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Mattis, using a Skyrmion model for the baryons, has expressed the s-channel isospin partial-
wave amplitudes for the reaction P+B~P+B', where P and g represent arbitrary, nonstrange
mesons and B, B' denote either the nucleon or 5, in terms of a set of reduced partial-wave ampli-
tudes. Using the expression proposed by Mattis, I show that if one crosses to t-channel isospin
amplitudes, the partial-wave sums may be carried out explicitly. The result is that the spin-

projection amplitudes for given I, may be written as linear combinations of unknown reduced am-

plitudes which depend upon the mesons, but not upon whether the pair (B,B') is (N, N), (N, h), or
(h„h). There are, in general, fewer reduced amplitudes than spin-projection amplitudes, leading
to linear relations among the latter, as well as linear relations among amplitudes involving (N, N),
(N, h), and (h, h). From these relations I extract a considerable number of observable conse-
quences, among them the predictions that the m p and n. p elastic-scattering differential cross sec-
tions are identical at all energies and angles, that the polarization asymmetries are equal but oppo-
site, and that there is no polarization in m. p ~m n. While these and many other such predictions
are not strictly true, the model offers a picture of two-body reactions which often coincides with
much of the Regge phenomenology of the recent past. It may represent ultimately a viable link
between the fundamental theory of strong interactions, QCD, and the enormous amount of data
on two-body hadron reactions.

I. INTRODUCTION

In a recent Letter, Mattis' has obtained predictions
for the production of vector mesons via the reaction
mN~pN using the Skyrmion model for baryons. Subse-
quently I pointed out that the relations obtained by
Mattis, which concerned the partial-wave amplitudes,
could be extended to predictions for either the helicity
amplitudes or the transversity amplitudes, corresponding
to isospin zero in the t channel. In particular, of the six
possible transversity amplitudes, two were identically
zero, while the four remaining amplitudes were deter-
mined by one unknown function. This result was ob-
tained only after a rather laborious calculation and ap-
peared to be a consequence of some remarkable proper-
ties of the Wigner d functions. The truth is that my re-
sult is only a special case of a much more general formu-
la which I establish in this paper, and which holds for
the generic reaction $+B~$+B', where tI) and
represent nonstrange mesons of arbitrary spins S&,S&,
isospins I&,I&, and parity, and B,B' denote either the
nucleon or h. The essential point is that if one uses the
expression given by Mattis for the s-channel isospin
partial-wave amplitudes, and crosses to t-channel isospin
amplitudes, the sum over J, the total angular momen-
tum, can be carried out explicitly. The formulas neces-
sary for this task may be found in the monograph of
Yutsis, Levinson, and Vanagas. The result is that the
t-channel isospin amplitudes A ' may be written

c d a b

as (c,d, a, b, refer to f,B',P,B, respectively)

~ If CIfyLM FIf
mcmdmamb ~ mcmdmamb yLM

yLM

I,yIM
where the C ' are known numerical factors

c d a b

which carry all the dependence on spin projections, and
the Fyl~ are unknown functions of the dynamical vari-

ables. The reduced amplitudes Fyr depend upon the
mesons P and g, but do not depend on whether the ini-
tial or final baryons are nucleon or 6, except that the
physically realizable t-channel isospins depend on wheth-
er the pair (B,B') is (N, N), (N, h), or (b„b,). The sum
over M is purely formal insofar as the coefBcient

I,yl.M
C ' is zero unless M =m, +mb —m, —md. The

c d a b

sums over the variables L and y extend over all values
permitted by the nonvanishing of certain 3-j and 6-j

I,yI.M I
symbols appearing in either the C ' or FyLM.c d a b

There are two distinct sorts of experimentally
verifiable predictions that may be extracted from Eq. (1).
One sort relates the I, = 1 cross sections for the reaction
P+B-+g+B' with (N, N) and (N, h) as baryons. The
differential cross section for the latter is simply twice
that for the former, for arbitrary mesons, and for all en-
ergies and angles. The second kind of prediction refers
to a given reaction and arises from the fact that the
number of reduced amplitudes is generally smaller than
the number of independent spin-projection amplitudes.
This may lead to relations among observable quantities
such as density-matrix elements or polarization asym-
rnetries. Indeed, the number of independent spin-
projection amplitudes A is given by

c d a b

(2R + 1)(2R ' ~ 1)(2S~+1)(2S~+1)/2,
where R,R' are the spins of the baryons whereas the
number of unknown reduced amplitudes F~I~ is
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[(2I,+ 1)(2$~+1)(2$~+ 1)+P~P~( —1) ' 4' &]/2,

where P denotes the parity of the corresponding meson.
One sees that for the reaction mN~pN this expression
allows only one reduced amplitude for t-channel isospin
zero, as compared with six spin-projection amplitudes.
Similarly for the reactions mN~mN, I, =O, m.N~m. N,
I, =1, and ~N~m. h, I, =1, there is only one reduced
amplitude, compared to two, two, and four, respectively.
Furthermore, the last two reactions are described by the
same reduced amplitude. Perhaps even more striking is
the prediction that if p and 1( are spinless mesons of op-
posite parity, there is no reduced amplitude with I, =0,
hence no cross section for such hypothetical reactions as
rr p~5 p or rtp~Ep A.n extremely important conse-
quence of the expression follows from the fact that the

coefficients C '" satisfy an orthogonality relation;
e d a b

this implies that the differential cross section for any of
the reactions under consideration is the incoherent sum
of squares of absolute values of the dynamical ampli-

tudes F IM. Consequently the reactions m+p~g+p and
m p~g p are predicted to have identical differential
cross sections, where g denotes any charged meson. Al-

