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%'e compute all of the recoil corrections to the ground-state hyperfine splitting in hydrogen,
with the exception of the proton polarizability, that are required to achieve an accuracy of 1 ppm.
Our approach includes a united treatment of the corrections that would arise from a pointlike
Dirac proton and the corrections that are due to the proton's non-@ED structure. Our principal
new results are a calculation of the relative order-a {m, /m~) contributions that arise from the
proton's anomalous magnetic moment and a systematic treatment of the relative order-a{m, /m~ )

contributions that arise from form-factor corrections. In the former calculation we introduce
some new technical improvements and are able to evaluate all of the expressions analytically. In
the latter calculation, which has been the subject of previous investigations by other authors, we

express the form-factor corrections in terms of two-dimensional integrals that are convenient for
numerical evaluation and present numerical results for the commonly used dipole parametrization
of the form factors. Because we use a parametrization of the form factors that differs slightly from
the ones used in previous work, our numerical results are shifted from older ones by a small

amount.

I. INTRODUCTION
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where m, and m are the electron and proton masses, a,
is the electron's anomalous-moment coefficient, a is the
fine-structure constant, and E~ is the Fermi splitting:
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The hyperfine splitting (hfs} between the spin-0 and
spin-1 levels in the hydrogen ground state is one of the
most accurately measured quantities in physics. The
most recent experimental determinations of this quanti-

ty ' give

v(expt) = 1420.405 751 7667(9) MHZ .

Various theoretical contributions to the hydrogen
ground-state hfs have been calculated over the years.
The most important of these do not involve proton
recoil or the dynamics of the proton structure; these
"QED" contributions are

bE(QED)=EF 1+—3(Za) +a, +a(Zct)(ln2 ——', )

Here ~ is the proton's anomalous moment coefficient, m,
is the reduced mass [m, =m, m~ /( m, +m ) ], and the
Rydberg 8

„

is given by

R „=m,ca /2h . (1.4)

We have displayed the nuclear charge Z in (1.2) in order
to make clear the separation between the binding e6'ects
and radiative corrections.

The expression (1.2) arises from contributions whose
characteristic momenta are of order m, or less. They do
not involve the details of the proton structure, but they
are sensitive to the low-energy properties of the proton.
Thus, a factor (1+tr) representing the proton's total
magnetic moment appears in the Fermi splitting. The
expressions are identical to those for rnuonium, except
that the muon mass and anomalous moment have been
replaced with the corresponding values for the proton.
We note that in the discussion of muonium by Bodwin,
Yennie, and Gregorio, ' the anomalous-moment contri-
bution is not incorporated into EF. The definition used
here is more usual for the hydrogen hfs.

The term —,'(Za} is the so-called "Breit correction, "
which is the result of the relativistic corrections to the
Fermi splitting that arise from the Dirac equation. The
radiative correction proportional to a(Za) was first cal-
culated by Kroll and Pollock ' and Karplus, Klein, and
Schwinger. This result was obtained more simply by
Sapirstein, Terray, and Yennie, ' as part of a calculation
directed toward radiative-recoil corrections. The in+
parts of the radiative corrections proportional to tx(Za }
were originally computed by Layzer"' and Zwan-
ziger, ' ' and were confirmed by Brodsky and Erick-
son, ' who also estimated the corresponding nonloga-
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rithmic term. The actual computation of the nonloga-

rithmic term was carried out by Sapirstein, ' who used

numerical techniques to evaluate the relevant integrals.
The D, term represents radiative corrections involving

two virtual photons, which have yet to be calculated.
We may now evaluate the known QED contributions

to the hfs, as given in (1.2), using the lastest values for
the fundamental constants a ' = 137.035 989 5(61),
rn, =0.51099906(15) MeV, m =938.27231(28) MeV,
and ~=1.792847386(63). The Fermi splitting in fre-

quency units is vF ——1418.84025(14) MHz; the dominat-

ing uncertainty arises from the value of the fine-structure
constant. With the corrections given in (1.2) taken into
account, the theoretical value of the hyperfine splitting is

1
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discussion of it to Secs. V and VI. The existing litera-
ture contains an estimate of the uncertainty in the total
structure-dependent contribution of 0.9 ppm (Ref. 19).
We have been unable to determine the basis for that esti-
rnate.

Now let us turn to the effects of recoil. In muonium,
the contributions arising from recoil corrections take the
form

v(QED) =1420.451 95(14) MHz . (1.5) (1.10)

The difference between QED theory and experiment is
then

=32.56(10) ppm .
VF

(1.6)

5&(rigid) =5 (Zemach)+5 (recoil), (1.8)

where 5 (recoil) contains all of the elastic recoil correc-
tions to the hydrogen hfs. The nonrelativistic size
correction is given by

5 (Zemach) = —2m„aR (1.9)

where R is a mean radius associated with the proton's
charge-current distribution. Accurate calculation of
5&(Zemach) requires good knowledge of the elastic form
factors from experiment. When evaluated with the com-
monly used dipole pararnetrization of the elastic form
factors [see (5.20)], it gives a contribution of —38.72

ppm, which removes most of the difference between
theory and experiment. The uncertainty in the Zemach
correction is a rather complex issue, and we defer the

In order to take full advantage of the refinements de-
scribed so far, it would be necessary to calculate the
recoil and dynamical corrections involving the proton's
structure to about 0.1 ppm relative accuracy. Although
such a goal has not yet been achieved, substantial pro-
gress has been made in working out these structure-
dependent corrections. They are usually expressed as

b,E(structure) =EF[5 (rigid)+5~(polarizability)] .

(1.7)

The quantity 5&(rigid) is computed by using elastic form
factors to approximate the electromagnetic interactions
of the proton. The term 5~(polarizability), the proton
polarizability correction, contains all of the effects of the
dynamics of the proton that are not included in 5 (rigid).

The most important structure-dependent correction
does not involve recoil; it is known as the "nonrelativis-
tic size correction. " In computing this correction, one
treats the proton as a nonrecoiling particle with a fixed
charge-current distribution of finite extent. The nonrela-
tivistic size correction was first analyzed by Zemach
hence, we denote it by 5~(Zemach) and write

where we have ignored the distinction between m„and
m, in the last term. The first term here is due to Ar-
nowitt. Of the terms containing a, the term propor-
tional to lna was calculated by Lepage ' and Bodwin
and Yennie and the constant term was calculated by
Bodwin, Yennie, and Gregorio. ' A sum over states
contribution occurring in the constant term was calcu-
lated by Caswell and Lepage, who also confirmed the
total constant by a numerical calculation using an
effective Lagrangian approach. The absence in this
term of contributions containing a factor In(m„/m, )

was first demonstrated by Bodwin, Yennie, and Gre-
gorio, and is a consequence of a phenomenon known as
the Caswell-Lepage cancellation. In addition to the
terms shown in (1.10), there are radiative-recoil correc-
tions computed by Caswell and Lepage and Sapirstein,
Terray, and Yennie they are of relative order
(a/~) (m, /m„) and contain factors of In(m„/m, ).
Terms containing factors of ln(m„/m, ) cannot reliably
be taken over for hydrogen hfs because they contain
contributions from momenta much greater than m„and
so would involve the proton's structure. On the other
hand, the second term of (1.10), which contains no loga-
rithm of the heavy-particle mass, involves mornenta of
order m, and less. Thus, in the case of the hydrogen
hfs, such contributions would not show a sensitivity to
the proton's structure.

In hydrogen, the term 5„(recoil) replaces the expres-
sion (1.10). The one-loop [relative order a(m, /m~)]
contributions to 5 (recoil) correspond to the first term of
(1.10). These contributions involve characteristic mo-
menta that range from —m, to -m, since the scale of
the proton s charge-current distribution is characterized
by the mass of the p meson (m =750 MeV). The one-
loop recoil corrections were initially estimated by Ar-
nowitt, and Newcomb and Salpeter. The first actual
calculation was carried out by Iddings and Platzman,
who found that the combination of 5 (Zemach) and
5&(recoil) gave a contribution of —35 ppm. Grotch and
Yennie later arrived at a similar total ( —34.6 ppm),
but were able to carry out the calculation in a way that
separated 6 (recoil) from the Zemach correction. The
small net size for 5 (recoil) is deceptive, since individual
parts are comparable in size to the Zemach contribution.
These structure-dependent recoil and Zernach correc-
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tions are one subject of this paper. Also included in
5 (recoil) are relative order-a (m, /m ) corrections, cor-
responding to the second major term in (1.10). As we
have already mentioned, these contributions involve mo-
menta of order m, or less. Hence, in analyzing contri-
butions to the hydrogen hfs of this type, one can make
use of any results that were derived originally for the
muonium hfs. The recoil contributions in relative order
a that arise from the anomalous moment of the heavy
particle have not previously been computed. Such
anomalous-moment recoil contributions are important in
the hydrogen hfs at the present level of precision, and
they are the main subject of this paper.

