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The interaction of a magnetic monopole-antimonopole pair in a superconductor is calculated as
a function of their separation and the value of the Landau-Ginzburg parameter. This direct nu-
merical result is then compared to the bag approximation to the same interaction in a supercon-
ducting medium. The actual potential exhibits the same general features as those obtained in the
bag calculation. If the bag pressure is used as a phenomenological parameter, rather than the
value fixed by the superconducting energy density, the agreement is excellent. Numerically the ac-
tual problem was actually no more difficult than the bag calculation. The interaction between
magnetic monopoles and antimonopoles in the superconducting vacuum state is similar to the in-
teraction of heavy colored quarks in a flux-confining physical QCD vacuum state. This means that
our results are probably a good indication of the general behavior of the QCD potential and of the
reliability of the bag approximation in the calculation of this potential. Our results also show that
the bag model is a good approximation to a dual superconductor. This indicates that a dual su-
perconducting picture of QCD would lead to the same heavy-quark potential and perhaps retain
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more of the physics than the bag model.

I. INTRODUCTION

A superconductor is a real, well-understood physical
system in which flux confinement occurs because of the
presence of a nonperturbative vacuum state. If a
monopole-antimonopole pair in a superconducting medi-
um is separated, a tube of quantized magnetic flux will
form which carries the flux from the monopole to the
antimonopole. At large distances this flux tube yields a
long-range pair potential that grows linearly with dis-
tance. This behavior is quite similar to what is believed
to be the interaction of quarks in QCD where tubes of
quantized color-electric flux are expected to form be-
tween distant heavy quarks, leading again to a potential
which grows linearly with separation.

This similarity between superconductivity and QCD
was first pointed out by Nielsen and Olesen! and by
Nambu? and was used to investigate the stringlike struc-
tures connecting colored quarks (the zero-radius limit of
tubes of color flux). Exploiting the QCD superconduc-
tor analogy, Mandelstam?® and ’t Hooft* pointed out that
color-electric vector potentials can be defined in QCD
(thereby perhaps identifying the dynamical variables ap-
propriate to the study of confinement) and that chro-
momagnetic monopoles might play a role analogous to
the Cooper pairs of superconductivity. More receritly, a
dual superconductor picture of QCD was proposed by
Nair and Rosenzweig® and an effective dual variable La-
grangian for QCD was constructed by Baker, Ball, and
Zachariasen® based on an analysis of the behavior of the
QCD Green’s functions. This Lagrangian, which may
be considered the analog of the Landau-Ginzburg ap-
proach to superconductivity, successfully accounts for
the formation of tubes of quantized color-electric flux.

Alcock, Burfitt, and Cottingham’ have proposed that
the solution of the Landau-Ginzburg equations for
monopoles might be used directly to provide a phenome-
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nological model for the potential between heavy quarks
and showed that qualitatively correct behavior could be
obtained. In this work we will focus on studying in de-
tail the behavior of monopoles in a superconductor to
determine how the interaction with the nonperturbative
vacuum changes the short-range Coulomb potential to a
linearly rising long-range potential. This is an interest-
ing theoretical problem in its own right. In addition, by
simply dividing the superconductor into regions of nor-
mal material (perturbative vacuum) and superconducting
material (nonperturbative vacuum) a simple bag approxi-
mation can be obtained which is identical to the MIT
bag model used in the calculation of the potential be-
tween heavy quarks. In other words, not only can we
obtain an exact confining potential calculated directly
from first principles but we can also construct its bag ap-
proximation. This allows us to test the accuracy and ap-
plicability of the bag approximation.

The organization of this paper is as follows. In Sec. II
we will develop the formalism necessary to include mag-
netic monopoles into the Landau-Ginzburg description
of superconductivity. In Sec. III we discuss the numeri-
cal methods used in solving the field equations. Section
IV contains the derivation of the bag approximation and
the numerical methods used to solve it and a comparison
of the numerical results of the exact solution with those
of the bag approximation. In Sec. V the results and a
scaling method suggested by the bag model which allows
one to obtain the potential for a wide range of the
Landau-Ginzburg parameter from the solution at a sin-
gle value are discussed.

II. HEAVY MONOPOLES IN A LANDAU-GINZBURG
SUPERCONDUCTOR

The usual definition of B in terms of the vector poten-
tial A automatically implies the absence of magnetic
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monopoles, i.e., V-B=0. Following Dirac (see Ref. 8)
we introduce sources of magnetic flux of modifying the
relation between B and A as

B=VX A+B, , 2.1

and choose the “string field” B, to satisfy
V-B;=p,, -

Thus B satisfies Gauss’s law with a magnetic source.
For a single monopole in vacuum located at the origin,
Eq. (2.1) simply reflects the identity (in spherical coordi-
nates)

T 14cosf |~ "
Al 47 sin o+8(x)8(y)0(z)z . (2.2)
In this case the string field B, is
B, =8(x)8(y)0(2)Z . (2.3)

This field exists only along the positive z axis and serves
to cancel the string in VX A which results from the at-
tempt to represent a point charge as the curl of some-
thing. Both VX A and B, contain strings while B does
not, as is required on physical grounds. The vector po-
tential that represents the magnetic field produced by a
monopole-antimonopole pair located on the z axis at
z=xR/2is

z—R/2

oy q
A=A =
D¢ [p2+(2 __R/Z)Z]I/Z

- 4mp

z+R/2

_ 6, (4
[p*+(z +R /2)}]'? ¢

where we have shifted to cylindrical coordinates which
will be used in our numerical calculations and where q is
the magnetic charge. The associated B; is

B, = +¢5(x)8(»)[0(z —R /2)—6(z +R/2)]2 , (2.5)

and the string now joins the two magnetic charges.