though this prediction is obviously wrong for mp elastic
scattering at low energies, it is a reasonable approxirna-
tion at energies of a few GeV. Karliner and Mattis
have pointed out in their detailed comparison of partial-
wave analyses with the model that a major obstacle is
the prediction that the nucleon and b have equal masses.
At slightly higher energies this drawback should not be
so serious, and I propose that an appropriate arena for
general tests of the model of Mattis is actually the few-
GeV region where meson exchange is the dominant pro-
duction mechanism. Since the Skyrmion model is in-
spired by QCD, one may well investigate this tenuous
link between the enormous amount of data on quasi-
two-body reactions and the leading candidate for a fun-
damental theory of strong interactions. The key point of
the work presented here is that the Skyrmion model of
Mattis makes numerous predictions concerning observ-
able quantities in various reactions, and that these pre-
dictions can be tested without performing partial-wave
analyses of data. For example, using the optical
theorem to relate forward-direction elastic amplitudes to
total cross sections, I show that the prediction is that all
spin-averaged total cross sections are pure I, =0.

It is quite paradoxical that the model, which is osten-
sibly based on baryons in the s channel, actually makes
predictions concerning amplitudes which are dominated
by mesonic Regge poles. Obviously my proposal to take
the model of Mattis at face value for all energies and an-

gles represents a vast extension of the original work on

the Skyrmion model for baryons, which aimed at calcu-
lating low-energy or static properties of nucleons and A.
Although I can offer no theoretical reasons to justify my
proposal, the fact that Mattis's model leads directly to
Eq. (1), which itself contains no mention of limits on en-

ergy or angles, lends some support. Its validity must
therefore rest on how well the predictions of Eq. (1)
compare with experiment. It is moderately surprising
that the model restricts considerably I, =O exchanges
such as Pomeron, co, ri, and f, while offering rather
more freedom to I, = 1 exchanges such as ~, p, and A 2.
Even more freedom is offered to I, =2 exchanges, which
are known empirically to correspond to tiny cross sec-
tions such as m+n ~~ 6++. As shall be shown in the
body of the paper, there exist no relations among the re-
duced amplitudes of different t-channel isospin; hence,
the model provides no explanation for the weakness of
exotic exchange. On the other hand, the observed fact
that exotic exchanges are weak provides relevant infor-
rnation which could be used in subsequent refining of the
model.

In Sec. II a detailed derivation of Eq. (1) is presented
and explicit expressions for the coefficients are displayed.
The most important special case, that of spinless rnesons
in the initial state, for which Eq. (1) simplifies consider-

ably, is discussed in Sec. III. In order to describe elastic
scattering, a slight modification of Eq. (1) is required.
This is presented in Sec. IV, along with a number of in-
teresting predictions concerning total cross. sections ob-
tained Uia the optical theorem. The conclusions are
given in Sec. V.

I J
~l's'ls X 9 I Gx'gir 'll' '

KKK'
(2)

where AI.+ lz denotes the partial-wave amplitude corre-
sponding to initial and final orbital angular rnomenta l
and I', initial and final spins S and S', total angular
momentum J, and s-channel isospin I„and ~here the re-
duced amplitudes Gzzz, ,I, depend upon the quantum
numbers, K, E, and K ' as well as I and l'. The quantity
K is the composition of the orbital angular momentum l
with the isospin of the meson I&,' E ' results from adding
I' and I&. The conserved quantity K is the common re-
sult of adding S& to K or S& to K '. The factors q and
g' are defined by

II. DERIVATION OF EQ. (I)

The starting point of our derivation of Eq. (1) is the
expression obtained by Mattis relating the partial-wave
amplitudes for the reaction Q+B~f+B' to a set of re-
duced partial-wave amplitudes. Mattis writes

l I~ E
ri=[(2E+1)(2K+1)(2R +1)(2S+1)]' S R S~ . ,

J I, E
(3a)
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I' I~ K '

g'=[(2%+1)(2E '+1}(2R'+1}(2S'+1)]'~ S' R' S~ . .

J I, K

(3b)

In these expressions the 9-j symbols reflect the coupling among the various angular momenta, and one sees the crucial
roles played by R and R' in that they represent both spin and isospin for the baryons. At this point all dynamics is
contained in the unknown reduced amplitudes Gzzz, », .

The relation between the partial-wave amplitudes and the spin-projection amplitudes may be found in standard
references such as Goldberger and Watson, and may be written as

S~ R S S~ R' S'
A ' (O', P', 8,$)= g (2J+1)[(2S+1)(2S'+ I})' ( —1)"

lml'm '

SpS'p' JM'

S J /' S' J
X M' ' ' M, Yl (8 0 )YP (8,0)Al's'lsm p m p

0= S~+R '—p' S~+—R ——au+I —I'+S —S' .

In this l-S formalism the choice of axes in the center-of-momentum frame is completely arbitrary. The spin projec-
tions in the various particle rest frames then refer to axes obtained from those in the center-of-momentum system by a
parallel Lorentz transformation or boost along the directions of the corresponding particles. The angles (8,$) refer to
the direction of the incident meson while (8', (j)') refer to the direction of the final meson in the c.m. frame. If the axes
are chosen such that the initial meson moves along the positive y direction while the final meson momentum lies in
the x-y plane and makes an angle of X with the y axis (that is 8=8'=p=n. /2, (t)'=7+m/2), then the spin-projection
amplitudes are simply related to the standard transversity amplitudes: namely,

If the standard helicity amplitudes of Jacob and Wick are desired, the usual relation may be written in terms of
Wigner rotation functions as

R +R' —Ab Ad
HA, ,A,,X.A., (»0)=( —1)

m md Nl mb

(6)

where the Euler angles are (m /2, n. /2, —m/2). In this manner it is apparent that the spin-projection amplitudes may
be related, by a judicious choice of the axes, to the amplitudes commonly used in phenomenology. However, nothing
in what follows depends upon the choice, and one may leave it open.

