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Lattice Hamiltonian in physical gauges
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The form of the lattice Hamiltonian for an arbitrary non-Abelian lattice gauge theory is derived
in an arbitrary physical gauge, using the transfer-matrix formalism. The final result is shown to be
manifestly Hermitian and polynomial in the link variables.

I. INTRODUCTION

The evolution of lattice gauge theory has involved de-
velopments in both the Lagrangian and Hamiltonian for-
mulations of the theory. Although most of the effort in
this field has focused on the Monte Carlo simulation of
the Lagrangian version, a separate line of development,
beginning with the derivation of the lattice gauge Hamil-
tonian in a temporal gauge, ' has also led to useful in-
sights. The ultimate goal here would be an accurate
computation of the spectrum of the lattice Hamiltonian
in the weak-coupling regime corresponding to the con-
tinuum limit for an asymptotically free theory. Initially,
one attempted to extrapolate from spectral calculations
at strong coupling; more recently, the emphasis has
shifted to the development of techniques suitable for
direct application in the continuum regime. In particu-
lar, variational and Lanczos' techniques have been
adapted to lattice field theory, with the result that one is
now able to demonstrate, in various asymptotically free
two-dimensional theories, the correct perturbative scal-
ing of the mass gap by direct computation of the spec-
trum of the lattice Hamiltonian.

Convergent results for the spectrum of four-
dimensional lattice theory have also been obtained by
Lanczos methods in the case of compact U(1) theory.
Here, the starting ansatz for the ground-state wave func-
tion is basically the Gaussian solution valid in the ex-
treme weak-coupling limit. The evaluation of matrix
elements involves incomplete Gaussian integrals which
can only be accurately estimated if all zero modes are
eliminated, i.e., if a complete gauge fixing is performed.
Accordingly, the results of Ref. 7 correspond to a calcu-
lation in a physical lattice gauge in which longitudinal
photon modes are explicitly eliminated.

In order to proceed to the non-Abelian case, it will be
necessary to begin from a physical gauge formulation of
the theory —one in which maximal gauge fixing is per-
formed for the spatial links of the lattice. The widely
used Kogut-Susskind Hamiltonian' corresponds instead
to the temporal gauge Ao ——0. The purpose of this paper
is to present a derivation of the form of the lattice Ham-
iltonian for non-Abelian gauge theories in physical
gauges. By "physical gauge, " we here mean a formula-
tion in which a maximal tree of spatial links is fixed to
unity on each time slice. Thus, these gauges are lattice
analogs (and generalizations) of continuum axial gauge

n A =0, n„spacelike. The derivation is somewhat more
complicated than in the temporal case; in particular,
there are ordering problems in the kinetic part of the
final Hamiltonian (2.28) and (2.29). One important sim-
plifying feature of our final result is the polynomial ap-
pearance of link variables U in the kinetic part; one
might have been confronted with a much more compli-
cated U dependence, making Lanczos calculations
difficult, if not impossible. The derivation of the physi-
cal gauge Hamiltonian presented in Sec. II is based on
transfer matrix techniques first applied by Creutz to the
temporal-gauge case.

II. DERIVATION OF THE HAMILTONIAN

The lattice Hamiltonian in the physical gauge will be
computed by writing an expression for the transfer ma-—aoH
trix T=e (ao the temporal lattice spacing), and
then taking the limit (1—T)lao, a0~0. Thus, we begin
with the formulation of the lattice theory on a Euclidean
(space-time) lattice with temporal spacing ao, spatial
spacing a, and action

S = — g Retr(@„U„',4„+;U„; )

g aO n1

ao
Retr(P„,1) .ga„ (2.1)

We wish to develop the theory in a physical gauge in
which as many as possible of the spatial links U„,- are
specified. For simplicity we shall assume that the gauge
freedom is used to set a maximal tree of links on each
time slice to unity. A maximal tree is a set of links such
that any link added to the set results in a closed loop of
links in the set. An example of a maximal tree of spatial
links in a (2+1)-dimensional theory, corresponding to
the continuum gauge choice A„=O, is shown in Fig. 1.