The time-independent Landau-Ginzburg (LG) action
in the presence of these sources is identical to the usual
LG action with the modified relationship

Lig=— [ dx[1B*—¢*(V—ie A%
+AC16 2= [ o)1

Here ¢ is the order parameter (the scalar field in the
Abelian Higgs model) and e is the scalar field charge; in
a real superconductor this is the charge of a Cooper
pair, twice the electron charge.

The Dirac quantization condition eq =2 ensures that
the location of the string can be changed by a gauge
transformation and, therefore, that the strings are unob-
servable. Having the string connect the two magnetic
charges is a convenient gauge choice for our calculation
in that it will require the vector potential to vanish ex-
ponentially at large distances from the monopole-
antimonopole pair. Finally, we write

A= AD+a )

(2.6)

(2.7)

where A, produces the field of the monopoles in vacu-
um with the associated strings and a and VXa are well
behaved everywhere in space and have as a source the
current produced by the ¢ field. This not only elimi-
nates Coulomb and string singularities from the field
equations for the new independent variable a but allows
easy separation of the infinite monopole self-energy from
the total energy. This is accomplished by using the iden-
tity

2
[ @ {VX Ap+B,P=— Z%i +self-energy . (2.8)

Since the sources have axial symmetry, we make the
following field ansatz:

a,=0, a=alp,z)$, and p=0*=4(p,z) . (2.9)

The vector potential is then in Coulomb gauge and the
choice of string direction and the large-distance behavior
of A allows ¢, the scalar field, to be real. The resulting
field equations are

[VZ—eX(a + Ap)*1p=2M$*—d3)¢ (2.10)
and
vio L la=2ea + 4p)87 . @.11)
P

It should be noted that in certain physically realizable
situations we expect the minimum-energy solution to ex-
hibit spontaneous symmetry breaking and to lie outside
of our simple ansatz. This will be discussed in more de-
tail in Sec. V.

In terms of these functions, the total field energy,
dropping the monopole self-energies, can be written as

™

E=—
e’R

+ [ dx (Mo} —¢*)—epXa + Ap)a] .

(2.12)

Here we have made use of the field equations and the
Dirac quantization condition to simplify this expression.

There are two length scales in superconductivity.
These are the penetration depth A(T), which controls
the exponential rate of change of the vector potential,
and the coherence length £(T), which controls the rate
at which ¢ approaches ¢,. These are related to the pho-
ton mass and the Higgs scalar mass in the superconduct-
ing states and are the following functions of our parame-
ters:

m4=1/MT)=V2ed, and m,=[V2&T)]™!
=2V ¢, .

In order to minimize the number of constants appear-
ing in our field equations, we will rescale distance and
the fields as

x=x'/m,, a=V2¢ua’,
ADZ‘/E%Ab’ and ¢ =¢yp" .

Dropping the primes, Eqgs. (2.10), (2.11), and (2.12) be-
come

(2.13)
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Vi¢—(a + ApPo=K’¢(¢*—1), (2.14)
Vi — 2 —¢%a+ 45)=0, (2.15)
P
and
¢(2) 21 3 K2 4 2
= _R+fdx S (1=¢"—(a+dplag? | |,

(2.16)

where we have introduced the Landau-Ginzburg param-
eter

my

=— 2.17
V2m, @17

K

We will refer to the scaled quantity in square brackets in
Eq. (2.16) as the scaled interaction energy which will be
related to the scaled string tension.

The boundary conditions for the scaled fields which
lead to a unique solution to Eqgs. (2.14) and (2.15) are
that a goes to — Ay and ¢ goes to 1 as either p or z go
to infinity. These are simply the result of requiring that
¢ approach the physical vacuum in the superconductor
and that A vanish at large distances from the
monopole-antimonopole pair. The remaining boundary
conditions are that function a vanishes on the z axis,
while the behavior of ¢ is determined by the behavior of
Ap as p—0. For |z | <R /2, between the monopoles,
Ap~1/p as p goes to zero forcing ¢ to vanish on the z
axis; however, outside of this interval A4, vanishes as
p—0 and the radial derivative of ¢ must vanish on this
portion of the z axis.

In the limit of large monopole separation, the solution
between the monopole-antimonopole pair will be the or-
dinary vortex solution with one unit of flux, though in
an unconventional gauge in which the flux returns via a
string that runs along the z axis rather than at infinity as
in the usual gauge.