I J
In order to establish Eq. (1) one replaces Al s ls in Eq. (4) by Eq. (2), performs the M' summation using the standard

identity involving a Racah coefficient or 6-j symbol, thereby introducing the variables L and M (note that L is not the
orbital angular momentum)

l S J l' S' J l' S' J
=g(2L+1)(—1)" 'Sm p m p LM

S S' L l' l L
—p p' M m' —m —M

and writes the t-channel isospin amplitudes in terms of the crossing matrices given by Rebbi and Slansky:

A '=g(2&, +I)( —1) * ' ' 'A * .
I s

At this point Eq. (A4.8) of Ref. 3, which I reproduce here,
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k,
J2

k2
J3

k3 k1
J2

k2
J3

k3
J2 k"

2

J3
k II

3

k1 k', k",
= g (2x, +1}(2x2+1)(—1)" '

J1 J2

3 3 '' J1
k"

1

k 3
X2

k II

J1 x
J1 J2 k2

k2 x2

J3 k Il
2 J2

J3

J2

k3

~ )
J3 's

&=12+Jr +J3 —j3'+k(+k2 +k3+2J )
—x(+x2, (9)

allows one, after making the identification

x1 ——J, x2 ——I, ,

I s J2 l~ J3 —I~~ J, 0~ J2 —Ss J3 R

j 1' ——R', J2' ——S~, j3' ——K ', k1 ——L, k2 ——E, k3 ——I~,
k1 ——S, k2 =SP, k3 ——I„k", =S', k2 ——K, k 3' I~——

to carry out the sums over J and I, in terms of an 18-j symbol with j1 —0. It should be noticed that the 12-j symbol
appearing in Eq. (9) is written in the notation of Ord-Smith, rather than that of Jahn and Hope. '0 Since it contains a
zero entry in the middle row it is really only a 9-j symbol. (purists may complain that an 18-j symbol with a zero en-
try is, at worst, only a 15-j symbol. They would be right, but this derivation is easier. } The result is the following ex-
pression for the amplitude:

= [(2R + 1)(2R '+ 1)(2I~+1)]'

Sp,S'p'KK
LMlm l'm 'K '

( —1) N(S, S',L,K,K,K ')

X
I I4, 0 S R R' S~ E

L E Iy S Sy Ir S' E

S S' L I' 1 L Sp R

—p JM M m —m —M m mb

S S4 R' S'
Y( (O', P')YP (8,$),

C

N(S, S',L,K,K,K ') =(2L + 1)(2K + 1)(2S'+ 1)[(2S+1) (2K+ 1)(2K '+ 1)]' (10)

Q=R' —p' —Sp+R —I' —m' —S' —L+I, +E ' —E—I

However, the 18-j symbol which appears in Eq. (10) possesses the following symmetry, again from Ref. 3:

J2
k2

J3
k3 k',

J2
k2

J3
k3 k lr

1

J2 k"
2

J3 k"
3

T
~ p

k3
J3

k2
J2

k1 k II
3

J3
ktl

2

J2 k"
1 k3

J3
k2

J2
k'

1

If one uses this symmetry to rewrite the 18-j symbol in Eq. (10) together with Eq. (9) (now with the zero in the j, slot)
one obtains the result
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A ' (O', P', 8,$)
= [(2R + 1 }(2R'~ 1))'

( —1)"N(S, S',L,K,K,K')
ySpS'p, 'KK

LMlml'm 'K '

X

y R'
ll

S~

R I, R'

y S L

S Sp

y S KKK 'll'

(12)
O'=R ' —p, '+R S&+I—'+S' m'+K—' K+I—

&
.

I,yLMIf the numerical factor C ' is defined by
c d a b

C ' = [(2y+1)(2L +1)(2R +1)(2R'+ I)]'~ ( —1)"+

X g (2S+1)(2S'+1)(—1)'-~
SpS'p'

S L I L Sp R S Sp R' $'
—p p M m —m —M m, b

—p m. md p
F ~ (8', h')F (8,+),

4

N(S, S',L,K,K,K'}=(2L +1)(2y+ 1}(2S+1)(2S'+l)(2K+1)[(2K+1)(2K'+1)]'

R' R I, R' S' Sp
X

S& y S L y S
S S L S4, R

—p p' M m mb

S Sg R' S'

m, md —p' (13)

and the function (of energy and angles) F~LM is defined by

F IM(8', p', 8,$)= [(2y +1)(2L +1)]'

(2K+1)[(2K+1)(2K'+1)] ( —1)
lml'm '

KfCK '

X ~ S~ Sp
I L g

G —., rl, (8',y')r; (8,(t),

0"= —S~+I' —m'+K ' —K +lp,
it is clear that Eq. (12) is precisely of the form of Eq. (1). It is readily shown from Eq. (13) that changing the sign of

I yLM ~ I yLM
all spin projections simply yields an overall phase, C ' =( —1) C', where

Q=R +R ' —1 —L +S&+S&. From the explicit form of Eq. (14}one observes that the F„IM transform irreducibly un-

der rotations of axes, with L being the index of the representation. Although the FyLM generally display no symme-

try, two particular choices of the z axis lead to simplifications. If the z axis is chosen normal to the production plane,

the F~IM are zero unless P&P&( —1) is even, which is the usual constraint of parity conservation. If the z axis is

chosen along the direction of the incident meson, with the final momenta in the x-z plane, then one may show that

F LM P&P&( —1) + F——L M. In addition, as the scattering angle X approaches zero, the E~IM behave as (sinX)
An important feature of Eqs. (13) and (14) is that I, is coupled to the baryon isospins R and R in (13), whereas in (14}