Finally, we turn to the term 5 (polarizability). Its size
was first estimated by Iddings, and it was analyzed fur-
ther by Drell and Sullivan. ' Some progress has been
made since that initial work. For details we refer to the
reader to the review of Hughes and Kuti. Here we
merely note that de Rafael and Gnadig and Kuti
have shown how to use data from inelastic electron
scattering with polarized beam and target to put a
bound on 5 (polarizability). In their review, Hughes and
Kuti give ~5&(polarizability)

~

&4 ppm. On the other
hand, if we evaluate the discrepancy between the present
theory and experiment, omitting 5~(polarizability) and

using the value of Grotch and Yennie for the sum of
5&(Zemach) and 5~(recoil), then the result is —2.0(9)
ppm (theory minus experiment), which leaves little room
for a polarizability correction.

As stated earlier, one aim of this paper is to compute
the relative order-a recoil corrections to the hydrogen
ground-state hfs due to the proton's anomalous moment.
These corrections are of the same order of magnitude as
the present gap between theory and experiment (-1
ppm). In fact, it turns out that they actually reduce the
gap. Since they arise from characteristic momenta that
are of order m, or less, the relative order-a anomalous-
moment recoil corrections do not probe the proton's
structure, and we can compute them completely within
the framework of QED.

Since the relative order-a recoil contribution involves
only QED effects, the issue of the proton's structure
would seem to be irrelevant in computing that contribu-
tion. However, there are some ambiguities in separating
the anomalous moment contribution from the structure-
dependent contributions —particularly when one consid-
ers anomalous moment vertices between off-shell propa-
gators. The precise nature of the separation would be of
critical importance in matching to our work any future
high-precision calculations of structure-dependent
corrections. In order to indicate clearly the relationship
of our computation to the structure-dependent contribu-
tions, we set up a formalism that includes the proton's
structure. In the first part of this paper (Secs. II and
III), which is concerned with relative order-a recoil
corrections, we specialize to the low-momentum region,
where the form-factor dependence may be ignored. In
the second part of the paper (Sec. V) we reexamine the
relative order-a recoil corrections, which do depend on
the structure functions. Our aim here is to ensure that
our formalism for isolating the form-factor dependence

does indeed correspond to what was done in the earlier
calculations. Those earlier calculations were organized
in a rather complicated manner and were specialized to
particular phenomenological expressions for the form
factors. Also, some of the earlier work was not based on
a unified treatment of the problem, but, rather was
aimed at computing corrections to previous calculations.
In the present work we give a more compact and self-
contained treatment in which the result is expressed in
such a way that the form-factor data can be entered
rather straightforwardly.

Much of the basic bound-state formalism that we use
was developed in the paper of Bodwin, Yennie, and Gre-
gorio (BYG). We refer to BYG for many of the details
of the formalism and also for various computational re-
sults, but we try to provide enough details so that the
reader can follow the essence of the arguments indepen-
dently of BYG.

The remainder of the paper is organized as follows.
In Sec. II we sketch the general computational formal-
ism and describe the perturbation kernels that we re-
quire. The role of the proton's structure is discussed in
some detail there and the most important contributions
involving the structure are identified. In Sec. III we or-
ganize the computation of the anomalous-moment con-
tributions by analyzing the proton factors. Here we in-
troduce a technical improvement, which makes use of an
extension of the Gordon reduction to the off-mass-shell
case. In comparison with the procedure employed by
BYG to arrive at a similar expansion in inverse powers
of the heavy mass, the amount of algebra is greatly re-
duced. We find through this analysis that much of the
anomalous-moment contribution is proportional to the
computation by BYG. In Sec. IV we evaluate the addi-
tional anomalous-moment contributions that are not
proportional to the BYG result. Fortunately, all of the
integrals that arise have already been evaluated by BYG.
Section V contains a discussion of the calculation of the
structure-dependent terms by means of our formalism.
Numerical results are given for the dipole parametriza-
tion of the form factors. These results differ from those
given in earlier work ' by an amount which is compa-
rable to the difference between experiment and known
theory. A summary of our results is given in Sec. VI.
Although the contributions discussed in this paper are
smaller in magnitude than the uncertainty associated
with unknown terms, their computation improves our
implicit knowledge of the size of the proton polarizabili-
ty. The Appendix contains a tabulation of certain fre-
quently occurring integrals that were originally comput-
ed by BYG.

II. COMPUTATIONAL FORMALISM
AND OVERVIEW OF THE CALCULATION

A. General considerations

In this section we adapt the basic formalism developed
by BYG to the problem at hand. There are several im-
portant distinctions between the approach used here and
that of BYG, which we enumerate below.

One difference is that in the present work we wish to
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incorporate the effects of the proton's structure into the

formal basis of our calculation. As we shall see in the

course of the analysis, the anomalous-moment contribu-
tions at the order of interest in the present work arise

from momenta of order m, or less, so we would expect

them to be independent of the details of the proton's

structure. Nevertheless, there is some ambiguity with

regard to the separation of the anomalous-moment con-

tribution from the structure-dependent part. In order to
specify that separation precisely, we start with a formal-

ism that incorporates the proton's structure and identify
within it the structure-independent terms that we actual-

ly calculate.
We shall take the point of view that the proton can be

treated as a Dirac particle with various phenomenologi-
cal couplings to the electron through the electromagnet-
ic field. If the proton is on mass shell, gauge invariance
and Lorentz covariance lead to the requirement that the
single-photon vertex be proportional to y„or 0& q'.
Then, we can incorporate the "on-mass-shell" structure-

dependent effects by taking the single-photon vertex to
be

Vla pv~ 2eI =e y„F,(q )+ &Fp(q )
P P

P
2' (2.1)

F, and F2 are, respectively, the Dirac and Pauli form
factors describing the proton's electromagnetic interac-
tion; they may be deduced directly from experiment.
The proton's anomalous moment is given in terms of ~.
Alternatively, the interaction may be expressed in terms
of Gz and G~ [see (5.1)], which give the separate in-

teractions with the charge and current distributions.
Even when the proton can be "off mass shell, " we can
continue to use (2.1) to describe a prominent piece of the
interaction, and eI „canappear any number of times in
a graph, with proton propagators between each oc-
currence.

The "off-shell-mass" dependence can enter in various
ways. One way is through the dependence of the form
factors on the square of the initial or final proton four-
momentum. Another way is through the presence of ad-
ditional interaction vertices that vanish when the proton
is on mass shell. Gauge invariance, as manifested
through the Ward identities, requires corresponding
modifications of the proton propagator. Since all of
these off-mass-shell contributions vanish as the proton
goes on shell, they have the effect of "killing" a pole as-
sociated with a proton propagator. This reduces their
relative importance as compared with the leading contri-
butions, which tend to emphasize low momentum. In
principle, all the structure-dependent effects can be in-
corporated into intrinsic multiple-photon vertices.
These are specified by requiring that they contain no
poles in the proton momentum at the proton mass shell.
For example, an arbitrary amplitude involving two pho-
tons would consist of a part that is the iteration of el."„
plus some additional interactions. These additional in-
teractions would comprise the intrinsic two-photon in-
teraction. Similarly, an amplitude involving three pho-
tons would consist of iterations of eI „and the intrinsic

(a) (c)

FIG. 1. Various structure-dependent photon-proton ver-
tices. (a) represents the one-photon vertex corresponding to
(2.1). (b) represents that part of the two-photon interaction
which does not contain any mass-shell pole from an intermedi-
ate free proton propagator. We refer to it simply as a two-
photon vertex. It includes the off-mass-shell structure of the
propagator as well as intrinsic two-photon vertices. (In fact,
these two effects are indistinguishable. ) (c) is a similarly
defined three-photon vertex.

two-photon vertex plus an intrinsic three-photon vertex.
In the present calculation, we study only the structure-
dependent effects that can be incorporated through the
"on-mass-shell" form factors of (2.1). The intrinsic two-
photon interaction corresponds to the contribution
5~(polarizability) discussed in Sec. I. We shall argue in
Sec. IIC that the intrinsic three-photon interaction is
too small to consider at the present time. Some
structure-dependent vertices are illustrated in Fig. 1.