III. NUMERICAL SOLUTIONS
OF THE FIELD EQUATIONS

The axial symmetry of the problem suggests the use of
cylindrical coordinates z and p as independent variables.
Furthermore, the symmetry under z— —z means that a
complete solution can be obtained by considering only
the half-space z>0 with the appropriate boundary con-
ditions imposed on the z=0 plane to guarantee this sym-
metry. Both a and ¢ are even functions of z, as a result
their boundary conditions on the z=0 plane are

M_ﬂ_o
3z 93z

The two-dimensional area 0 <p <pp., and 0 <z <z,
is discretized on a rectangular n Xm mesh. Using the
standard central difference approximations for the
derivatives, the field equations become difference equa-
tions on this lattice. The fact that the dynamical fields
fall with a known exponential behavior at large z and p
allows one to estimate the values of p.,, and z_,, neces-

sary to produce a sufficiently accurate solution. In prac-
tice we varied these quantities to show that the quanti-
ties of physical interest, such as the string tension, were,
in fact, independent of the cutoff values.

The numerical solution of the difference equations was
obtained by using the Gauss-Seidel method with the suc-
cessive overrelaxation (SOR) technique following the
general procedures recommended by Adler and Piran.’®
The procedure was as follows. One began with a small
lattice, typically 8 X 8 with a guess for the first trial solu-
tion which was iterated until convergence was obtained.
These solutions were then interpolated to provide a trial
solution on a 16X 16 lattice. Once the solution on this
lattice had been obtained, it in turn was used to provide
a trial solution on a larger lattice. Because the trial
functions on the larger lattices were close to the actual
solutions, the convergence was generally quite rapid. In
most cases a rectangular rather than a square lattice was
used because as the monopole-antimonopole separation
was increased, it was necessary to increase z,,, requir-
ing the use of more mesh points in the z than in the p
direction to maintain a similar spacial resolution in each
variable. The maximum change of the fields during a
single Gauss-Siedel iteration was used as the criterion for
convergence. For small lattices the iteration was repeat-
ed until the fields were stable to machine accuracy (dou-
ble precision on a VAX 785). For the largest lattice, the
iteration was stopped after the fields stabilized to six
significant figures. For lattices with less than 10000 lat-
tice points this required one- to two-hundred iterations.

At each change of lattice the number of points was in-
creased by a factor of 4. This procedure not only proved
to be an efficient method of obtaining the solution for a
large lattice but also gave information on the lattice-
spacing dependence of the relevant physical quantities
such as the monopole-antimonopole interaction energy.
This information allowed us to estimate how large a lat-
tice was necessary to provide a stable result and, in fact,
could be used in a Richardson-type!® extrapolation to
zero-lattice spacing to obtain the continuum values for
the quantities of interest.

The final step in this procedure was to vary z,,, and
Pmax to verify that these parameters were large enough
so that the interaction energy was independent of these
cutoffs.

This procedure was carried out for several values of
the Landau-Ginzburg parameter and for enough values
of the monopole-antimonopole separation to obtain an
accurate plot of the potential. The vortex solution was
also obtained by the same general numerical procedure
and was used to provide two checks on the monopole-
antimonopole solutions. First, it was verified that the
slope of the linear portion of the potential agreed with
the vortex line string tension. Second, for large
monopole-antimonopole separations the solutions on the
medium plane were compared to the vortex solutions
and found to be in excellent agreement. The value of
Pmax for the vortex solution also provided a good esti-
mate of the value of this parameter required in the
monopole-antimonopole solution.

A further check on the vortex solution was provided



by the fact that the string tension can be calculated
analytically at the critical value of the Landau-Ginzburg
parameter k=1/V2 (the dividing line between type-I
and type-II superconductors), in this case the scaled
string tension for a vortex with N flux quanta is
Ty =2mwN. The numerical results with p_,, =12 and the
Richardson extrapolation using 8, 16, 32, and 64 uni-
formly distributed mesh points was T} =6.2823, which is
in error by 0.001. The value obtained with 64 mesh
points was T;=6.2744, which has about ten times the
error, through the direct result certainly has more accu-
racy than is required for our purposes. For a vortex
with 100 units of flux, the p,,, must be increased to 50
due to the much larger radius of this vortex, with the ex-
trapolated result 7,p,=628.57, which has about the
same percentage error as the flux 1 vortex calculation.
The comparison of the vortex string tension with the
slope of the linear potential obtained from the
monopole-antimonopole solution indicates that the po-
tential is accurate to 0.1 to 0.2 in scaled units, which
corresponds to an error of the order of a percent or two
in the potential in that region. The fact that the poten-
tial passes through zero of course prevents us from as-
signing an overall percentage error, but we believe that
the potential is determined at least as accurately as the
bag-model potential, which will be discussed in Sec. IV.
The behavior of a typical solution (monopole-
antimonopole separation R=6 and k=0.7071) is shown
in Figs. 1 and 2. In Fig. 1 one quadrant is shown with
the B field lines which leave the monopole at equally
spaced angles. For comparison we have also plotted the
“dipole” field lines that would exist in the absence of the
superconductor. In Fig. 2 lines of constant ¢ for ¢ =0.1
to 0.9 at intervals of 0.1 are shown to give an indication
of how the B field changes the nature of the vacuum
states in the region of the monopole-antimonopole pair.
It should be noted that already at this separation, the
fields on the median plane are nearly indistinguishable

FIG. 1. The solid curves are B-field lines for R=6.0 and
x=0.7071. The dashed lines are the B-field lines for R=6.0 in

free space.
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FIG. 2. Lines of constant $=0.1 through 0.9 for R=6.0 and
k=0.7071.