I,yLM
I, is coupled to the meson isospins I& and I&. This implies that the set of (I„y,L) values for which the C

c d a b

are different from zero need not coincide with that for which the FyLM are nonzero, and conversely. Of course, for a
physically allowed value of I, both wi11 normally be nonzero. Another very important insight can be gained from Eq.
(14}. The 12-j symbols appearing in Eq. (14}satisfy the orthogonality property

(2K+1)(2K+1)(2K '+1} S~ S~
EKE ' K' K

L'

K'
J

y

=5 1.5' 5LI I[(2I,+1)(2y+1)(2L +1)],
C

(15)
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as well as a similar expression where the roles of (K,K,K ') and (I„y,L) are interchanged. This allows one to intro-

duce the quantities GI yLll via

(2K+1}[(2K+1}(2K'+1)]'~( —1) G x-, , S~ S~
KKK ' E' K

L

where the inverse relation is

I .=Gl Lll (16)

g (2I, +1)(2y+1)(2L+1)Gq III Sp Sp

E' K

1' =[(2K+ 1 }(2K '+ 1 }] '
( —1 ) Gx'gg. g,

(17)

Given these expressions, it is evident that the reduced partial-wave amplitudes of Mattis and my GpyLll are fully

equivalent, in the sense that one may pass from one set to the other by using Eqs. (16) and (17). Expressed in terms of
I(

the GI yLll f the F„LM may be written quite compactly as

I' I I.
F L'M(8', p', 8,$)=[(2y+1)(2L+1)]' ( —1) ~ ~ g ( —1)™, GI I&I Yp (8', p')YI (8,$) .

lml'm '

(I &)

On the basis of these equations I assert that Eq. (1) incorporates the full contents of the Skyrmion modelproposed by

Mattis. Given the FyLM one may unravel the equations to obtain the GI yLQ just as one may build the FyLM from the

KKK 'll"
The number of allowed values of y and I. for fixed I, is determined by the usual triangular inequalities which may

be read from the 6-j symbols in Eq. (13}. The permissible values are those which satisfy I I,yS&] and IyLS&]. If pari-

ty is neglected, there are 2I. + 1 allowed M values, and a simple computation shows that there are
(2I, +1}(2S&+1)(2S+1) allowed y, L,M values. The well-known constraint of parity is that transversity amplitudes
vanish unless ( —1) =P~P&, where P denotes the parity of the corresponding meson. Including parity in this way,

one finds the number of independent amplitudes to be

[(2I,+ 1)(2Sp+ 1)(2S~+1)+P~P~( —1) ' ~ ~)/2,

as indicated in the Introduction. This number is independent of the baryon spins. The standard number of allowed
spin-projection amplitudes is [(2R +1)(2R +1)(2S&+1)(2S&+I)/2] for any I, ; the model is most constraining for
the smallest I„and least constraining for the largest.

From the standard orthogonality properties of the 3-j and 6-j symbols it follows that

C ' C ' =5,5' 5LI 5MM (2R +1)(2R'+1)/(2I, +1), (19)
mamb
m md

g (2I, +1)C ' C '. . . , =5,5,5,5,(2R +1)(2R'+1) .
I,y
LM

(20)

From Eq. (19) it is evident that in the differential cross section, summed over the spin projections of all four particles,
the different reduced amplitudes F LM do not interfere, but rather enter only via their squared moduli. In particular,
differential cross sections for the reactions p+p ~1tt+p are identical to those for p p ~f p, for any charged mesons p
and 1(t. I must insist upon the fact that this is an unavoidable consequence of the Skyrmion model of Mattis. Indeed,
this extraordinary prediction is wrong by almost an order of magnitude for ~p elastic scattering in the energy region
of the b,(1232), but for beam momenta above 1 GeV/c it is reasonably accurate, save in the backward direction. The
source of the difBculty has been pointed out by Mattis and Karliner; the model supposes that the nucleon and 6 are
degenerate and will fail whenever this is important.

An alternative way of expressing my result is to say that certain linear combinations of fixed I, amplitudes are zero.
From Eqs. (1) and (19) one finds easily

C ' A ' =5,F LM(2R +1)(2R'+1)/(2I, +1)
m mg
m md

(21)
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for arbitrary values of I„I,', y, L, and M. If I, is chosen

equal to I,', the reduced amplitudes are expressed in

terms of the physical amplitudes; if not, the result is
zero. In the latter case, I,' need not be a physically al-

lowed value; it is sufficient that it satisfy a triangular in-

equality with R and R', the baryon isospins. It should

be remembered that the F~L~ do not depend on whether
the baryons are nucleons or 5; hence, Eq. (21) also pro-
vides constraints among different reactions. Since it is
hard to imagine anything but nucleons as target baryons
only the particular case of I, =1 will be useful in prac-
tice.

III. SOME EXPERIMENTAL CONSEQUENCES
OF EQ. (1)

A. Relations among I, = 1 cross sections leading to N or h,

du(~+p ~g b++ ) = ', d—o (m.p ~fan)

+ ,'d—o(n+n. ~g 5++ } . (22}

If the meson 1( has isospin zero, the second term on the
right-hand side of the expression is simply absent, as it
corresponds to pure I, =2 exchange. This equation is, of
course, subject to the usual caveats about comparing
cross sections having different kinematics caused by the
N —4 mass difference. In addition, the fact that the 6
has a large width makes absolute measurements of such
cross sections a quite difficult task. Nonetheless, I con-
sider that it brings the model of Mattis to a stage where
direct comparison with experimental data on quasi-two-
body reactions is feasible. Although I have used charged
pions as incident mesons in this example, the equation
does not depend on the spin of the incident meson, and
is valid for any meson whose isospin is unity.