Another difference between the present work and that
of BYG is the initial choice of gauge. Most bound-state
calculations to date have been performed in Coulomb
gauge. There are two reasons for this. First, one usually
wants to use the exact solutions to the Coulomb-
Schrodinger or Coulomb-Dirac wave equation as a start-
ing point for a perturbation expansion; an explicit
Coulomb interaction in the Bethe-Salpeter kernels is a
convenience for this. Second, if one starts in a covariant
gauge —treating the difference between the time-time
component of the covariant photon and a Coulomb pho-
ton as a perturbation —then difficulties can arise in the
bound-state perturbation series. In particular, for cer-
tain choices of starting wave equation, such as the Sal-
peter equation, individual perturbation kernels lead to
contributions that are of a spuriously low order in a.
These spurious contributions ultimately cancel, but only
after one sums over all numbers of loops in the perturba-
tion kernels. This particular difficulty can be expected
to arise whenever the starting wave function is indepen-
dent of the time component of the relative momentum.
In the BYG paper, the Coulomb-gauge starting point
was used in conjunction with a starting wave function in
which the time component of relative momentum was
fixed by a 5 function to be a constant; we refer to this as
an "energy-fixing 5 function. " Ultimately, a transforma-
tion was made to Feynman gauge. The small "gauge"
correction that resulted from the transformation of the
first order perturbation theory kernels was canceled by a
"gauge" term from the second-order perturbation
theory. This procedure worked, in part, because of the
energy-fixing 5 function in the starting wave function.

In the present calculation, we streamline the pro-
cedure of BYG by starting in Feynman gauge. We also
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use a starting wave equation with a relative-energy-fixing
6 function. In the starting wave equation we include
only the time-time component of the Feynman-gauge
photon, which, in that context, becomes equal to a
Coulomb interaction. The spurious contributions from
the perturbation kernels mentioned above cancel, provid-
ed that one sums over all permutations of photon con-
nections for perturbation kernels containing a given
number of loops. These spurious terms are actually non-
recoil contributions, whose cancellation is discussed in
detail by BYG. Because of the energy-fixing 5 function,
the need for a sum over all loop orders is eliminated.

B. The starting ~ave equation and the perturbation kernels

E =E'+E" . (2.2a)

We are free to choose the way the total energy splits be-
tween the electron and proton when fixed by the energy-
fixing 6 function. It is convenient to define this split by

Now let us sketch briefly the bound-state perturbation
formalism that we use. A more detailed discussion of
many of the concepts can be found in the BYG paper.
We take the point of view that, since to first approxima-
tion the basic binding mechanism is highly nonrelativis-
tic, we can arrive at a reasonable starting wave equation

by ignoring the effects of the proton structure. That is,
for purposes of obtaining a starting wave equation, we
treat the proton as a pointlike Dirac particle. The
structure-dependent corrections can the be added later
as perturbations.

As mentioned above, we carry out the calculation in
Feynman gauge. Following BYG, we find it convenient
to distinguish between the temporal component of the
exchanged photon, denoted by 0, and the spatial com-
ponents, denoted by V.

As did BYG, we split the total energy E, so that in
ladder structures an amount E'+po is routed through
the electron line and an amount E"—pa is routed
through the proton line (see Fig. 2), where

&E'+p, p)J( J((E"-p,-p) = Nx J~ Jj +
P~o1 P

J( R J(

For the QED ground state,

am I'

y =am„, E'=m, —
2me

(2.2d)

E"=m
P

am I'

2m'

The rationalized electron and proton propagators are

E'yo+m, +y' p
D, (p)

E'yo+m —yI' pSP=
D~( —p)

(2.3)

where

FIG. 2. The product of free electron and proton propaga-
tors between two-particle-irreducible interaction kernels. As
explained in the text, the decomposition on the RHS of the

graphical equation is used only between single-photon ex-

changes in which the temporal index of the photon polariza-
tion has been singled out and the proton's structure has been

neglected (0' photon ladders). The first term in the decompo-
sition corresponds to taking the energy-fixing 5 function from
the first term of (2.5) together with the complete numerator of
the electron propagator and the large-component projector for
the proton. This factor is used to build the reference equation.
R represents the remainder of the 0'-photon ladder. The R
and crossed-ladder factors are used to build the perturbation
kernels.

E —m =E —m = —y
~2 2 II2 2 2

e

which leads to

(2.2b) D, (+p) =p y+2E'pa+i e—,

D (+p)=p y+2E"po+ie—.
(2.4)

E —m +mEi 5'

2E

E2 m2+m2

2E
(2.2c) In order to arrive at a starting wave equation we decom-

pose the propagator denominators as follows:

1

D, (p)D~ ( —p)

2mi6(po )— .

2E (p'+ y')—1 1 1

2E (po+ie)D, (p) ( —po+ie)Dp( —p)
+ (2.5)

In the two-particle propagator for our starting equation
we take the first term of (2.5) in conjunction with the
complete electron-propagator numerator and the part of
the proton-propagator numerator that dominates in the
nonrelativistic limit, namely,

yo
Ns(p)( 2~i)5(po) =-

E'yo —m, —y, .p
( 2rri )5(po )—,

Thus, we obtain as our starting two-particle propagator
a modified Dirac propagator:

X—'(1+ ')

,'(E"+m, )(l+y', ) . — (2.6) (2.7a)
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where

E"+mp
2E

(2.7b)

N —,
' (1+y~o)( 2~i—)5(po )

y,'V, %,
E'ro —m, —r, p

where Vc is the Coulomb potential:

(2.8)

The decomposition of the exact two-particle propagator
into (2.7a) plus a remainder is indicated diagrammatical-
ly in Fig. 2. The starting two-particle propagator (2.7a)
is denoted by heavy fermion lines, and the difference be-
tween (2.7a) and the exact two-particle propagator is
denoted by R.

In order to obtain a solvable equation that takes into
account the essentially nonrelativistic physics of binding,
we separate the ladder 0 photons into a pointlike part
0', in which the form factors have been set equal to 1

and K has been set equal to 0, and a remainder 0 —0'.
(In order to pack as much physics as possible into the
basic equation, some further small refinements are used
by BYG, but we omit them here since they are unimpor-
tant for the present application. ) We take (2.7a) in con-
juction with the 0' part of the photon propagator to ob-
tain our starting wave equation

equation, namely, the V-photon kernels and the 0 —0'
parts of the 0 photon kernels, plus corrections due to
the omission of the R part of the two-particle propaga-
tor in our starting equation. The discussion of these
effects parallels that of Sec. III of BYG, but it is simpler
here because it avoids the additional complication of
transforming the kernels from the Coulomb gauge to the
covariant gauge. Here we sketch it very briefly. We
construct the perturbation kernels by taking all com-
binations of V-photon ladders, 0 —0'-photon ladders,
0'-photon ladders with R's between the rungs, and
crossed-photon ladders involving V and 0 photons. As
explained by BYG, in relative order a, we need to con-
sider kernels containing up to three photons. That is,
with our choice of perturbation expansion, each loop in
one of these perturbation kernels adds at least one power
of a relative to the Fermi splitting. Following BYG we
rewrite the R's in external loops as the exact two-
particle propagator minus the heavy line contribution
(2.7a). We use the wave equation to absorb the heavy
line factors into the external wave functions. The per-
turbation kernels can then be reorganized so that they
take the form of three-photon kernels with exact fermion
and photon propagators minus similar two photon ker-
nels. One can understand the two-photon subtractions
as a mechanism for removing the double counting of

(2.9)

The solution of this modified Coulomb-Dirac equation is
discussed by BYG. Because of the factor N, reduced
mass effects appear in the result to the necessary level
for the present work. For many parts of the present cal-
culation an adequate approximation for the ground-state
wave function is the Coulomb-Schrodinger wave func-
tion with small components appended. The electron's
small components arise naturally as a part of the solu-
tion of the modified Coulomb-Dirac equation (2.8). As
explained by BYG, it is convenient to append small
components to the proton leg as well, the resulting
corrections being negligible. (One can regard these small
components as arising from additional loops involving R
corrections on the outside of the perturbation kernels. )

For future reference, we record this approximate form of
the ground-state wave function here:

T

(a) (b)

%(approx) = 1+ s r'
2me

1+@0
2

(c) (e)

2m

1+@A
4nr+spin ' (2.10a)

where

(8 y5)1/2
( 2vri)5(po)—

(p2 ~ y2)2
(2.10b)

and g, ;„is an electron-proton spin eigenfunction.
Next let us turn to the perturbation kernels involving

exchanged photons (we do not consider radiative correc-
tions here). They consist of those original Bethe-
Salpeter kernels that were not included in the starting

(&)

FIG. 3. The photon-exchange kernels that contribute to the
order of interest (up to and including order EFa'm, /m~). The
two-photon subtractions remove contributions that are double
counted in the three-photon kernels. The curly brackets indi-
cate that connections to the proton leg (including the blobs) are
to be permuted in all ways while the electron connections are
held fixed.
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heavy line contributions that is implicity in the three-
loop kernels. The reorganized perturbation kernels are
shown in Fig. 3. This is the form for the kernels that
will be used in the present calculation.