INTERACTION ENERGY

-20 1 L 1 1 L L 1

1 2 3 4 5 6
MONOPOLE ~ANTIMONOPOLE  SEPARATION

FIG. 3. Interaction energy as a function of R and «. Solid
line is k=0.7071, long dashes represent k=0.5, while short
dashes represent x=1.0.
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from those for the one flux quantum vortex.

The resulting interaction energies for «=0.5,
k=1/V2, and for k=1 are shown in Fig. 3. Note the
rapid change from the Coulomb region where the poten-
tials are necessarily identical to the linear region where
the different slopes are the result of the dependence of
the string tension on k. This rapid transition is quite
similar to the ‘“precocious scaling” observed in bag-
model calculations of the heavy-quark potential.!!

IV. BAG APPROXIMATION FOR THE
MONOPOLE-ANTIMONOPOLE INTERACTION
IN A SUPERCONDUCTOR

In this approach to a superconductor, space is divided
into a normal region in which the magnetic field is
sufficiently strong to destroy the superconductivity and a
superconducting region from which the magnetic field is
expelled. The basic assumption is that the volume in
which the transition takes place can be approximated by
a surface. It is clear from our previous discussion of the
flux tube formed between the monopole-antimonopole
pair that the transition occurs gradually, with a scale
that is, in fact, the flux-tube radius, and that only in the
extreme case of very high monopole charge or very large
flux is the change sufficiently abrupt that it can
justifiably be approximated by a discontinuous step.
Putting aside these physical reasons for doubting the ap-
plicability of this model to our problem, we will proceed
with standard bag-model calculation.

Inside the bag, the region is normal and point magnet-
ic sources can most easily be represented by a scalar
magnetic potential ¢ satisfying Laplace’s equations
everywhere except at the sources. The boundary condi-
tions on the surface of the bag are simply that no flux
penetrates the surface,

n-V¢=0 on the surface , 4.1)

and that the pressure produced by the negative-energy
density of the superconducting vacuum be balanced by
the magnetic pressure

|B|%=—2E,, =2k’ , 4.2)

vac

where B=—Vy and —E,,_ is the usual bag constant
(E, is the vacuum energy density).

The parameters that determine this model are E,,
the monopole charge g, and the separation of the
monopole-antimonopole pair R. Because of the way in
which these parameters enter this model, it is possible to
scale the length and the scalar potential ¥ so that only a
single parameter remains. We have chosen the following
procedure:

Y=Vgq(—2E,)""* (4.3a)
and

r=Vq(—2E,.) . (4.3b)
The interaction energy is

Ebagz de(%lB l Z_Evac) >

where the first term is the magnetostatic energy and the
second is the energy required to create a normal region
in the superconductor’s negative-energy vacuum state.
The interaction energy has the following relation to the
scaled energy:

Epog=(gV"(—2E )" *Ey,y . (4.4)

This scaling results in the basic problem of solving
Poisson’s equation with unit charges and finding the sur-
face on which B is a unit vector tangential to the sur-
face. This procedure must be carried out for each value
of the separation of the charges. The treatment of this
problem is essentially that used by Baker, Ball, and Za-
chariasen,'?> which was shown to produce excellent
agreement with the analytic two-dimensional bag solu-
tion of Giles.!* Since we are treating a simplified ver-
sion of the bag approximation of Ref. 12, we will de-
scribe the details of our calculation.

The nonlinear boundary condition on the B field and
the cylindrical symmetry requires the existence of cusps
at each end of the bag, as well as a line charge density
on the symmetry axis (the z axis in Sec. III) outside of
the bag. In Ref. 12 the analytic form of these cusps
were determined to be p~(z —zy)*/%, where z, is the
cusp position and the self-consistent line charge density
along the axis of the cusp was proportional to (z —z,)?
The existence of these cusps complicate the use of cylin-
drical coordinates in the treatment of the bag, in that
the surface p=p(z) cannot be a single-valued function of
the variable z. If one attempts to simply separate the
potential into ¢, the Coulomb potential of the two point
charges, and expand the remainder in terms of the
Legendre polynomial solutions to Laplace’s equation, the
existence of the line charges which lie outside of the bag
for |z | >z, prevents the convergence of this expansion
for certain regions inside the bag. For this reason the
potential ¢ is decomposed into three parts: 9., a
parametrized form of the cusp potential ¢,,; and the
residual ¥, which will have a convergent expansion in-
side the bag. Here, as before, we will drop the bars that
denote the scaled variables in the interest of simplifying
the equations. Equations (4.3) and (4.4) must, of course,
be used to obtain the actual physical quantities of in-
terest:

¢'=¢'c +¢cusp+¢r ’

where
1 1 1
-_ — — , 4.5
v 47 | |r—r1y | |r—r, | ) 4.3
2, (ZI_ZO)Z
=A dz'
d’cusp fzo [(zr_z)2_+_p2]1/2 ¥4
—z (z'424)*
~f ? 2°zmdz'], (4.6)
2z [(z'—2)*+p°]
and
N
l/}r: 2 AIrZI—Ile_l(COSG) . (4.7)

=1
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Here the free parameters are the cusp position; z, z,,
and A which controls the length and strength of the line
charges; and the A, through 4.

The final step in the formulation of this problem is to
write an analytic expression for the bag surface as

M
S B, P, (cosf)+C(sing)*"?
=0

r(@)= )
(14D cos?9)!"?
where C and D describe the cusp shape.
Our numerical procedure is to define a positive-
definite quantity

[ dS[(] Ve | 2= 1)+ @ V)]

[ as

which we minimize by varying the free parameters in ¢
and the surface. The smaller X2, the closer we are to the
solution for which X*=0. The actual procedure was as
follows. We choose a surface and the parameters that
enter into VY, With these quantities fixed, the values
of the A’s which minimize the (fi-B)? term in X? satisfy
a set of linear equations which are solved. Thus the
minimization actually involves searching in the space of
the surface and cusp potential parameters and determin-
ing the associated set of A’s.

Before discussing the numerical results for the interac-
tion energy as a function of charge separation, let us ex-
amine the limit of very large separations to determine
the bag-model predictions for the string tension. In our
scaled units the flux tube carries one unit of flux and has
B, =1, which requires that the cross-sectional area be
one. This results in a scaled energy per unit length of +
from the magnetic energy and 1 from the bag volume
energy. The scaling relation for the string tension is

T=q(—2E, )T .

(4.8)

XZ

(4.9)

(4.10)

vac

The scaling used in Sec. III allows one to calculate all
physical quantities for any value of e and ¢, as does the
bag-model scaling. For purposes of comparison between
the bag model and the numerical Landau-Ginzburg (LG)
calculation, we will choose e =1/V'2 and ¢,=1 so that
the scaled LG energy and length are the actual values of
these quantities and then scale the bag values according
to g =2V27 and —2E,,.=«*. Note that the bag model
has no requirement of flux quantization. The resulting
string tension for a flux tube with N units of flux is

Ty=N2V27k . (4.11)
Surprisingly, for k=1/V'2, this is identical to the exact
result.

The actual numerical calculations for the interaction
energy in the bag were performed for scaled R ranging
from 0.1, where the interaction is dominated by the
Coulomb energy, to R=3, where the central region of
the bag is quite cylindrical and the change of interaction
energy with R is linear. For each value of R, 20 mesh
points were used to represent the discrete values of the
variable cosO representing half of the surface of the bag

(here as in the previous calculation we have taken advan-
tage of the bag symmetry about the median plane). It
was found that as R increased, the number of parame-
ters (B’s) necessary to represent the surface increased
and the distribution of mesh points needed to be shifted
to give an adequate representation of the surface near
the ends of the bag. In each case the X? as defined by
Eq. (4.9) was minimized using the CERN developed
minimization program MINUIT. For all values of R it
was possible to obtain X? < 5x 10~* with 0.1 and 3 hav-
ing the large values. The smallest value X*=6x10"°
was obtained at R=1.34. This meant that better bag
solutions were obtained in the more interesting transi-
tion region than in the linear or in the Coulomb-
dominated regions. It should be noted that the number
of trial solutions required to obtain a good result was
generally quite large (at least a few thousand), meaning
that the calculation of the bag interaction energy at a
given R required several times the computer time needed
in the Landau-Ginzburg calculation of the same quanti-
ty. On the other hand, after the bag calculation has
been carried out for a range of R’s, a new solution for a
different value of the Landau-Ginzburg parameter can
be easily obtained using the scaling properties without
any further calculation. The bag shape for R=1.0 is
shown in Fig. 4.