If one wishes to confront experimental data with the
predictions I have obtained from the Skyrmion model of
Mattis, one must realistically suppose that the incident
mesons have spin zero and that the target baryon is a
nucleon. In fact, only charged pions are conceivable as
incident mesons, although some evocation of m. induced
reactions may be useful. Two distinct sorts of predic-
tions may be extracted from Eq. (1). One sort relates the
I, =1 cross section leading to a final-state nucleon to
that leading to a final state 6, since the same reduced
amplitudes occur in both reactions. Taking into account
the orthogonality and normalization properties of Eq.
(19), one may derive the following relation among the
observable differential cross sections for the production
of an arbitrary meson f:

B. Simplifications occurring for spinless incident mesons

The second sort of predictions follows from the fact
that the number of reduced amplitudes is generally
smaller than the number of independent amplitudes for a
given reaction of fixed I, . Accordingly, one may be able
to make definite predictions concerning observable quan-
tities such as spin-density-matrix elements or polariza-
tion asymmetries. While this is true for arbitrary meson
spins, the equations derived in the previous section sim-

plify considerably if S4, is set to zero. The 12-j symbols
turn into relatively familiar 9-j symbols, and the mysteri-
ous variable y becomes equal to I„and may be omitted.
It suffices to rewrite Eq. (13) for the special case S&

——0,
omitting y and m, ; namely,

C ' =[(2L+1)(2R + l)(2R'+1)]'~ g (2S'+1)(—1)
S'p'

R' S'
X

S~
R —mb

S~ R' S'
p' M m, m~ —p' (23)

The most important aspect of this equation may be read
off the 6-j symbol; the quantities L, S&, and I, must

satisfy' the triangle inequality in order for the coefficient
I,LN

C ' not to vanish. In particular, if I, is zero, then
c d b

L =S&. This means that the number of reduced ampli-

tudes FL~ for I, =O is (S&+1) if the initial and final
mesons have the same naturality [defined as p( —1) ],
and S& when they have opposite naturality. Since the
number of independent helicity amplitudes is (4S&+2), a
roughly fourfold reduction in the number of amplitudes
occurs. If only pion induced reactions are considered,
the number of reduced amplitudes is zero if f has spin-
parity 0+, one if g is 0 or 1, and two if g= is 1+ or
2+. This permits one to understand in a simple way the
results I derived previously for the reaction ~%~A
only after a lengthy explicit calculation. Parity conser-
vation requires M to be even if the z axis is chosen nor-

I

mal to the plane of production, while the model imposes
L =1 for I, =0. This leaves F,o as the unique reduced
amplitude, in terms of which all helicity or transversity
amplitudes may be expressed.

Perhaps the most striking result concerning I, =0 is

the prediction that there is no reduced amplitude if the
final meson is spinless and of opposite parity to the spin-
less incident meson. Mechanically, this happens because
parity conservation requires M to be odd in a transverse
basis, while the model imposes L =0, an impossible situ-
ation. This means that the cross section for the unob-
servable reaction m p ~5 p is zero [the 5 is now also
called the oa(980)]. Although at first glance this ap-

pears to be a rather risky prediction, it is worthwhile to
push the reasoning somewhat, in terms of possible
meson Regge-pole exchanges. It is well known that the
5 decays into m+g; hence, the ~g5 coupling is nonzero.
Then, in order to have zero cross section the g must not
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couple to the nucleon. This conclusion, forced upon us

by the model, is in general agreement with the phenome-
nology of quasi-two-body reactions, which never suc-
ceeded in showing convincing evidence for g exchange.
I believe this totally unexpected prediction to be one of
the most beautiful results to emerge from the model. If
an experimental test is desired, the absence of I, =0 am-

plitudes implies the following relation among the direct-
ly observable reactions:"

der(n+p~5+p)+der(m p~5 p)=do(m. p~5 n).

(24)

Although the most spectacular predictions for I, =0
amplitudes are those mentioned above, the model also
makes restrictive predictions for pion-induced reactions
when the final meson is n (one amplitude instead of two),
A, (two instead of six), and Az (two instead of ten). For
these reactions one may derive numerous relations
among observable quantities such as spin-density-matrix
eleinents and/or polarization asymmetries. Once again,
such predictions may be tested experimentally by form-
ing the appropriate linear combinations of observable re-
actions.

If I, =1, the values of L allowed by the triangle in-

equality are S&—1, S&, and S&+1. The number of re-
duced amplitudes is rather closer to the number of in-
dependent helicity amplitudes, at least when the final
baryon is a nucleon. For example, if f has spin-parity
0, 0+, 1, 1+, or 2+, the corresponding numbers of re-
duced amplitudes are 1, 2, 5, 4, and 8, respectively.
These are to be compared with 2, 2, 6, 6, and 10, respec-
tively, when the final baryon is a nucleon and twice as
many when it is a h. It should be remembered that the
reduced amplitudes are the same in both cases. Howev-
er, considering only reactions with final-state nucleons, it
is rather diScult to obtain relations among observable
quantities, such as spin-density-matrix elements, since
the number of reduced amplitudes is roughly three-
fourths the number of helicity amplitudes. The main in-
terest of the model for I, =1 amplitudes is, in my
opinion, the possibility of relating observable quantities
in reactions where a 5 is produced to those measured
when the final baryon is a nucleon. Unfortunately, this
can only be done on a reaction-by-reaction basis, as I
have not found any simple formula relating the numeri-
cal coeScients C' for a final nucleon to those for a

