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Within the framework of stochastic quantization the parity-violating anomalies in odd space-
time dimensions are derived from the asymptotic stationarity of the stochastic average of a certain
fermion bilinear. Contrary to earlier attempts, this method yields the correct anomalies for both

massive and massless fermions.

Recently the derivation of anomalies within the frame-
work of stochastic quantization! has been studied inten-
sively. In the case of chiral anomalies it has been shown
that even by using the stochastic regularization scheme?
it is not possible to maintain both chiral symmetry and
gauge invariance as intact symmetries at the quantum
level and that the anomalies known from standard field
theory are also present in stochastic quantization.® The
situation is less clear in the case of the parity-violating
anomalies in odd dimensions which were first discussed
by Redlich.*-® He demonstrated that similar to the
conflict between gauge and chiral invariance in even di-
mensions there is a conflict between parity and gauge in-
variance in theories of fermions interacting with gauge
fields in odd dimensions. Using a gauge-invariant regu-
larization scheme, say, the vacuum current induced by
an external Yang-Mills field contains a parity-breaking
piece, which is responsible for the (possibly fractional)
vacuum charge and for the quantum Hall effect of the
vacuum.” This is true for both massive and massless fer-
mions. The effective action corresponding to the anoma-
lous part of the current is given by the Chern-Simons
term of the respective dimensionality.>® In Ref. 8,
henceforth referred to as I, we showed that for massive
fermions this anomaly is unambiguously reproduced by
the stochastic quantization procedure. This was proven
by explicitly solving the fermionic Langevin equation
and then calculating the vacuum charge

Q2 1= [ d¥x (0| Px)y°(x) | 0) (1)

by expressing the field-theory expectation value in the
usual way in terms of an average over the white noise.
(The dimensionality of space-time is assumed to be
2n +1.) Doing the same for massless fermions an incon-
sistency is found. It turns out that the dimensional sto-
chastic time 7 acts as an additional IR cutoff which has
no analogue in standard field theory. This allows us to
regularize the theory in a way so as to obtain no anoma-
ly for massless fermions. On the other hand, using
Pauli-Villars regularization and computing the contribu-
tion of the regulator field to the effective action by sto-
chastic quantization too, one finds the same anomaly as
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in the massive case. This is the same type of incon-
sistency which also has been found by Nissimov and
Pacheva’® using a different approach.

Recently Namiki, Ohba, Tanaka, and Yanga'® pro-
posed an interesting new method to obtain the ordinary
(chiral) anomalies from stochastic quantization. It is the
purpose of this paper to apply their strategy to the
parity-violating anomalies in odd dimensions. Let us
briefly recall the main ingredients of this approach
which is based on Ito’s stochastic differential calculus.!!
For a theory of fermion fields ¥(x,7) and ¥(x,7) which
is defined by an action S, the basic stochastic differential
equations read

Ay (x,7)= —— dr4d6 (x,7) (2)
Sy, (x,T)
_ 6S _
dy(x,7)= 8¢a(x,7)dr+d6a(x,r) , (2b)

where a is a spinor index. The differentials of the
Grassmann random sources 8(x,7) and 6(x,7), which
are a fermionic analogue of the Wiener process, have the

averages

(d6,)=(d6,)=0, (3a)
(d6,d6g)=(d6,dbg)=0, (3b)
<d6a(x,7')d§B(x',7')>=25a38(x —x')dT . (3¢)

It is important to note that any functional F of the vari-
ables ¥ and 1) satisfies

(F[¢(r),%(7))d0,(x,7))
=(F[(r),8(r)db(x,7))=0. (4)

This follows from (3a) together with the fact that
F[4¥(7),¥(7)] is a nonanticipating function of 7 (Ref. 11).
Applying the rules of Ito’s calculus, it is easy to derive a
stocgastic differential equation for the functional F it-
self:
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8S(7) SF(7) 8S(7) 8F(7)
dF(r)= [ dx |-~ >
T f x[ 8¢va(x,7-) Sllla(x,T) * Sllia(X,T) Bd;a(x,r)
§F(r) - 8F(r)
dx |dO(x, )~ L4 (x,7)—2TL
+ [ dx |d6,(x Dt T
_ 52F (1) 82F(r)
dx dy |d0,(x,7)d By, T)— +1d6,(x,7)d 64y, 7)
+ [ dxdy |d0,x,11d Oy, 7 STpy oY) Y T gy mbdalx, )

8%F(r)

+%d0a(x,r)d03(y,‘r)

(The functional derivatives are understood to be left
derivatives.) A further point which will be important is
that in the equilibrium state for 7— « the average of F
will become stationary, i.e.,

lim (dF(r))=0. (6)

T—

A formal proof can be found in Ref. 10. The averaged
version of equation (5) was used by Namiki, Ohba, Tana-
ka, and Yanga to derive the chiral anomaly. Their
choice for the functional F was

F=¢(x,7)ys(x,7) .