In Fig. 5 we show a comparison of the actual
monopole-antimonopole interaction energy with that of
the bag model for k=1/V"2. Since there is no particular
reason for the finite parts of the self-energies to be the
same for the LG calculation and that of the bag, we
have added a constant =0.6 to the bag interaction ener-
gy. The agreement is truly spectacular. In Fig. 6 we
show the same comparison, though this time for k=1.
In this case the short-range potential is still in agree-
ment, but at large R the two calculations are not even
close. It is clear that the bag-model string tension is
wrong. To illustrate what might be expected at other
values of k we have calculated the N=1 vortex string
tension as a function of «, which is compared to the bag

chorge location

1 L L T~y 1 1 J
o o1 02 03 04 05 06 o7 o8
z

FIG. 4. Bag surface for R=1. Note that while maximum p
and maximum z are about equal, the cusp is still a prominent
feature, making this rather different from a sphere.
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value in Fig. 7. Note that these curves intersect at
k=1/V'2, where the surface energy associated with the
superconducting normal boundary vanishes. At this
point we should discuss another deficiency of the simple
bag model we have studied. In a type-I superconductor,
the vortex line string tension as a function of N grows at
a rate less than linear, indicating that vortex lines attract
one another, forming the energetically favored high-flux
vortices. On the other hand, in a type-II superconduc-
tor, the string tension grows more rapidly than N, mean-
ing that vortex lines repel and that N flux-one lines
represent the lowest-energy method of passing N units of
flux through a superconductor. Thus, not only is the
bag-model string tension incorrect for values of
k=1/V2, but the N dependence of the string tension is
also wrong.

40t
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20F
>
o
@
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w
z
1)
£ lof
Q
D=
x
w
[
=3
o
-0
_ 1 Il I 1 J
20 | 2 3 413 l5 [ 7
MONOPOLE - ANTIMONOPOLE SEPARATION
FIG. 5. Comparison of the LG interaction energy (solid

line) with that obtained from the bag calculation (dashed line)
for k=0.707. Since a constant (R independent) difference be-
tween potentials are meaningless, we have added 0.6 to the bag
results so that the portions agree.

To examine whether our failure to include the surface
tension associated with the bag surface is the cause of
disagreement illustrated by Fig. 6, we have calculated
the surface tension as a function of x for a Landau-
Ginzburg superconductor. This is a one-dimensional
problem and simpler than the string tension calculation.
Our geometry is as follows. All fields will be assumed to
be functions of the z coordinate, with large negative z be-
ing the superconducting region with ¢=¢, and large
positive z having the equilibrium value of the magnetic
field B,=V2A¢3. We will choose A=A(z)X and
B= A'(z)y, where primes denote d /dz.

The surface tension is simply the difference in energy
per unit are that one obtains from the calculation of the
energy, using the dynamical fields in the transition re-
gion, from that obtained using the asymptotic values of
the fields that would apply on each side of a plane
boundary dividing the normal and superconducting re-
gions. The Hamiltonian density can be written

H=XA")V+(¢')4e* 42>+ > —92)*, (4.12)
where we have defined zero energy as that in the super-
conducting vacuum. The fact that this Hamiltonian
density is zero in the superconductor and B? in the nor-
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FIG. 6. Comparison of the LG interaction energy (solid
line) with bag results (dashed line) for k=1.0.
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FIG. 7. String tension as a function of k. LG values are the solid line, while those for the bag are the dashed line.

mal region clearly causes a problem if one naively sub-
tracts the sharp boundary energy from the energy calcu-
lated from the dynamical fields in that shifting the posi-
tion of the boundary will change the energy. It is clear
that this energy associated with shifting the position of
the surface has nothing to do with the surface energy
which we wish to calculate. To avoid the problem of
where the surface should be placed, we will employ the
trick of subtracting an exact differential from H to form

H=H B ,A'. (4.13)

Since A4 should satisfy the same boundary conditions at
z— o0, this term will cancel out in the energy difference
calculation. Note however that H is continuous across
the boundary and zero for all values z in the case of a
sharp boundary. The surface tension o is then

o= fw Hdz . (4.14)

The field equations for this one-dimensional problem are

A" —2e%*4 =0 (4.15)
and

¢ —e?A%p—206(d*—93)=0 . (4.16)
A first integral of these equations is

LA +(¢' ) —e? 42> —M*—})* =0, (4.17)
where we have used the boundary conditions at z = — o

to evaluate this constant function (independent of z).
Evaluation of this quantity at z— + « results in the
pressure balance equation that determines B,. Using

this expression or the field equations directly, the surface
tension can be written

o= [7 [—A*+ 4B, — 4" )dz .

Clearly the integrand is zero except in the transition re-
gion.

In our actual calculation we use the scaling of Eq.
(2.13) and calculate the scaled surface tension which is
only a function of k. Before showing the results, a few
remarks about the boundary conditions to be used with
Egs. (4.15) and (4.16) are in order. Clearly the supercon-
ducting vacuum state with ¢=¢, and 4 =4'=0is a z-
independent solution of these equations, as is the normal
state with 4’'=B, and ¢=0. This means that one must
start integrating the differential equations in the region
where the transition is beginning to occur. Further-
more, the values of 4', 4, and ¢,¢’ must be adjusted so
that correct boundary values are obtained as z— «
(note that the equations can be linearized in this region
fixing A’ and ¢’ in terms of the other two quantities).
This occurs for a continuous set of starting values be-
cause the transition region is not fixed in this calcula-
tion. The fact that z does not occur in Egs. (4.15) and
(4.16) allows us to reduce the order of the system by one
by introducing as the independent variable y =(1—¢),
where ¢ is the scaled scalar field (note that y increases
monotonically with z). The use of y removes any uncer-
tainty as to where the transition region is with reference
to the z variable. The surface tension is then expressed
as an integral over y. In practice the value of 4’ ob-
tained as y —1 is a very sensitive function of the input
parameters.