c d b

A notable exception occurs when the final meson has
spin-parity 0 (assuniing incident pions and final nu-
cleons). The triangle inequality is satisfied only if L =I, .
If the quantization axis is chosen such that the incident
meson moves along the z direction and the final momen-
tum is in the xz plane, parity conservation implies that
the reduced amplitude F,'o is zero. For I, =1, therefore,
only the M =1 reduced amplitude survives, which im-
plies mb ———md. In contrast, for I, =0, L =M =0,
which implies mb ——md. Expressed directly in terms of
spin-projection amplitudes A, the prediction is that

d b

A+ and A++ are zero, where + denotes +—,'. Thus

the model makes the remarkable prediction that in m.N
elastic scattering the I, =0 amplitude conserves the nu-
cleon spin projection, while the I, =1 amplitude flips it.
The optical theorem then implies that the I, =1 total
cross section is zero, or that total cross sections for m. +p
and n. p are equal. The spin behavior predicted by the
model is similar to but not identical with the phenome-
nologically popular s-channel helicity conservation for
I, =0, and the notion that the charge-exchange ampli-
tude was pure helicity flip. The difference is that the s-
channel helicity z axis makes an angle X with the boost-
ed z axis in the rest frame of the final nucleon, where 7
is the c.m. scattering angle. Once again, the model has
produced a reasonably successful prediction in an unex-
pected direction. It is amusing to note that the ortho-

I LM
gonality properties of the coeScients C ' may be

c d b

held responsible for this prediction: since the I, =0 am-
plitude preserves the nucleon spin, the only way the
cross section can be an incoherent sum of contributions
from different isospin is that the I, =1 amplitude be
purely nucleon spin flip. Although a general result con-
cerning nucleon target polarization effects is presented
below, it is worthwhile to give here the predictions of
the model for polarization in ~N scattering. Since the
I, = 1 amplitude is purely nucleon spin flip, there can be
no polarization in m p~~ n. For m. +p~~+p, the po-
larization corresponds to interference between the
nonflip and flip amplitudes, and the model imposes no
constraint on this quantity. However, the same interfer-
ence occurs in m p~m p, but with opposite sign, lead-
ing to the prediction that the polarizations are equal but
opposite in sign (the differential cross sections are pre-
dicted to be equal for all energies and angles). These
predictions, while certainly not strictly true, do bear
some resemblance to the experimental data at energies
above the resonance region.

C. Comparison with quark-model predictions
and exotic exchange

The I, =1 amplitudes in the reactions n.N~mh or
+Nigh are also described by a single reduced ampli-
tude (the same one which occurs when the final-state
baryon is a nucleon), which has L = 1 and M =0, pro-
vided that the z axis is transverse. This implies
md ——mb, which means that the +—', transversity states of
the 6 are not produced. This prediction is identical to
that of the p-exchange model of Stodolsky and Sakurai, '

as well as with the quark-model predictions of BiaIas
and Zalewski. ' However, the general quark-model pre-
diction that amplitudes involving two units of spin flip at
the baryon vertex vanish is not verified in the model.
For example, the amplitudes in the reaction ~N~cob,
which is pure I, =1, are related to five reduced ampli-
tudes F00, Fio Fzo F22, and F2 2. The last two reduced
amplitudes contribute to some amplitudes which contain
two units of transversity flip at the N-6 vertex. If the
reduced amplitudes with L =2 were arbitrarily set equal
to zero, the single-flip rule could be recovered, but the
model provides no reason for doing so.
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Perhaps one of the most clearly established rules of
the phenomenology of quasi-two-body reactions was the
absence of forward and backward direction peaks when
the quantum numbers of the exchanged system were "ex-
otic."' For example, the reaction ~ p~m+b, which
is pure I, =2, has a cross section which decreases
dramatically with energy above the resonance region. '

In the backward direction, the u channel for this reac-
tion is not exotic, but generally backward direction
peaks were found to be much smaller than forward
peaks. It is, therefore, surprising that the Skyrmion
model of Mattis, which otherwise contains a great deal
of reasonable phenomenology, imposes few constraints
on I, =2 amplitudes which the standard phenomenology
has shown to be very small in comparison with nonexot-
ic amplitudes. The model makes no prediction concern-
ing the relative importance of different t-channel isospin
amplitudes. I should specify that by prediction, I mean
a conclusion that may be drawn from Eq. (1) without

making hypotheses concerning the reduced amplitudes.
The empirical fact that I, =2 amplitudes are small can
be used, by means of Eqs. (16), (17), and (18), to obtain
information and to place limits on the primordial Skyr-
mion ~educed partial-wave amplitudes G«~, », . It is

clear, however, that suppression of exotic exchange must
be imposed dynamically in the model proposed by
Mattis.

D. Predictions of the model for polarized nucleon targets

Although the predictions of the model for polarization
in mN elastic scattering have been given above, one may
derive a more general prediction concerning target po-
larization effects, when the incident meson is spinless.
By using the sum rule of Biedenharn' and Elliott, ' one
may derive the following relation concerning the

m mymb
'

C ' C ', = (2R +l)(2R'+1)[(2L+1)(2L'+1)]' ( —1)
c d b m mgmb

c d

R

Sg mb

T L L'

b
—m n M —M' —n

(25)

This expression is quite useful for discussing effects of target polarization when the spin projections of the final parti-
cles are not observed. The quantity T appearing in the sum corresponds to the possible polarization of the target:
T=0, unpolarized, T =1, vector polarization, etc. What is apparent from the structure of this formula is that if
I, =I,'=0, then only T =0 can occur. It then follows that in any pure I, =0 reaction induced by spinless mesons,
there can be no target polarization effects when the final-particle spin projections are not observed, a prediction of re-
markable generality. Expressed in terms of differential cross sections for charged-pion beams on transversely polar-
ized target protons, it reads

do&(m+p~f+p)+do &(m p~g p) dot(m p~—P n)=der&(n+p~P+p)+der~(m p~P p) do &(n—p~g n),

(26)

where P is any meson of unit isospin and the arrows in-
dicate the target polarization. In contrast, T =1 may
arise either through interference between I, =0 and
It'=1 reduced amplitudes, or through I, =I,'=1. Note
that in the latter case the 3-j symbol is zero if L =L'
and M =M'=0, which explains why elastic mN scatter-
ing has no polarization in the pure I, = 1 state.