Inserting this on the right-hand side (RHS) of (5) yields
for the first integral precisely the axial-vector divergence
a#(ny"yslb), the second one vanishes according to (4)
when the average is taken, and the third integral, finally,
turned out to be the anomaly term. Because for 7—
the LHS of the averaged equation vanishes, one thus re-
covers the usual anomalous divergence relation of the
axial-vector current from the stationarity property of the
pseudoscalar {fy ).

Now let us turn to the parity-violating anomalies in
2n +1 dimensions. We first consider massive (Euclide-
an) Dirac fermions interacting with a topologically non-
trivial background Yang-Mills field 4, = A;T*, where
T are the gauge group generators. The action is given
by

S= [d¥"+x Wik —m), (7)

where D =y#(d,+i4,). [We use the same conventions
as in I; in particular, we write xH=(x%x*)=(x°x) with
ij,k,...=1,...,2n and u,v,p,...=0,...,2n] To
detect the anomalous term in the vacuum current, it is
sufficient to calculate the induced charge (1) for static
magnetic background fields, since it is known®® that the
parity-even part of the current does not contribute to the
vacuum charge. Therefore we may set 4°=0 and
A*= A*%x"). For the functional F whose stationarity
property is to be exploited we make the ansatz

F(r)= [ d¥*'x §{x,7)Gy(x,7) . (8)

Bz[B(y,T)BJa(x ,T)

. (5)

The operator G is implicitly defined by the relation
G(iD—m)+(iD—m)G=y". 9)

This equation could be solved by introducing appropri-
ate Green’s functions. It turns out, however, that the
explicit solution will not be needed. The reason for this
definition of F is that, when inserted into the first in-
tegral on the RHS of the stochastic differential equation
(5) for the action (7), it essentially yields the vacuum
charge (1):

(dF(1))=— [ d¥*+'x(J(x, 7y %(x,7))dr
— fd2"+1x(d§(x,T)Gd9(x,T))
=—dr [ dx°0,, . (1 +A . (10)

Note that because of (4) the terms linear in d6 and d8
vanish upon taking the average of Eq. (5). Since the
LHS of (10) vanishes for 7— «, we suspect the anomaly
to be contained in the quantity

A=~ [d¥"+'x(db(x,7)G d6(x,T)) . (1n

(Since all expectation values are time independent, we re-
strict the x? integration to a finite interval.) As we shall
see below, in the present form A does not yet have a
well-defined meaning and hence must be regularized.
We do this by smearing out the & function' of the corre-
lation function (3c):

(dO,(x,7)dB4(x",7))

A2/A?

=2d7 lim Solxe T gix) . (12)

This corresponds to an a priori regularization of the con-
tinuum regularization program developed by Bern,
Chan, and Halpern.> Here {¢;} denotes a complete set
of orthonormalized eigenfunctions of the Dirac operator:
D¢, =A;¢;. Hence (11) yields
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_a2/A2
A=2dr lim Se N[ ix glx)G gy (x)

_A2/A2
ML [ ¢y %, (x)

A— o

=dr li _—
7 lim ge A —m

=—d7 lim fd2"+1x<x

A— o

1 2,42
try?® iD+m ———P/A
i ]D2+m2

"> : (13)
To obtain the second line of (13), relation (9) and the eigenvalue equation for I have been used. We note that the
P =y%,+y*D, part in the curly brackets in the last line of (13) does not contribute to A. The first term vanishes
because, when going to momentum space, it becomes odd in k, and the second one gives no contribution since it an-

ticommutes with ¥°. Using an integral representation for the inverse of B*+m?2, we thus have found

A=—mdr lim

A— o

If we note that P*= —33+ 13, where
Do, =7M[3 +idi(x))]

is independent of x° and that,

upon
s=w+A"2 P

introducing

als
(x%)e™ | x%) =(4ms)~ 12,
we may write
A=—m(4m)"Vdr

. =<} om2c
X lim f dse~msg =172

Ao YATZ

2
-D;5,s

de2"+’x<x|tr7/0e [x) .

