
decay asymmetry and the longitudinal polarization of
the decayed baryon.

For three-body decays with one or two vector bosons
in the final state, we find that for given helicities of the
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final-state vector boson the formulas are almost exactly
the same as the case involving only scalar mesons.

If there are more than two vector bosons involved in
the final state, then we may lose the simple relations as
in Eqs. (3.33) and (3.37). In these cases, a straightfor-
ward generalization of Eqs. (2.41) and (2.44) in
parametrizing the form factors need not be the most
convenient. A detailed consideration is outside the
scope of the present work.

Although we have illustrated our formulas by consid-
ering the decay processes only, it is quite clear that they
may be applied to scattering and to production processes
as well. In particular we have indicated how to modify
the basic formula Eq. (2.14) for these processes. They
can also be applied to processes involving leptons or par-
tons such as the production of 8' pair by polarized
electron-positron annihilation.

As indicated above, the simplicity of our formulas re-
sults from the use of helicity eigenstates. This is, of
course, a well-known technique and earlier develop-
ments are summarized nicely in Refs. 33 and 34. In par-
ticular, meson-baryon and baryon-baryon scattering as
well as two- and three-body decays of a spin J particle
were discussed in Ref. 33. There the helicity amplitudes
are expanded in "multipole parameters. " This has the
advantage that certain angular dependences of kinernati-
cal origins can be easily factored out. In contrast we ex-
panded the helicity amplitudes in terms of the possible
Lorentz structures. This has the advantage of maintain-
ing manifest Lorentz covariance so that switching be-
tween different reference frames is easy. Moreover, if
the amplitude of a process involving a pair of spin- —, fer-
mions and any number of scalar and vector bosons can
be calculated, say, in terms of Feynman diagrams of
some model Lagrangian, then the amplitude can be put
in the form we wrote down, i.e., Eq. (2.10) or Eq. (2.27).

I

Hence, we believe our results are more convenient to use
at least for processes involving only particles with spin
J(1. Processes involving particles of higher spins can
be considered along the same line. We hope to return to
this in later works.

The helicity-amplitude calculation of physical process-
es have received renewed interests recently. Since
measurable quantities are usually quadratic in helicity
amplitudes, for complicated processes, it is easier to
compute helicity amplitudes first and then to obtain the
measurable quantities numerically. It is worth em-

phasizing that by computing all the needed traces of fer-
mion bilinears we have effectively carried out the "squar-
ing" of helicity amplitudes analytically. Moreover, the
results can be summarized in a single equation, i.e., Eq.
(A22). The specific application of this formula to decay
processes in the previous section demonstrated the use-
fulness of this approach.
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APPENDIX A: TRACES OF FERMION BILINEARS

We want to compute

Trt u (k, o, )u (k, o, )I"u (kza&)u (kzo z)

=G' (l, l")(o],),(og), , (Al)

where o.0 is the 2X2 identity matrix, o; the Pauli ma-
trices, and o, =o zcr, o z. I, I" are constructed from P, g,
and y'5. We shall omit the polarization indices on the
right-hand side of Eq. (Al} and simply write it as G'"
ubP, . It is convenient to define the 2)&2 matrices

m1
(~])0 o0 ($])3= k e']o;, (0])]=p e]o;, (4])z iq e]o;——

0

m2
(+2)0 a0 (~2)3 k e2ai (+2}] p e2oi (~2)2 iq'2a]

(A2)

where

e'] —e'(k]), ez —e'(kz),

a+ ——k, kz+m, mz, a =k, kz —m, mz, b]]=4(pqk]kz)=++a+a

(A3)

(A4)

The four-vectors e'(k ) are defined in Eqs. (2.13}—(2.15}. We shall choose p, q so that the plus sign in Eq. (A4) holds in
the following.