IV. ELASTIC-SCATTERING AMPLITUDES
AND TOTAL CROSS SECTIONS

A. Constraints of time-reversal symmetry
on the reduced amplitudes

The model proposed by Mattis allows one to express
the spin-projection amplitudes in terms of a generally
smaller number of reduced amplitudes, as indicated in
Eq. (1). If one is interested in elastic scattering, Eq. (1)
is not well suited to displaying the reduction of the num-
ber of amplitudes caused by time-reversal symmetry.
The reason is that the variable y does not treat the initial

and final mesons equivalently, since it couples the spin of
the incident meson to the t-channel isospin, while cou-
pling the spin of the final meson to the variable L. As
we have seen in the previous section, for spinless mesons
this simply requires I, =L =y, and leads directly to the
prediction that the I, = 1 amplitude is pure spin Aip and
hence corresponds to zero total cross section. Although
the only total cross sections susceptible of measurement
concern pion beams, it remains interesting to study the
restrictions imposed by the model on elastic-scattering
amplitudes for arbitrary mesons. In particular, vector-
meson scattering amplitudes are often related to static
properties of N and 6 via sum rules. It will be shown
that rather striking regularities am. ong total cross sec-
tions are predicted by the model.

In order to obtain a formula analogous to Eq. (1), but
in which the symmetry between initial and final states is
manifest, I introduce the new numerical factors

r
xLM ~

—I,C ', and the reduced amplitudes F „'IM, which
c d a b

I,yLM
are related to the previously defined C ' and

c d a b
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FILM as
—I xLM
C ',=g [(2x+1)(2y+1}]'~'

From the well-known orthogonality property of the 6-j
symbols, an equation very similar to Eq. (1}may be de-
rived:

I,
S

x '

ItyLM

Sy y m mdm mb

I, —I,xLM —I,A~~~~ =QC~~m~Fx'L~.
xLM

(29)

Ir L x
F x'Lst ——g [(2x+1)(2y+1)] S S FILM'.S~ y

(27}

(2g)

—I,xLM —I,
Explicit formulas for C ' and F „'LM are obtained

I ELM I
by replacing the C ' and the F~t~ in Eqs. (27)

and (28) by Eqs. (13) and (14). Then, upon using the
identities (A6. 10) and (A6.39) of Yutsis, Levinson, and
Vanagas, one obtains the expressions

C ' = [(2x + l)(2L +1)(2R + 1 )(2R'+1)] ( —1)m

mmmm

mb

x

x g (2S + 1)(2S'+ 1)(—1) " R ' S' Se
R S S

Sp R S S~ R' S'
—p p' M m mb —p m md —p

(30)

F tst(8', P', 8,$)=[(2x +1)(2L +1)]'~

x g (2K+i)[(2K+1)(2K'+1)]'"(—1)"
lml'm '

KEE'

K K'
x l l'

Ip Ip

K K
L 'S

x 1'

S~ K m'
l L

M Gzttg. &&, YP (8', 0')YP

0= —Se+ I —m '+El ' —K + I& x. (31—)

e new variable x is linked in a much more symmetric way to the initial- and final-state quantum numbers S&, K,
S&, and I(', '. Accordingly one may show, from Eqs. (30) and (31), for elastic scattering (p=g, R =R', Gttsg, &&.

=G~g,gt, ( ) that

I,xt M I, +x +L +M I,xL —M
(32)m m&m mb m mbm mg

F~~(n/2, n/2+X, n/2, tr/2)=( —1) ' e'r F „L ~(n/2, n/2+X, n/2, m/2), (33)

I, =1, 0&x (2S&, L =x, O~M &L, M even,

L =xkl, 0&M &L, M even, yielding (S&+1)(3S&+1)amplitudes .

From these expressions one finds one reduced elastic amplitude for elastic scattering of spinless mesons in both I, =0
and I, =1, as was shown in the previous section. For elastic scattering of spin-1 mesons there are four reduced ampli-
tudes with I, =0 and eight with I, = 1, compared to 12 independent helicity amplitudes for each I, . Once again a con-
siderable reduction in the number of amplitudes is predicted by the model.

where g is the scattering angle. From Eq. (33) it follows that if M =0, the reduced amplitude vanishes unless
I, +L+x is even. If I, =O, then x =L, from the 9-j symbol, and the condition is always satisfied. In contrast, if
I, =1, then one must have x =L+1 in order that the reduced amplitude be nonzero. If only nucleon targets are con-
sidered, the I, =0 and I, =1 amplitudes are the only ones which occur, and one may determine the number of in-
dependent reduced amplitudes as

I, =O, 0&x &2S&, L =x, 0&M &L, M even, yielding (S&+1) amplitudes,
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B. Forward direction reduced amplitudes and the optical theorem

The imaginary parts of the elastic-scattering amplitudes, evaluated in the forward direction, are related to the total
cross section through the optical theorem. In order to examine the constraints among cross sections imposed by Eq.
(29), it is convenient to choose the z axis along the incident beam direction. When this is done, conservation of angu-
lar momentum implies that only those amplitudes for which M =0 are nonzero in the forward direction. Further-
more, the reduced amplitudes with L odd are zero in the forward direction, and it is sufhcient to consider only those
reduced amplitudes F LM with L even and M =0. The counting of such amplitudes is straightforward;

I, =O, 0&x &2S&, L =x, L even, yielding S&+1 forward reduced amplitudes,

I, =1, 0(x &2S&, L =x+1, L even, yielding 2S& forward reduced amplitudes .