(15)
Next we exploit that, since ¥° anticommutes with B,,,

2
—-Db5,s

_p2
fd“x(x!try"e Pan® XY =Tr(y 0% ) (16)
is the index of the Dirac operator D,,, which is given by
the Chern character!® of the gauge field A;(x*) with the
field-strength form F=(i/2)F;dx'dx’:

index B,, = f exp —;;F . (17)

(We use the standard differential form notation.'’) In I
this was shown explicitly by applying Fujikawa’s
method!® to Eq. (15). Thus (10), (15), and (16) imply

Qo 1) =—m(@m) =12 lim [ dse=ms !/

A— o

Xindex B,,

d , -
— - (F(1)), (18)

f din+1y fow dw{x |tryoe_mz+m2)(w+/r”|x) . (14)

where F is obtained from F by omitting the x° integra-
tion. Equation (18) describes the 7 evolution of the vac-
uum charge. Obviously, the anomaly does not depend
on the stochastic time; the only 7 dependence arises
through the time derivative of {F(7)) which vanishes in
the infinite-7 limit. After a trivial integration we there-
fore arrive at

O 1= Tlim Qo 41(7)

Lm
2 m|

X index B,, . (19)

This is the correct result for massive fermions. Here we
concentrated our discussion on the vacuum charge; how-
ever, it is well known that Q,, , ;540 is equivalent to the
presence of the parity-odd part in the vacuum current
and of a Chern-Simons term in the Heisenberg-Euler
effective action.>® Hence we may conclude that the
present approach correctly reproduces the anomaly in
the case of massive fermions.

We now come to the discussion of massless fermions.
It is here that we will find a crucial difference to the
more standard approach of I where the Langevin equa-
tions were solved explicitly and the solution was inserted
into

Q2 11(1)= [ d¥x (Px,7)y%(x,7)) . (20)
The stochastic evolution of Q,, .| was found to be given
by

—1/2 1 2r—A"? —ms, 172
Qo4 1(T)=—m(4m) lim f , dse s
Ao YA

Xindex B,, .

(21)

For m+0 this equation yields the correct result (19).
On the other hand, in the derivation of (21) it was no-
where used that m=%0. Hence the anomaly of massless
fermions is obtained by setting m =0 in Eq. (21). For
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finite values of 7, the integral exists even without the ex-
ponential factor, so that we have Q,, (7)=0 for all 7.
Taking the limit 7— oo, we would conclude that there is
no anomaly. This is clearly inconsistent, because, as we
discussed in I, even within stochastic quantization there
is a regularization scheme with Q,, ;0. We can in-
troduce a Pauli-Villars regulator field of mass M and
regularize the effective action (calculated via stochastic
quantization) by subtracting its contribution for M — o
(Ref. 4). What one finds is (19) with m replaced by M.
In I we attributed this inconsistency to the fact that the
dimensionful stochastic time 7 acts as an IR cutoff for
the proper-time integral in (21), which has no analogue
in standard field theory. There, in all comparable regu-
larization schemes (£ function, heat kernel), the upper
limit is equal to infinity from the outset, so that we are
not allowed to set m =0 in the integrand and thus are
forced to use Pauli-Villars regularization for m =0.

Let us now come back to the approach based on the

asymptotic stationarity of (F(7)). The important
difference between (18) and (21) is that in the present for-
mulation the anomaly is 7 independent. The proper-
time integral in (15) or (18) ranges to infinity even for
finite stochastic time and therefore it is not possible to
set m =0 in (21) (Ref. 15). Hence massless fermions can-
not be treated in the way described above. This means
that we are now forced to use a different regularization,
such as a Pauli-Villars regulator, say, to allow for a
well-defined determination of the vacuum charge. Then
our calculation applies to this massive regulator field (cf.
Redlich*) and hence the anomaly is recovered. This
shows that, contrary to the naive approach to stochastic
quantization used in I, the present method unambiguous-
ly reproduces the parity-violating anomaly for both mas-
sive and massless fermions.

I would like to thank José Magpantay for interesting
discussions.
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