C. The role of the proton's structure

In this subsection we describe the role of the proton's
structure in a general analysis of the hydrogen hfs. We
estimate the orders of magnitude of the various
structure-dependent kernels and identify those that are
of importance at the order of current interest.

As a preliminary to that discussion, it is useful to de-
scribe a particular feature of the hfs, known as the
Caswell-Lepage cancellation, to which we shall refer
frequently throughout this paper. If, for a given three-
photon kernel, one pairs that kernel with a second ker-
nel in which the photon connections to the electron line
are reversed, then there is a cancellation of the leading
contributions to the hfs for momenta larger than the
electron's mass. That is, if the electron's mass is neglect-
ed and the labeling of photon momenta is held fixed, the
hfs parts of the electron factors cancel completely.
(Note, however, that the spin-independent terms add. )

This cancellation is responsible for the absence of
ln(m, /m~) corrections in the relative order-a (m, /m )

contribution to the hfs (Ref. 25).
Let us begin our analysis of the effects of the proton's

structure by examining the orders of magnitude of the
contributions that arise from the multiphoton vertices.
Some examples of these are pictured in Figs. 3(c)—3(fl.
For these contributions, gauge invariance plays an im-
portant role in our analysis. Since gauge invariance
holds order by order in a, the multiphoton vertices are
separately gauge invariant at each level of multiplicity.
(Here we imagine that external legs are on mass shell;
the deviations caused by this approximation generally in-
troduce higher powers of a and are related to sum-over-
states corrections that involve perturbations of higher
order in the number of kernels. ) The requirement of
gauge invariance means that these vertices must contain
factors of the momenta of the exchanged photons. The
factors of the photon momenta prevent the small-
momentum region from being important in the Feynman
integral. Thus, inverse powers of y cannot arise from
the integration, and one can obtain the leading contribu-
tion by neglecting wave-function momenta inside the
loop; the wave-function integrations converge indepen-
dently. The net result is an overall factor of y a", where
n is the multiplicity of the vertex. The scale of the
remaining internal intergration is set by the scale of the
proton structure, which we call A. On dimensional
grounds, then, the integral should produce a factor of
order 1/A or smaller. This rules out the cases n )4 at
the present level of interest. The case n =3 [see Fig.
3(A] must be examined carefully. If the integral were of
order 1/A, the result would be of the same order as the
new contributions presented in this paper. However, the
Caswell-Lepage cancellation permits us to argue that
these terms are also too small to be of interest. Since, as
we have already argued, the contribution comes only
from momenta much greater than m„ the Caswell-

Lepage cancellation leads to at least one extra numerator
power of m, . Then, on the basis of dimensional analysis,
the integral is of order I, /A, which is too small to
matter at the present level of the theory. The only mul-
tiphoton vertices that can contribute at the present level
of accuracy are the two-photon vertices, which are asso-
ciated with proton polarizability. Because of the
Caswell-Lepage cancellation at the two-loop level, these
two-photon vertices can contribute to the order of in-
terest only at the one-loop level. In that case there is
one less power of n and, furthermore, there is no
Caswell-Lepage cancellation to bring an extra factor of
m, into the numerator. Such a contribution is nominal-

ly of the same order as the contributions that arise from
the form-factor dependence in the kernels without multi-
photon vertices, but experimental results suggest that it
is actually much smaller. We do not analyze these
terms further in this paper.

Having dispensed with (i.e., set aside) the multiphoton
contributions, we are left with the kernels pictured in
Figs. 3(a) and 3(b). Since the form factor associated with
a given vertex depends only on the momentum transfer
at the vertex, all the algebraic manipulations involving
the proton factor may be carried through without regard
to the form factors. This means that for the parts of the
kernels that do not involve the proton's anomalous mo-
ment we can take over the results of BYG from Secs. II,
IIIA, IIIB, IIIC, and Appendix B. [This comment
does not apply to some special features associated with
the pure Coulomb interaction, as in Eqs. (2.25) and
(2.26) of BYG. However, these features are unimportant
for the contributions that are the subject of this paper. ]
In the case of the anomalous-moment terms in the per-
turbation kernels, the results of BYG from Appendix B
are insuScient, because they are specific to the Dirac
part of the proton's interaction. The additional algebra
for these terms involving the anomalous moment is
worked out in Sec. III.

It is useful to review at this point the types of contri-
butions that arose in the BYG calculation and to identi-
fy for each type the important corrections that result
from incorporating the proton's structure. A given per-
turbation kernel that is constructed from the one-photon
vertices does not yield a result of unique order in a and
m, /m, but we can rank the kernels in importance ac-
cording to the size of the largest contribution that they
produce. If a given kernel yields a contribution of rela-
tive order 10 from the low-momentum region, then
the proton-structure effect is much smaller and can be
ignored. Kernels that are intrinsically larger or that ob-
tain appreciable contributions from momenta of order
m must be treated more carefully.

The most important contributions appear as expecta-
tion values of single kernels with respect to the wave
functions of the unperturbed problem. There are also
small contributions involving a sum over states, which
have the structure of higher-order perturbations in the
simplest kernels. The proton structure effects are com-
pletely negligible in these higher-order perturbation con-
tributions. The only important tenn of this type, given
our particular organization of the calculation, is the
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second-order perturbation involving two hyperfine in-
teractions. The result for this contribution is easily ob-
tained from BYG by replacing the Dirac moment in
each kernel with the total magnetic moment. Therefore,
it is necessary only to study the modifications due to the
proton's structure in the individual kernels.

The most important contributions to the hfs is the
nonrecoil correction, which arises from one-photon ex-

change; it is treated in Sec. III D of BYG. The result of
that analysis is that the leading order may be expressed
as

EF[1+—', a +3y /(2m, m~)] .

This expression does not yet include the effect of the
proton's structure. If one ignores the effect of the
proton's form factors, the effect of the anomalous mo-
ment is merely to multiply this result by 1+~. Hence, it
is customary to incorporate a factor 1+~ in the
definition of EF, even though in higher orders there are
additional form-factor-independent terms that arise from

the anomalous moment. Long ago, Zemach' pointed
out that important form-factor effects enter through
modifications of the leading-order term. These arise

from a small change in the wave function due to the ex-

tended proton charge and from the extended structure of
the magnetic moment of the proton; the two effects must
be treated together. While the Zemach contribution has
a rather transparent interpretation, it is not especially
large compared to the individual contributions of other
structure-dependent corrections. However, owing to a
fortuitous cancellation among the more dynamical con-
tributions, which relies on the particular numerical value
of ~, the Zemach correction is approximately equal to
the net structure-dependent contribution. The Zemach
contribution is rederived and evaluated in Sec. V as a
part of the complete treatment of the one-loop kernel.

Next we discuss the recoil corrections of relative order
a. These arise from the one-loop kernels, which are
treated in Sec. III E of BYG. The contribution of rela-
tive order a contains terms with the factor in(m~/m, ),

which signals that the important integration range ex-
tends up to m . Thus, we cannot ignore the effects of
the proton's form factors in evaluating such terms. The
one-loop kernels also give rise to contributions that are
of relative order a . It turns out that these contributions
arise from the low-momentum region, so in evaluating
them we can ignore the effects of the proton's form fac-
tors. However, it is often the case that a subleading con-
tribution comes from a one-loop integral that also gives

a leading contribution. Then, in order to set the form
factors equal to their static values in the subleading con-
tribution, one must first devise a procedure for separat-
ing the subleading contribution from the leading contri-
bution at the level of the integrand. The subleading con-
tributions appear in various places, depending on the de-
tails of the separation procedure, but the net subleading
contribution is independent of the method. We give
enough details of our particular method so that our re-
sults can be used as a point of departure for a future
higher-precision calculation.