The general number of independent nonvanishing for-
ward amplitudes is 3S&+1 for either isospin, and once
again a considerable reduction takes place.

C. The spin-averaged forward amplitude

—IqxLM
From the definition of the coefficients C ' it is

c d a b

easy to show that, if I, =x =L =M =0,
' 1/2—0000 2R + 1

2S +1 ~S S 5RR'~m m ~m mc a d b

(34)

which means that spin averaging the forward amplitudes
is equivalent to projecting out the I, =x =L =0 reduced
amplitude. If one uses the isospin crossing relations,
one finds for the spin-averaged elastic amplitude

[(2R+1)(2S&+1)] ' g A '

mamb

(2S + 1 )
—1/2F 0 (36)

independent of the s-channel isospin. This implies that
the spin-averaged total cross section for meson-nucleon
or meson-6 scattering is independent of the charge states
of either the mesons or the baryons. This is another firm
prediction of the model, which is extremely general in
scope.

D. Consistency with forward dispersion relations
and sum rules

In the model of Mattis, all forward-direction spin-
averaged amplitudes with I,&0 are zero. If one consid-
ers the forward-direction dispersion relation for the
di6'erence of the m+p and ~ p elastic amplitudes, given,

which means that the corresponding reduced amplitude
F 000 appears only in amplitudes which preserve the spin
projections. As a consequence of the orthogonality—I,xLM
properties of the C ', which are identical to

I yLM
c d a b

those of the C', one may prove that, for elastic
c d a b

scattering,

A = [(2R + 1) (2Sg+ 1)] ~ 51 OF ooo
m 772 b

(35)

for example, in Ref. 5, equality of the total cross sections
means that the forward I, =1 amplitude is determined
entirely by the one-particle intermediate state in ~ p,
the neutron. One may then ask how the model can ac-
commodate a zero forward amplitude, instead of the
one-neutron contribution. The answer is that the model
predicts a 6 degenerate with the nucleon, and which
also contributes through one-particle intermediate states
in n.*p. In ~+p the 6++ is an allowed intermediate
state, while the 5 occurs in m. p. The latter contributes
only one-third of the former, with opposed sign. There-
fore the necessary condition that the one-particle inter-
mediate states cancel is that the neutron contribution be
just two-thirds of that of the 6++. In this way the mod-
el imposes a relation between the renormalized mNN and
mNh coupling constants. Similarly, sum rules which de-
pend on the integrals of I, =1 total cross sections, such
as that of Adler' and Weisberger, ' and that of Cabibbo
and Radicati, are predicted to have no continuum con-
tribution, according to the model. On the other hand,
the contribution of the 6 one-particle intermediate state
must be taken into account along with the neutron in
evaluating the commutators. In this way relations
among the static properties of the nucleon and 6 may be
derived. It would be of interest to compare the results
of such sum rules with the direct computation in the
Skyrmion model of such static properties, such as that of
Adkins, Nappi, and Witten. '

V. CONCLUSIONS

In this paper I have shown that in a world in which
the formula derived by Mattis for the partial-wave am-
plitudes in meson-baryon two-body reactions were exact,
then Eq. (1) would follow, and all the consequences
which I have examined in Secs. III and IV would be ob-
served experimentally. The formula derived by Mattis is
based on the Skyrmion model for the baryons, which is
itself supposed to represent the large Nlimit of Q-CD
(Ref. 21). It is therefore of interest to see whether the
model provides a reasonable approximation to the real
world. The fact that the nucleon and 5 are not degen-
erate indicates that one must not expect total agreement
between the model and reality. Once this is admitted,
however, the general trend toward reasonable agreement
with some of the more sweeping predictions of the mod-
el cannot be denied. Here I have assumed that the mod-
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el is fully general, and does not apply only at low ener-

gies. The fact that the model relates different amplitudes
at fixed t-channel isospin, and then imposes that ampli-
tudes of different I, do not interfere in the differential
cross sections for any reaction is a totally unexpected
consequence of Mattis's expression for the partial-wave
amplitudes. On the other hand, the model shows no ten-

dency to suppress exotic I, =2 exchanges, which are
known empirically to be tiny. Indeed, the model always
allows maximum freedom to the highest possible I, am-

plitudes, while severely limiting I, =0 amplitudes. It
would be of great interest to find a natural mechanism in
the Skyrmion model which would lead to the suppres-
sion of exotic amplitudes. Care must be taken not to
achieve too much suppression, since these exchanges
often correspond to allowed u-channel exchanges, and
thus to backward rather than forward peaks in the
differential cross sections. To this end, Eq. (17}, which
relates the Gzzz, II, of Mattis to my G(yL» may permit

one to achieve any desired amount of suppression, while

skirting the essential problem of how to justify it in
terms of the original calculation of Mattis. In my

opinion the remarkable predictive powers of the model
in the I, =0 and I, =1 sectors justify the search for a
simple extension of Mattis's method which would effect
the suppression of exotic exchanges. If such an exten-
sion were found one would possess a predictive model,
based on a fundamental theory, which provides a reason-
able approximation to the phenomenology of two-body
reactions. Mattis' has pointed out that the G«~, », are
calculable quantities, at least in principle. I find that the
approach of Mattis is remarkably predictive even when
the Gzzz, », are free, which leaves one the hope that
two-body hadronic reactions may someday be computed
from first principles.
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