Instead of o,Pb, we shall use

&,], (&]),S(I——z)i, (A5)

to expand the trace in Eq. (Al) so that the right-hand side be written as g' (I,I")4'] . Our results will be given in
terms of the 4)&4 matrices g"(r, r ) for various I,I". The ordering of columns and rows of g'b is

g00

30,b
10

g20

03 01 02

33 31 32

g
13

g
1 1 g, 12

23 21 22
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As an example we have

Tyu ] u }u2u7 a

which will be given by

CTp CTO—
h(e', k, kq,'e2k) k2 )

a+a
m(m2

o er-
a a

k.e')k. e J2g .(3}g .
J

+

g' (1,1}=a+

T

Op

0'p

where we have used Eq. (2.7).
The right-hand side of Eq. (A7) can be further shortened by introducing a tensor product so that

s

Vp —l CTO

=0'o(3) cTp,
CTp 0'p =CTp0 ), l CTp

=e p(3}cr 2, etc. (AS}

The extension of this tensor product to the general cases is self-evident. It is only a short-hand notation and should
not be confused with the tensor product in Eq. (A5).

In deriving our results, we used the identity

a +a
e( eq ——— k e)k e2 — b(eIk)k2, e2k)k2) .l J + I J

2a+a a+a

I,I" appearing in Eq. (Al) are of the following eight choices:

(A9}

1I p +a+
1 —l —l

1, I3—— Ys r) = p' r2= pYs+a Qa +a+
(A 10)

(Al 1)

We de6ne

g'& g' (l, I——&), g',
&

g' (I,l &)——, etc. , (A12)

~oOo —o i&o

where, as usual, I =y I +y, I'+ being the Hermitian conjugate of I . Omitting the indices a, b, we give g & as

—Cr2O
&

—lCr3O
&

gaP = —c &03 Oo~
—~i02 &o~2

l CT2O'g

—l02cr3 (A13)

i ciao(3cr —l CT )C7) CT 3 (7P aP

where a,P=0, 3, 1,2, i.e., the ordering of columns and
rows are as in Eq. (A6). g &,g &,g &

are given by the
relations

g p
——lg~, ga&

———lgap, g &
——ga (A14}

g aP ( ) b(gs(a)s(P) )
ab a+P ab

where

(A19)

where the asterisk stands for the complex conjugate, and

We regard g & as a 4&(4 matrix whose elements are
themselves 4 &(4 matrices, thus, gpo

——cr p cr p, gp3
= —o &clap, etc. With this remark we note that

gaP gao gOP gpP gap (A15)

(A16)

where the dot on the right-hand side stands for multipli-
cation of 4 X4 matrices. Explicitly

fp=6)=1,

s(0}=2, s(2)=0,
s(l)=3, s(3)=1 .

Moreover, one can easily see from Eq. (A13) that

g'& e(u, b )(gt') )' =——«(a,P)(g'&)',

(A20)

(A21}

where summation over c is understood.
%'e can also show that

g
Qb

g
QO

g
Ob

g
Ob

g
ap (A17}

where e(x,y }=+1and the minus sign holds if and only
if x or y but not both equals 2.

Summarizing our results we have
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Trt, u(k, o, )u(k, o i)I &u(k2oz)u(k2az}

=g', g [(Si )b],[(SP), ] ~, (A22)

m&
(Pi)p —trp (St)3 k e', o

60

(4i)& ———p e'Io';, (St)2——iq e'to i .
(A23}

(ii) Redefine I,I' by interchanging a+ and a while

leaving b,p unchanged in Eqs. (A10) and (Al 1).
(iii) Change g ~ to g tt which is obtained by multiply-

where the asterisk and g stand for a or a, a=0, 1,2, 3.
Finally, we comment on the changes that have to be

made if we replace one or both of the baryons by anti-
baryons. Suppose u(kio i) is changed to v(kicri} in Eq.
(A22). Then we have to change S,b, I, I, and g &

in

the following way.
(i) Change S, to I,:

ing g tt for fixed ct,P on the right by o3op. Thus, for
example, goo =o.3o-o, g03

——i o.2o. o, etc. In general we
have

~~ =' —1'~+~ '[~]'[~] (A24)

where eb and s(a) are defined in Eq. (A20).
If u (kzo z) is changed to v(kzo z) in Eq. (A22), we ap-

ply the same procedures as above except in step (i) we
shall change $2 to eV2 instead of changing 4, to 4, . 4'2 is
defined, as it should be, as

m2
(+2)p harp (+2 3 2+i

60
(A25)

($2)i ——p e2cr;, (4'2)p ——iq e'20, .

If both u&, uz are changed to v&, v2, then we apply
both changes as described above so that I,I and g &
will remain unchanged while Si-+$„$2~$2.

This completes our computation for traces of fermion
bilinears.
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