Finally, we discuss the recoil corrections of relative
order a . These arise from the two-loop kernels and, as
mentioned above, from the subleading contributions in
the one-loop kernels. It might seem, at first sight, that
the integrals that lead to these corrections could contain
high-momentum contributions, and so would be sensitive
to the proton's form factors. However, the Caswell-
Lepage cancellation between different integrals provides
an additional factor m, /p for momenta larger than the
m„sothat such terms may be safely calculated without
taking into account the proton's form factors. This can-
cellation is evidenced by the absence of relative order-
a (m, /m&)ln(m&/m, ) contributions in the result of
BYG. Many of the terms calculated by BYG can be
taken over without new effort. However, the anomalous
moment does introduce some new terms. Even these can
be evaluated with the help of integral tables constructed
by BYG. This work is carried out in Secs. III and IV.

It seems clear from the preceding discussion that all of
the form-factor effects are contained in "intrinsic one
loop" integrals. This terminology refers to a situation
where one loop momentum is much larger than y, so
that all other loop momenta can be neglected by com-
parison. Integrations over those other momenta con-
verge independently of the large-momentum loop. The
detailed analysis in which we demonstrate this and ex-
tract these terms is presented in Sec. V. This is not the
first careful analysis of proton-structure effects.
However, it is important to make the details of this ex-
traction procedure precise, so that the contributions that
have'been calculated up to now can be unambiguously
distinguished from additional contributions that could
appear in some future, still more accurate calculation.
Also, the earlier work was done at a time when workers
did not always distinguish between F&, F2, and GE, G~.
Consequently, our results differ slightly from those given
in the earlier work. It would be very awkward to modi-
fy the earlier work to take into account better form-
factor information. Here, we rearrange all of the
structure-dependent contributions that have been calcu-
lated at present into forms, involving the proton's struc-
ture functions, that are convenient for numerical integra-
tion. In order to provide reference results to aid future
work, we carry out the numerical integrations for the
case of the dipole parametrization of the form factors.

III. ORGANIZATION OF THE ANALYSIS
OF THE ORDER-a CONTRIBUTION

As described at the end of Sec. IIB, the kernels we
must analyze contain either two- or three-photon ex-
changes. After setting aside those with multiphoton ver-
tices, we have the kernels illustrated in Figs. 3(a) and
3(b). As explained in Sec. IIB, the two-photon kernels
are subtracted from the three-photon ones in order to
avoid multiple counting. We need not analyze the two-
photon kernels separately, since their contributions are
easily identified as pieces of the three-photon contribu-
tions. Our work is based on that of BYG, but enough
details are given here so that the reader should get a
good overview of the methods employed.
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In the BYG paper, the problem was set up initially in

the Coulomb gauge, and the kernels were then converted
to the Feynman gauge. Here we arrive at the kernels
directly in the Feynman gauge, with on-mass-shell form
factors included; these form factors are incorporated as
part of the photon factor. In the BYG work, the
analysis of the factor that arises from the heavy-particle
propagators was made after breaking down the kernels
according to the type and order of photons exchanged
(0 for temporal component and V for spatial com-
ponent). That breakdown seemed useful and natural at
the time, but the algebra involving Dirac matrices is
awkward and cumbersome. Here we present a different
way of handling that algebra, which is more compact
and covariant. All the results of the Appendix of BYG
are easily rederived from the present ones by specializing
to the various photon types.

At this point, it is useful to describe our strategy
briefly. We are attempting to do two rather different
calculations. One is to obtain one-loop contributions of
relative order a(m, /m ), which are necessarily form-
factor dependent. The other is to obtain contributions
of relative order a (m, /m ), for which form factors are
irrelevant. The difficulty is that the second type of con-
tribution is contained both in expressions where it
represents the leading order, and as corrections to
lower-order terms in which the form factors are impor-
tant. In the process of separating the contributions of
different orders, we must be careful not to make incom-
patible approximations which cause small terms to be
misidentified. Also, we want to incorporate the work of
BYG without redoing that calculation. The present co-
variant treatment leads to subcalculations that are quite
different from those of BYG, but the final results, for a
particular part of the physics, must be the same. There
is no simple way to make a term by term comparison of
the two calculations. Instead, we isolate a piece of the
present calculation which matches precisely the total
calculation of BYG, except for an overall factor, and
concentrate on the calculation of the additional contri-
butions due to the anomalous moment and the form-
factor dependence.

To handle the complication that integrals containing
the one-loop contributions also contain contributions of
relative order a (m, /m ), we invent the concept of a
"pure one-loop integral, " which is defined so that it
gives a result that is purely of relative order a(m, /m ).
A pure one-loop integral is obtained from an integral in-

volving two external loops and one internal loop by set-
ting the external momenta equal to zero inside the inter-
nal loop and neglecting y in D, and D . The external
integrals then converge independently of the internal
loop, and the remaining internal integration is indepen-
dent of y, so the result has a unique order in a. We em-
phasize that this is different, and perhaps cruder, than
the decoupling procedures introduced by BYG. If we
were doing a complete calculation from the beginning, it
might be better to use a different procedure, but the one
just suggested seems to be a useful expedient for present
purposes. The pure one-loop integrals are calculated in
Sec. V. Whenever a one-loop integral is encountered in

our analysis of the relative order-a (m, /m~) contribu-
tion, the pure one-loop integral is extracted and set
aside. The result is an expression which is not sensitive
to the form factors and which may be evaluated to give
a relative order-a (m, /m~) result. With this under-
standing, we may set the form factors equal to unity in
the present and following section. At the same time we
drop terms that would lead to a pure relative order-
(a /m )( m, /m~ )ln( m~ /m, ) contribution.

The following notation is used here. A general four-
momentum associated with a proton line is designated
by P and an index is appended to indicate a particular
value (f or i for the final or initial wave functions, re-
spectively, or a or b for internal four-momenta). The
four-momentum consists of a constant energy piece E"
and an integration variable four-momentum p:

+po p) . (3.1)

For a wave-function momentum, pa=0, of course. The
split of the total energy of the bound state between the
electron and the proton (E=E'+E") is arranged ac-
cording to (2.2b). As described by BYG, (2.8) is a con-
venient choice for the definition of the wave function. It
is less essential for present purposes, but we continue to
use it.

It is convenient to define a spinor factor

P'+ m

2'
p

(3.2a)

which occurs in wave functions and in rationalized pro-
ton propagators. As a factor in wave functions, this is
almost a projector. For example,

Pf Alp P +Pf
2 2 2 2

Qf Qf+ 2 Qf 2 Qf .4~ 4m' (3.2b)

1 1
QI)'p . 1'. . r.Q;

m +is gb m +i@
(3.3)

The last term in the second form is clearly negligible for
a characteristic wave-function momentum [which is

O(y)]. The reader may note that the expression QI
given here is not quite the same as the factor occurring
in (2.10a), but they are equivalent, to the accuracy of the
present calculation.

In order to analyze the proton factor we wish to intro-
duce the analogue of the Gordon reduction for a proton
with intermediate propagators. We will use this ap-
proach for one, two, or three photon attachments to the
proton line. Here we illustrate the technique with three
attachements; the application to the other cases is obvi-
ous. For the purposes of this initial discussion, we ig-
nore the proton's anomalous moment, keeping only the
first term on the right-hand side (RHS) of (2.1). We will
incorporate the effect of the proton's anomalous moment
later. The form factor F& does not appear explicitly in
our discussion since, for purposes of this section, it can
be set equal to unity; however, it can, in principle be in-
cluded in the photon factor. Using (3.2b) we may write
the proton factor as
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Pfp+P. p [~f ~.—rp]
2m 4m ' 2m

"+ —y (3.4)

The terms on the RHS are, in succession, a convection
I

which is to be taken between wave functions. Here p, v,
and cr are the photon polarization indices, and P, and

Pb are the four-momenta carried by the proton lines.