(4.18)
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FIG. 8. Surface tension as a function of «.

As a result of these problems it was difficult to obtain ~ model is straightforward and was introduced in its appli-
a high accuracy result for what appears to be a relatively ~ cation to QCD by Hasenfratz and Kuti.!* One simply
simple problem. This is particularly true for large values = modifies the pressure balance equation to include the

of k. Our results for o are shown in Fig. 8 and we esti-  surface-tension pressure, and Eq. (4.2) becomes
mate our error to be less than 0.01, which is adequate |B |2=20(1/r,+1/r,)—2E,,. , (4.19)
for our purposes.

The incorporation of surface tension into the bag  where r; and r, are the local radii of curvature of the

1 1 1 L 1 1 1 1
.8

FIG. 9. String tension as a function of k. LG values are the solid line, while those for the bag approximation including surface
tension o (k) are represented by the dashed line.



37 SUPERCONDUCTIVITY: A TESTING GROUND FOR MODELS. .. 533

surface. The energy also has an extra term oS where S
is the total surface area. It seems likely that even with
the added complication of Eq. (4.19) the bag approxima-
tion can be solved, though the analysis of the cusp struc-
ture is greatly complicated. For its application to super-
conductivity, o is a function of x which prevents using
scaling to remove the x dependence, meaning that the
solutions of Sec. IIl are actually more easily obtained
than those of the bag approximation.

To attempt to determine whether the addition of sur-
face tension will improve the bag approximation results,
we note that the major discrepancy can be traced to the
incorrect value of the string tension for the simple bag
model. For the case of a flux tube, Eq. (4.19) can be
combined with the equation for flux conservation to ob-
tain the following equations relating the string tension
and the surface tension:

8N =k’R} +20R} (4.20)

and

Ty=mk*R}+30Ry) . (4.21)

In Fig. 9 we compare the string tension for N=1 calcu-
lated from Egs. (4.20) and (4.21) to that of the Landau-
Ginzburg vortex line. Clearly there is considerable im-
provement in the type-I region. In the type-II region the
disagreement is about the same, though the sign of the
discrepancy has changed. The fact that the bag approxi-
mation string tension is clearly headed toward negative
values for large « is certainly a very unphysical result.
In Table I we have given the actual string tension versus
the bag approximation string tension as a function of N
for k=1 and 0 =—0.218. The discrepancy stays rather
constant at about 0.6 scaled units, meaning that the per-
centage error becomes quite small for a large flux tube,
as one might expect. This constant term is what would
be obtained if one had a curvature energy per unit area
(unit arc length in the string tension) inversely propor-
tional to the radius of curvature. Needless, to say, the
bag approximation with surface tension has already lost
its computational advantages and further attempts to in-

TABLE 1. The string tension for k=1 as a function of units
of flux in the vortex line calculated from the Landau-Ginzburg
equations and from the bag model with surface tension
o=—0.218.

Units of Ty Ty
flux (LG) (Bag with surface tension)

1 7.262 6.50

2 15.19 14.44

3 23.34 22.43

4 31.60 30.86

5 39.93 39.19

10 82.22 81.51
15 125.0 124.3
20 168.0 167.4
50 428.6 428.0
100 866.1 865.5

clude curvature energies can only add to its impracticali-
ty.

V. CONCLUSIONS AND DISCUSSION

The monopole-antimonopole interaction energy calcu-
lated directly from the Landau-Ginzburg equations ap-
pears to be pure Coulomb at short range with a rapid
transition to a linear potential at long range. The ab-
sence of a transition region with any structure is a be-
havior previously observed in bag-model calculations of
heavy-quark potential. A comparison of the bag approx-
imation with the correct numerical result is in strikingly
good agreement for the critical value of the Landau-
Ginzburg parameter. It should be noted that at this spe-
cial value k=1/V2, many simplifications on the com-
plete theory occur: vortex lines have no interaction; the
energy associated with boundaries is zero; in two dimen-
sions the fourth-order system of equations can be re-
duced to a single second-order equation for a single field.
For other values of xk the agreement with the bag calcu-
lation is poor but appears to be due to the incorrect
value of the string tension given by the bag approxima-
tion.

The fact that the changes produced by changing the
value of k seems to be primarily the change of the string
tension suggests using the type of scaling used in the bag
approximation in which the string tension could be
changed, keeping the charges, and hence the short-range
Coulomb interaction, unchanged. The scaling that pro-
duces this result goes as follows.

Let y =T (k,)/T (k,) then

rie)=r(K,)/Vy (5.1)

and

E(k)=VYVE(k,) . (5.2)

Using the calculated string tensions and interaction ener-
gies at k=0.5, 1/V'2, and 1, we have plotted the scaled
interaction energies in Fig. 10. The fact that these
curves are nearly identical, except perhaps for a small
R-independent term, means that this scaling could be
used to generate the interaction energies over a large
range of k’s from the string tensions, once the interac-
tion energy for a single value of « has been calculated.