The notation is as follows: n refers to a site on the lat-
tice (integer four-vector), 4„ is the temporal-gauge link
variable extending forward in time from site n, U„; the
spatial link variable extending from site n in direction i
(i =1,2, . . . , D —1, where D is the space-time dimen-
sion), and U„'; the link variable corresponding to U„; at
time ao later. Finally, P„, is a spatial plaquette variable

(2.2)
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A state of the system at any given time is specified by

the physical links U„, on that time slice

~ ~~~~~ ~~ ~~~~~~ ~~ ~ ~~~~~~ ~ ~~
~

U) =—
~ j U, , running over nonfixed linksI ) . (2.3)

Define gauge operators Q„, for each physical link U„, by

FIG. 1. Maximal tree of links on a two-dimensional lattice
(bold lines). Physical links (non-gauge-fixed) are shown as
dashed lines.

with t the generators of the gauge group

[t,t&]=if &,t„ tr(t t&)=5 &. (2.5)

From (2.4) it follows directly that, if 0„; are the link
operators diagonal in representation (2.3),

In addition to all the spacelike links which may be ful-

ly specified on each time slice by choice of gauge, a sin-
gle timelike link 4„connecting every pair of adjacent

time slices may also be fixed. This will be essential later
in removing a zero mode when the ap~0 limit is taken.
As regards the spacelike links, our notation will be to
write g'„; to indicate a restricted sum over links not set
to unity (i.e., the remaining physical degrees of freedom),
and g"„; to denote a sum over the links belonging to the
maximal gauge-fixed tree on each time slice.

the Q„, , 0„; satisfy the commutation relation

[Qni » Umj ]= finrnfiij't Umj'

(2.6)

(2 7)

The transfer matrix is defined as the operator whose
matrix elements directly give the contribution to the ex-
ponentiated action arising from two adjacent time slices.
In a physical gauge, the temporal links represent depen-
dent field degrees of freedom. Correspondingly, they are
integrated over in the definition of the transfer matrix T:

(U'~ T
~

U)= I g d4„exp QRetr(4„U„';4„+, U„, ) exp
nano g P ni

ap
Re tr(P„;J )

n, i &j
(2.8)

In (2.8), in contrast with (2.1), the sums over sites n run only over a single time slice. At this point, all links are in-
cluded, even those belonging to the tree of gauge-fixed links. Define a set of c-number integration link fields,

IN6 e nt a
ni = 7

one for each physical link Un, . It is straightforward to verify
r

T= I g d4„g'dG„; exp i g'co„, Q„, exp g Retr(@„G„,U„,4„+,U„, )+ g Retr(P„,, )

nano ni ni g p ni n, «J

(2.9)

(2.10)

It should be emphasized that in (2.10) 4„,G„are c-
number integration variables, while Q„and 6„; (and

P„,J, constructed from the latter) are noncommuting
operators [cf. (2.7)]. Accordingly, the order of the ex-
ponential factors in (2.10) is significant. In particular,
the Hermiticity (actually, symmetry) of T

(2.11)

manifest in (2.8), is somewhat concealed in (2.10). It will

once again be apparent in our final result for H, howev-
er.

The evaluation of the 4„and G„,- integrals in (2.10)
would appear to be a daunting task, as indeed it would
be, in the general case. Fortunately, the derivation of
the lattice Hamiltonian requires only the evaluation of
(2.10) in the limit a0~0. First, let us note that as the
gauge freedom is now completely eliminated, the remain-
ing links represent physical degrees of freedom, and
must approach unity to the extent the corresponding lat-
tice spacing is taken to zero (we do not expect infinitely

I

large physical field values to contribute to the functional
integral). Thus (2.10) may be evaluated in the limit
ap~0 by a saddle-point calculation in which the tem-
poral links are expanded about unity

P r4„=e "—:e " =1+i/„ t —,'(P, t) +— (2.12)

H „=— g Retr(P„, ) .
n, i ~j

(2.13)

Henceforth, we concentrate on the remaining parts of
(2.10), which lead to the kinetic part of the Hamiltonian,

Of course, it follows from the form of the exponent in
(2.10) that the integral is also forced into the region
6„;—1 as a&~0. Thus, we also expand in the variables
co„, in (2.9).

The spatial plaquette contribution (involving P„,)in.
(2.10) goes directly into the potential energy part H „of
the lattice Hamiltonian in an obvious way. Since—aoHT=e, we have
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Hk;„. Also, for notational simplicity, we henceforth

drop the carets over the link variables Un;, understood

to be operators obeying (2.7).
The quadratic part of the timelike plaquette piece of

(2.10) is found after a short calculation to be

et (4„„,U„,4„+, „,) „,d= —
—,
' I;p„—co„; I

(2.14)
I

Here D, is. the covariant derivative, D;Q„=Q„~Q~+; —P„,
with 0 the representative of U in the adjoint:

Af =tr(t U„t&Ut, ) . (2.15)