Since we have specified the four-momenta on the elec-
tron lines, the four-momenta on the internal proton lines

depend on the arrangement of photon lines.
Next it is convenient to reorganize the structure on

the left-hand side (LHS) of (3.3) using

vertex, a spin vertex, and (after one cancels a propaga-
tor) a seagull. For any of these terms, we write the next
(uncanceled} propagator on the right as

2m

7—m +is P —m +ip2
P

(3.5)

Then Q is rearranged with the next vertex as in (3.4).
Finally, a factor 1'; —m acting on the RHS wave func-
tion produces a term too small to be kept. The resulting
expression for the proton factor (to be put between wave
functions} is

Pb. +P;.+ ,'l~b -~; r.]

2m'

Pb—r.] 2m,

Pb —m +is

f + + [~f ~. r, ]

2m'

P.„+Pb„+,' [7. -
2m'

Pf +P + [~f ~. r, ]

2m'

2m'

P —m +if
2m' g ~~

P, —m +i@ 2m
g,„2m Pb +P + 2[&b —& r ]

2m~ Pb —m +i 2m'
(3.6)

K 2m'

(4m } P, m+ie-
2m

+[Pf P. rpl—~ P, —m, +is
2m'

+gpo, ', . [P. P~ r.]-P —m +i@

2m
.r.], , g.o

Pb —m +if
2m

. [P ~, r.]
Pb —m +is

2m' 2m' 2m
. [Pb —P; r.] —(4m, )'g~, ', . g~, ', . g o

Pb m + l E P —m +i@ Pb —m +i@
(3.7)

In the seagull terms (the last two terms) we have retained only the symmetric part of the product r r„.The antisym-
metric part vanishes under interchange of the two photon connections (however, that would not be true for non-
Abelian gauge theories). Having made a Gordon reduction, we now use the term "propagator" to refer to rational-
ized expressions of the form of the first factor on the RHS of (3.5), including the numerator 2m~.

Now we pick out the terms from (3.6) which contribute to the order of interest. A complete analysis of these terms
would lead to a simplified derivation of the results of Appendix B of BYG, possibly 1n a more compact form Here
our aim is only to identify the terms that were calculated by BYG, so that we can compare them with the anomalous
moment contributions. First let us describe the orders of magnitude of the various factors in terms of inverse powers
of m . (An inverse power of m implies a factor of one of the small quantities m, /m~ or rim~. ) The propagators
are of order mo [see (2.4)]. In a vertex, the zero component of the convection term has a piece 2E" which is of order
mo the remainder of the vertex is of order 1/m . A seagull factor is of order I/m~. The hyperfine structure must
contain at least one spin factor, and therefore the leading order is 1/m . Recoil corrections are of relative order
I/mz, ' terms of still higher order in 1/m are ignored in the present work [except in the discussion of the one-loop
contributions, which involve ln(m /m, )]. While most of the terms contributing to the hfs are explicit in (3.6), there is
also a recoil contribution from the three convection factors taken with the small components of both wave functions.
The latter gives a contribution of the required order only for all indices 0 and only for the ladder order of photon ex-
changes. Thus, to the order of interest, terms with zero, one, or two explicit spin factors contribute.

Now let us consider the effect of the proton's anomalous moment, which corresponds to the second term in (2.1).
Suppose we insert an anomalous-moment interaction in place of one of the pointlike vertices. We can again apply the
rearrangement corresponding to (3.4), but this time working out from the anomalous-moment vertex in both direc-
tions. To the order of interest, the terms that occur are all proportional to terms in (3.6), but there are some
differences in the way the form factors enter. The one-spin term is exactly the same as in (3.6) except that it has the
factor KF2~K in place of F, ~1 at the spin vertex. Thus, the combination of the one-spin term arising from the
anomalous moment interaction with the one-spin term from (3.6) produces the factor I+z, mentioned below (2.1), at
the one-spin vertex. Each two-spin term occurs twice, with an F, ~1 at one vertex and an F2~1 at the other. In
both cases, the nonspin vertices have the factor F, ~1. Finally, the term from the small components is missing.

We conclude that we can account for the contributions to the order of interest that arise from one anomalous-
moment interaction by multiplying (3.6) by (I+z) and adding to it
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The expression (3.6) (now multiplied by I+ir) incorporates all the three-photon contributions previously worked out
by BYG. (Recall that, in order to avoid double counting of contributions, we must subtract the two-photon-exchange
graphs and make some other minor adjustments. ) As just described, this means that we take over the complete one-
kernel result from BYG and delete the pure one-loop contributions.

Now let us return to the correction (3.7), which contains the terms arising from one anomalous moment insertion
that are not proportional to the calculation in BYG. Consider the proton factor that one obtains by summing over all

ways of inserting the photon lines into the proton leg, starting with the ladder order. The hfs content of the various
numerator terms is independent of the ordering of the spin factors, except that a minus sign appears if the spin factors
are permuted an odd number of times. (To see this, one may use the property that if all the y matrices are reversed in

order, one obtains the same hfs content except for a sign change. } For example, for the third term of (3.7) one finds

the set of propagator combinations

4m 4m 4m 4m

D ( p')D —( —p) D ( p)D—(p' p ——pf) D (p' p —p—f)D (p' —pf —p, ) D ( —p')D (p —p' —p, )

4m 4m

Dp(p pf pi )Dp(p p pi ) Dp(p pf pi )Dp(p pf pi )
(3.&)

Here we have made use of the abbreviated notation for the propagator denominators of (2.4).
Aside from places where relativistic single-loop integrals might result, we may approximate D by

D (q)=2E "qo+ie . (3.9)

For denominators that might occur in a single loop, we may neglect momenta external to that loop but otherwise keep
the complete expression. The six terms then simplify (using E"=mz) to

2m& 2m

D~( —p) Dp(p)
(3.10)

Repeating this procedure for the other terms in (3.7) we find that, to the order of interest, the contribution to the
muon factor is

K 2m& 2m
, g,o-,'[P' —P r.l ,'9 —is'; r.]-—2~i)5(po)

D

2m' 2m'
+g 0,'[pf —p', 7 ]-,'[P' —p, l'„](—2ai)5(p )

+g~,'[pf —p', y ]—,'[p —gf, , y ]( —2mi)5(po —po) 2ni5(p—o)—
po+'e

g Og~g olflfJf; ( —2iri ) 5(p 0 )5(po ) (3.11)

Here, and in all subsequent discussions, we assume that the proton factor is to be evaluated between large com-
ponents. That is, there is an implicit projector (I+yo)/2 on either side of the proton factor. In the third term of
(3.11) there is no one-loop contribution, so we have kept only the leading-order approximation for the denominators.

Finally, we consider the contribution from two anomalous-moment interactions. Given our analysis of the contri-
bution from one anomalous-moment interaction, this is very easy to work out. We do not include some pure one-loop
contributions which have no decoupling corrections; these are incorporated in (5.5). Then, a factor of g between
anomalous-moment interactions may be replaced by

&+ro
A+=

2
(3.12)

The net effect of this is to insert a factor ( I+«+ ) between the spin factors in the first three terms in (3.11). Thus,
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etc. It proves to be convenient to treat the A+ and A terms separately. We treat the last term of (3.11) together
with the A terms.

In summary, we find that the contributions arising from one or two anomalous-moment insertions lead to terms
that are just ~ times the BYG result, plus new terms, to be calculated, that correspond to the proton factors

&p(A+ '=
& gpo 2

lf' Py.—]A+ ,' lP P-';, y.—]( —2~t )5(po )

2771
p 2m

+g O2[Pf P', y—p]&, ,'[P' ——P',y„](—2~i)5(Po)
Dp( —p') Dp(p')

and

+g~ '[pf p'—, y ]& —'[p —p';, y ]( 2t—ri )5(po —po) 2m—i5(po)—2 P +2 i~ a Pp+l E'
(3.14a)

, g« ,'9 '-P,—y, ]A ,'[X—p„—y. ]( 2~—t )5(po)
4m,' Dp —p D p

2m' 2m
+g o '[Pf P' y-, ]&—,'[1(' 1i, y—.]( ——2~i)5(po)

+g~zlg f P' yp]A ,'[P P—;,y.—]( 2trt)5—(P' Po) ——27rt'5(P )—
Pp+l E'

gpogvog QPffi( 2~t )'5(po )5(po ) (3.14b)

The contributions that arise from these proton factors
are calculated in Sec. IV.