A further implication of this scaling result is that a
bag approximate could have been constructed for each «
if one had simply treated the vacuum energy density in
the bag approximation for a free parameter. This means
that as a phenomenological model, the bag calculation is
quite good, but that the relation between the required
bag pressure and the actual vacuum energy density no
longer is applicable.

There is one final note concerning our calculations
and the limits in which the bag approximation might
produce the true interaction energy. For monopoles of
high charge, the resulting flux tube has a large radius
and there is a rapid transition from the normal state to
the superconducting state at the boundary. In the type-I
region this certainly seems to be a correct conclusion, in
that the surface and curvature energies are small and
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FIG. 10. Scaled LG interaction energies. Solid line is the
interaction energy at k=0.7071. The dashed curve is the LG
interaction energy calculated for k=1.0 and scaled via the ra-
tio of the string tensions to k=0.7071. The dot-dash line is the
interaction energy calculated at k=0.5 and scaled via the
string tension ratio to k=0.7071. The small constant difference
in the linear portion of the curve probably represents an ir-
relevant k-dependent constant.

will certainly be dominated by the volume terms for
large values of N. On the other hand, in the type-II re-
gion the minimum energy configuration connecting
widely separated monopole-antimonopole pairs is only a
single flux tube for N=1. For all higher values a
configuration with N flux-one tubes will produce a lower
string tension than tubes containing higher flux. Thus in
a type-II superconductor there is no limit in which one
would expect the bag approximation to provide a satis-
factory interaction energy.

Clearly the N> 1 monopole-antimonopole interaction
in a type-II superconductor lies outside of our assump-
tions of cylindrical symmetry made in Sec. III. It may
be of some interest to see how these nonsymmetric solu-
tions arise from symmetric equations, symmetric
sources, and symmetric boundary conditions.

Unfortunately, the scarcity of monopoles prevents any
actual experimental test of our calculations, though
perhaps the energy required to create macroscopic di-
poles in a type-I superconductor could be measured as

well as calculated by our methods.

On the basis of our results we would conclude that the
bag model may be a useful tool in treating QCD phe-
nomenology but that the spherical approximation bears
little resemblance to the bag shape and that it is unlikely
that the bag pressure has much connection with the vac-
uum energy of the true theory.

We should point out that if one considers a dual su-
perconductor which is simply a LG superconductor with
the potential A replaced by its dual vector potential, our
bag approximation is exactly the bag model used in the
calculation of the heavy-quark potential. This means
that approximating QCD by this type of dual supercon-
ductor will lead to the same results as the bag model
while perhaps returning more of the physics of QCD.

As phenomenological Lagrangians for QCD are
developed, analogous to the Landau-Ginzburg Lagrang-
ian for superconductivity, we would expect more physics
to be retained by attempting to simplify these more com-
plicated systems into equations that bear some resem-
blance to a dual superconductor of the LG type rather
than attempting to reduce it to a bag approximation. It
is important to note that the cost in computer time for
both methods is quite comparable and if the scaling trick
is applied to the solutions of Sec. III, the direct numeri-
cal result actually is considerably more efficient.

Note added. Following the completion of this work, it
was brought to our attention that the interaction of
magnetic monopoles in a superconductor had been inves-
tigated by Wyld and Cutler [H. W. Wyld and R. T.
Cutler, Phys. Rev. D 14, 1648 (1976)], who recognized
the relevance of this problem to that of quark
confinement. They calculated numerically both the
string tension as a function of the Landau-Ginzburg pa-
rameter and the force between two monopoles. Both of
these calculations are in serious disagreement with our
results.

The difference in the string tension is in part traceable
to a surface term which they obtained through a by-
parts integration. This term, which should have been
zero, makes a sizable contribution to their values for the
string tension.

In their treatment of the monopole interaction, they
chose the string connecting the two monopoles using our
expression for A, to represent the vacuum value of the
vector potential of the monopoles. They then changed
variables from A4 to A, which is, in effect, a gauge trans-
formation so that 4 now has strings along the z axis
connecting each monopole to infinity. In this gauge, as
in the one we used, the scalar field boundary conditions
must change as one approaches the z axis depending on
whether A vanishes as it does between the monopoles or
behaves as 1/p as it does for the other portions of the z
axis. In the elliptic coordinates employed by these au-
thors the z axis between the monopoles is £=1 and
1>7n> —1, while the other portions of the z axis are
n=+F1and 1 <€ < . The boundary condition imposed
in this work appears to be only for £—1 and £— oo, but
the conditions at — F 1 for the full range of £ seem to
be ignored except at the charge locations. Without com-
plete specification of the functions or their normal
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derivatives on the boundaries a solution should be im-
possible. In any case, the formulation used produces
singularities which made the numerical treatment more
complicated than ours. We believe our results to be
correct and can only conclude that either the points dis-
cussed above or numerical problems account for the
discrepancy. It should be noted that we have the advan-

tage of ten years of computer improvements to simplify
our task.
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