The power counting for ap~0 is facilitated by the re-
scalings P„~ap~ P„, cp„, ~ap co„;. After this shift

2

exp i g'ra„, Q„, ~1+iap~2 g'co„; Q„;——,'ap g'ton; Q„; +higher-order terms . (2.16)

We are only interested in terms up to order ap, as T-1—apH for ap~0. Now, the quartic terms in the expansion
are already O(ap), so these terms may be brought down from the exponential and Q dropped entirely in (2.16). The
contribution of any quartic terms to H could then only depend on the Uni and would take the form

f

dic,
de„;J(P„)J(pj„;)(quartic terms) exp — g I

D;P„ton; —
I

ni

(2.17)

If we now examine the mutilated transfer matrix T, obtained by setting Q„, =0 from the outset,

T= f d@„16n;exp 2 QRetr(@nGn;Un;4&„+;U„) = f d@ndG„; exp g Retr(G„;) =U independent
8 ap ni ap ni

(by a shift of the 6„, integration). Consequently, the
quartic terms contribute at most an irrelevant constant
to the Hamiltonian. It may similarly be shown that the
Jacobians J(gn), J(con; ) in the Haar measure [see (2.17)]
are also irrelevant in the limit ap~0, and may be set to
unity.

The cubic terms in the expansion of the timelike pla-
quettes are not, however, excluded by the above argu-
ment. En fact, they turn out to be crucial in restoring
the Herrniticity of the Hamiltonian [note that at the mo-
ment all Q factors remain to the left of all U factors in

I

I

(2.10)]. By the antisymmetry of Re tr(it t&t ) = ,' f &, ——
it follows that the only surviving cubic term is obtained
by taking the linear term from each of 4„, G„,, and
Uni C n+i Uni This yields

(2.18)

After rescaling we find the following expression, correct
to O(ap ) for T„;„-1 apH k;„. —

T .—f II «.H'd .
nano ni

la a P 5 y5
2 ap X ~mi 'Qmi 'fapr( n~nj( n+j+nj

mi, nj

1
p ~mi mi

2
exp — g ID, P„ra„, —

ni

(2.19)

Note that

2 D;4.—~.; I

'= 2'
I D;4.—~.; I

'+ X"
I ~;k. I

'
ni

I

one finds

f ff deil„;cp;co„j exp — g I
D;P„—co„;

ni

where

(2.20) 2

5 p6 „fi; +(D;P ) (D P„)~. (2.22)
a

(2.21)

so that the integral over the co„; is manifestly conver-
gent. The quantity g"

I

b, , P I
is also positive definite,

as setting 6;$„=0for all links on a maximal tree clearly
sets all P„equal. However [see discussion following
(2.2)], as one of the P„ is gauge fixed to zero, this re-
quires all P„ to vanish. Thus, the integral over the P„ is
also convergent. This granted, and including an obvious
normalization factor in the definition of the integrals,

f rI «.&:&!exp—
nano nt

2

mna
(2.23)

Inserting these results in (2.19) one finds

Define a purely kinematic (i.e., U-independent) propaga-
tor I( ~n by
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2

Hain = X' Qmi+ Q' QmiQnj amia, njp
ml mia, nj p

+, f dA. ..Q;;f.p, 4 '.,4.',&.", p— (2.24)

where If. is the symmetric matrix

mia, njp= P (Di am, ym' m'n'(Dj )pn, yn' 1

m'n'y

i )am, ym'=~m', m+i+mi ~ ~mm'

(2.2S)

(2.26)

Finally, we show that the horrible integral in (2.24), arising from the cubic term, is precisely the symmetrizing factor
for the terms that precede it. Note that

f p p„(D,Q„)pQy, p„+, f p p——„(D p„)p[(D,p, )y+ g]=0 by antisymmetry .

Thus, the last term in H may be written

2 f dP„de„;Q;tom, f pyg„[coP —(D P„)P]Qysgs+ e
2g

2 f dp„drD„Q', (co;+D;p )f, pyiti„copjQyjiti„+ exp — g'co„; exp — g"
~

b, , iti„~

~ 2 2
lg a y5 g a P
2Q

Qmifsay+m+im+m, i = 2 Qmi [Qnj&amia, njp]2a
(2.27)

Substituting this result in (2.24) we obtain the manifestly
Hermitian result for the kinetic part of the lattice Ham-
iltonian:

2

g' Q';+ g' Q;)L;..jpQ.,
ni mia, njp

we have the complete expression for the lattice Hamil-
tonian H =Hp' +Hp t in a physical lattice gauge.
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1

n, i (j
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