IV. EVALUATION
OF NEW RECOIL CONTRIBUTIONS

OF RELATIVE ORDER a

Our aim in this section is to work out contributions of
O(a m, /m ) that arise from (3.14a) and (3.14b). As de-
scribed in Sec. III, this effort is complicated by the fact
that, in some cases, the contributions of the order of in-
terest are embedded in one-loop integrals that also con-
tain larger contributions, such as the first term of (1.10).
There we invented the procedure, which we apply in this
section, of subtracting a pure one-loop contribution that
precisely removes the recoil contribution of relative or-
der u.

We report all results as multiples of (a m, /mp )Ez
[where the factor ( I+tt) is included in Ez]. As much as
possible we make use of results previously obtained by
BYG. In addition to specific contributions to the hfs,
certain frequently occurring integrals were worked out
and tabulated by BYG. They are called K„(. ),
where the argument consists of a numerator polynomial
in spatial momentum and y . The subscript n is used to
distinguish various forms of the pp and pp dependence in
the integrands; these forms are given in the Appendix.
In the discussion of this section, we try to provide
enough detail so that the interested reader can follow the
general outlines of the argument without referring to the
BYG work. Of course, to check the complete result, one

A. A+ terms

Because of the A+'s, for each term in (3.14a) all of the

y matrices in both commutators must be spatial. Fol-
lowing the conventions of the previous paragraph, we
note that all these terms have an overall factor of ~.

I. The erst two terms of (3.14o)

The first two terms of (3.14a) give equal contributions.
The subtraction kernel involving two photons cancels
one of them. Thus, we need consider only the first term.
The accompanying electron factor (to adequate accura-
cy) is

(2m, +p')y„(m,+yom, +p')y [I+p', /(2m, )]
D, (p')D, (p)

(4.1)

where v and o. are spatial indices. Here the spin depen-
dence of the initial wave function is shown explicitly.
Throughout the remainder of the paper, large com-
ponent projectors [(1+yo)/2) are implied on either side

must make use of the detailed calculations given by
BYG. We use the phrase "to adequate accuracy" to in-
dicate that we have taken approximations such as
E'=m„which follow from the smallness of n, and also
to indicate that we have dropped certain numerator
terms whose momentum dependence is such that they
cannot contribute to the order of interest. (The Appen-
dix of BYG contains a discussion of methods for es-
timating orders of magnitude. )
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3 1 3—ln
2 2a 4

(4.2)

of the electron factor.
Let us first consider the part of (4.1} that contains no

factor po. Comparing with BYG we see that the work
of computing this contribution has already been carried
out. The relevant starting point is (4.16a) of BYG, in

which the "spin-spin" combination has been selected in

the muon factor, and the term containing the po part of
P has been omitted in the electron factor. The result of
that lengthy calculation is contained in (4.19c) of BYG;
it yields the coefficient

Next consider the part of (4.1) containing the factor
po. Rearranging it (using E' =m, ) we obtain

—2m, por.r. [ —D, (p»)+(p —r )]r.r.
D, (p')D, (p) D, (p')D, (p)

(4.3)

The D, (p) term in the numerator does not contribute to
the hyperfine splitting because of symmetry (consider the
transformation po~ —po and neglect terms of higher or-
der in 1/m~). After doing the necessary angular averag-
ing, we find that the contribution arising from the prod-
uct of the first term of (3.14a) with (4.3) is given by the
integral

4na(8 . iry)
2 d p'd p d p; (p —p') ~ (p —p;)(p —y ) 2m 2m

2m —2m i p' +y p' —p +&& D p p —p, +&'p p +y D —p Q p

Here, we have carried out the pf integration. The
denominator (p; +y } arises from the initial (nonrela-
tivistic) ground-state wave function.

In order to evaluate (4.4), it is necessary to consider
various numerator combinations individually. The terms
in the numerator of (4 4) involving p' and/or p; are rela-
tively straightforward to work out. For the term
—p (p'+p; ) we use the symmetry of the integrand
under p,.~p' to obtain —2p p'. Since the resulting in-
tegral has no one-loop contribution [i.e.,
O(a(m, /mz)ln(m~/m, )}],we may use (3.9) to simplify
the last factor in (4.4), which becomes

2—2mi5(po )—
pa+i 6'

(Incidentally, this expression manifests the Caswell-

Lepage cancellation: in the high-momentum region for
the electron, the remaining factors of the integrand be-
come symmetric in po, and the two terms cancel. ) Next
the p, integration can be "decoupled" by making use of
the substitution (p —p;) +ie~p y+ie —It is a p. «-
ticular feature of this substitution that the corrections to
it are of higher order in a. [This may be seen most easi-

ly by noting that the corrections involve a three-loop in-

tegral. The 5-function piece of the last factor of (4.4}
yields zero by cancellation, and the remainder can be
seen by power counting to be of higher order. ] The in-

tegration over p; yields a factor (2n. ) (8ny) '. Then t.he

po part of p —y leads to the integral 4K7(p p'). The
remaining part leads to the integral 2K, (p p'(p +y )),
so that the total contribution is

(4.6)

Finally, the p2 term of (4.4) is the most complicated
since it is dominated by a one-loop contribution which
contains terms that are larger [relative order a(m, /mr )]
than those we are trying to extract. We follow the pro-
cedure described at the beginning of this section, ignor-
ing the proton's structure and subtracting the relative
order-a(m, /m ) terms. We describe the main features
of the calculation here briefly. First we decouple the
wave functions to obtain a one-loop integral by using the
substitution described above for both photon propaga-
tors. Only terms containing at most one decoupling
correction are of the order of importance. The terms
with exactly one decoupling correction give

2»K, ((p' —2p p' —y )p )= —»3 . (4.7)

The one-loop contribution (with no decoupling correc-
tion) is contained in

21Ta J d p p
—(2n) i (p' y')D, (p)—

2m& 2m

Dp ( —p) Dp (p)

This is evaluated to sufficient accuracy and the pure rela-
tive order-a recoil correction is removed, leaving the re-
sidual piece of the order of interest. It turns out to be

—K4 (4.9)

The total contribution from the first two terms of
(3.14a) is

»[4K, (p.p')+2K, (p p'(p'+ y'))]=» —ln + 1
2(x C((3.14a)—I, II)=» —ln —1

1 1

2 2(x
(4.10)

(4.&)

For the p'-p; term, we must take the nonrelativistic ap-
proximation to obtain a contribution of the order of in-
terest. That is, we replace the last factor in (4.4} by
—2n.i5(po). The resulting expression is proportional to
the three-loop integral I, defined by BYE and gives the
contribution

2. The third term of (3.14a)

Now we turn to the third term from (3.14a). As was
the case with the first term, a large part of the work of
calculating this term, which is rather lengthy, has al-
ready been carried out by BYG. The electron factor
which accompanies the third term of (3.14a) is
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[1+gff /(2m, )]r (m, +rom, +gf')ro(m, +rom, +P)r [I+/;/(2m, )]

D, (p')D, (p)
(4.11)

Setting aside the pp pp piece of the electron factor temporarily, we find that the resulting integral is very similar to the
spin-spin piece of the term VOVof BYG. The po, po dependence of the third term of (3.14a) is slightly difFerent than
in the muon factor of VOV. The net effect of this difference is to replace K, by I( 3, which changes nonlogarithmic
terms, but does not alter the coefficient of in[1/(2a)]. The four-loop integral is identical to the one in BYG since it
arises from the 5(po)5(po) part of the proton factor. The net result is

5 1—ln
4 2a

1 —ln2 (4.12}

There remains the additional contribution from the term in the electron factor that is proportional to popo. For it,
we may neglect the numerator dependence on pf and p; and decouple the wave-function integrations as before, with

negligible decoupling corrections. The resulting contribution is

a[2K, (p' p)]= —
—,', ir .

The total contribution (aside from the one-loop part) from the third term of (3.14a) is then

(4.13)

C((3.14a) —III }=a —ln —In2 ——5 1 1

4 2a 8
(4.14)

B. A terms

Between Proton large comPonent Projectors, each commutator in (3.14b) must contain one sPatial r and one ro.
This leads to three different types of contributions.

1. No indices spatial

First consider the contribution where all the photon indices are 0. Since there is no possibility of one-loop contri-
butions, the proton factor simplifies to

~gpoRmg~o

4m~(1+a. )
PfP'( 2iri )5—(p—o ) 2ni 5(p o

—)—
pp+ie

2—PP, ( 2iri )—5(po ) 2~i 5(po )——
pp+l 6'

4mi 5(po ) 4ni 5(p o ) —4m 5(po —
p o )—P'P ( 2n.i) —5(po)5(po)+, + . +

pp+ie pp+l E'

Terms which do not contribute to the order of interest have been discarded. When the two-photon subtraction is
made, the first two terms are canceled. With any term, the electron factor is (to sufficient accuracy)

(4.15)

(pfp" +p"p+—pp; }

D, (p')D, (p)
(4.16)

On performing the angular integrations, one finds that the first and last terms of the electron factor do not contribute
to the hfs when paired with the last term of (4.15). (This is easily seen, for example, by noting that when the initial
wave-function integration is carried out, the last term of the electron factor is transformed according to
Pgf; ~}ifr p=' —p, which has no spin dependence. ) The result is precisely OOO contribution of BYG, to be multiplied

by ~, which gives the coefficient

C((3. 14b) —no spatial) = —ln
1 1

1+v 4 2a
3

8
(4.17}

Z. One index spatial

The contribution from (3.14b) with one photon index spatial is

2m' 2m'
g o( 2vri)5(po')po—[g (P' —P)r +g o(P —P, }r„]D (

—
D )4m (I+a)

2m' 217lp

+g.o( 2~~')5(po }po[g,o(P'f P')r. +g ~—(P' P)r,]— —

+g&4~'5(po po)[gpo(f f P }r~+—g~o(P Pl)rpl—(4. 18)
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The two-photon subtraction kernel eliminates the two terms proportional to 5(po).
Of the two terms containing a factor 5(p 0 ) we consider the first term and double the result in order to incorporate

the contribution of the second term. In the electron factor, the relevant terms are

2~, (P P, )r—.+poV' P; )r—.
D, (p')D, (p)

(4.19)

After angular averaging, the first term from the electron factor, combined with the first 5(po) term from the proton
factor, yields the numerator form (p —p) ~ (p —p, ). This may be rearranged, using symmetry, to obtain an equivalent
expression 2p p' —p, where terms of higher order have been dropped. The evaluation of the integral for the 2p' p
term is straightforward and gives —8K»(p' p). The —p term causes a problem because it leads to contributions
that include a one-loop piece. We can rewrite the factor of po by using

D, (p) —(p' —y')
Po=

2me
(4.20)

The D, (p) term leads to an integrand that is odd in p, so it does not contribute. For the —(p —y ) term, there is a
decoupled one-loop integral that has a residue of interest, which together with the decoupling correction gives —3.
The total contribution from the 5(po ) term of the proton factor and the first term of the electron factor is

—21n —1
1

2' (4.21)

The first 5(po) term from the proton factor with the second term of the electron factor yields a contribution that is
straightforward to compute. For it we use p' —p' p+p p; —p' p; ='p' to obtain the integral —4K7(p' },yielding

[—4K7(p' )]=1+v 1+v 2
(4.22)

Next consider the 5(po —po) terms of (4.18). We may calculate either term and double the result. Because of the
structure of the integral, we may neglect the external momenta in the numerator and decouple the wave functions
with negligible corrections, as previously described. To sufficient accuracy, the electron factor accompanying the first
term is

2m, P~.+p.V'+P)}.
D, (p')D, (p) (4.23)

The first term of the electron factor yields the integral 4Ki, (p' p) and the second yields the integral 4K9(p' +p' p),
for a total contribution of

1+v Kll(P P + K9(P +P 'P)) 1+v
4 ln2 ——5

2
(4.24)

The total contribution arising from (4. 18) is

C((3.14b) —one spatial }= K

1+v
—2 ln +4 ln2 —3

1

2(x
(4.25)

3. Two indices spatial

In the case where two photon indices are spatial, (3.14b) reduces to

K 2m 2m

2(1+ )
P ~ D ( ) D ( }

g ( 2~i)5( '—)

2m'
+g oy y ( —27Ti)6(po)po

D~( —p')
2m'

+g~z,r.4~~&(J 0
—I o)J 0

Dp(P ') (4.26)
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P'r Pr. +r Pr.i, 2m, p—or.r.
D, (p)

(4.27)

The first two terms of the electron factor yield the same
contribution, so we calculate the first one and double the
result. We can decouple the p, and pf integrations with

negligible corrections as before to obtain 4Ks(p' p),
which yields

1
[4Ks(p' p)]=-

1+v 1+v 8
(4.28)

For the last term of the electron factor we use (4.20) to
rewrite the factor po. As before, the first term on the
RHS of (4.20) gives an integrand that is odd in po, so its
contribution vanishes. For the second term on the RHS
of (4.20) we follow our standard decoupling procedure
and then subtract the pure relative order-a contribution
from the resulting integral. The remainder does not
contain a piece of the order of interest. The decoupling
correction yields 12Ks(p —2p p' —r ) and the contribu-
tion

K
[12Ks(p —2p'p r)1—=— K 3

1+v 4
(4.29)

The last term of the proton factor of (4.26) goes with
the electron factor

Again, the third term contains no one-loop contributions
of relative order a, so we have taken the usual approxi-
mations for the denominators. Either of the first two
main terms is canceled by the two-photon subtraction.
Let us discard the second one.

The electron factor associated with the first term of
(4.26) is

pure one-loop contributions and to compute the associat-
ed form-factor corrections. As we shall demonstrate
below, the pure one-loop integrals contain all of the
structure dependence that is relevant at the order of
current interest.

Experimental results are usually expressed in terms of
the charge and magnetic moment distributions GE(q )

and GM(q ). These latter quantities refer more closely
to the physical concepts of charge and current distribu-
tions, which are given as the three-dimensional Fourier
transforms of these form factors. The precise definitions
of Gz and G~ in terms of F

&
and F2 are

G~ ——F)+KF2, G~ ——F)+ 2]&F2,
4m

(5.1a)

The inverse of this is

F(q ) 1-q /A— (5.2)

for q small and spacelike, where A is the scale of the
proton's structure, which is of the order of m .

Any proton form factor can be rearranged into four
terms:

F[(pi pz) ]=1+[—F(pi ) —1]+[F(pz)—1]

GE —[q /(4m )]G~
1 —[q /(4m )]

GM (5.1b)

1 —[q /(4m~)]

The F;(q ) are analytic functions of q except for branch
cuts along the real axis for q &4m, with F;(0)=1.
Hence,

rV'I) r
D, (p')D, (p)

(4.30)

+[F((p~ —pz) } F(p~) F(p—z)+1] . —

K K 3

1+v [6K,O
—6K9(p' p)]= 1+]c 8

The total contribution from (4.26) is

1C((3. 14b) —two spatial) =-
1+v 2

(4.31)

(4.32)

V. DETAILED ANALYSIS
OF THE STRUCTURE-DEPENDENT CONTRIBUTIONS

In this section we compute the structure-dependent
contributions to the hydrogen hfs that do not involve
multiphoton vertices, keeping terms of the order of
current interest. In the preceding sections we set aside
the pure one-loop integrals, except for their subleading
parts, and concentrated on the terms that are insensitive
to the proton's structure. Here we wish to recover the

It yields a spin factor

r.r.r"P'Pr = ', ~, ~, ( -3)(po p—
'

p) . —

After decoupling the p, and pf integrations with negligi-

ble corrections, we obtain 6K,O
—6K9(p' p) and the con-

tribution

(5.3)

The first term of (5.3) corresponds to neglecting the
effects of form factors. The remaining three terms we
call "form-factor corrections. " The last term vanishes if
either p& or pz is very small; i.e., it necessarily involves
two adjacent loops of very high momentum ( ~A). The
second (third) term vanishes if p, (pz) is small. In some
cases (e.g. , a contribution of second order in the anoma-
lous moment within a single loop), this rearrangement
cannot be made because the separate integrals would
diverge. Then one would study a similar form where
only the momentum external to the loop would be reor-
ganized in the manner of (5.3).

As a prelude to the actual computation of the effect of
the form-factor corrections, let us identify the contribu-
tions to the hfs for which they might be of importance.
Consider contributions which arise from Figs. 3(a) and
3(b). We wish to retain only those contributions that are
required in order to account, to sufficient accuracy, for
the deviations of the form factors from their static
values. To this end, it is useful to recall the general
properties of various types of terms resulting from the
algebraic rearrangements given by BYG and in Sec. III.
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The first step in those rearrangements was to drop terms
of too high an order in a and/or (m, /m ). Obviously,
there is no way that the momentum dependence of the
form factors can make these terms important, so we con-
tinue to drop them. Next let us consider the structure of
the remaining contributions. In general, the three-
photon kernels lead to four-loop integrals: two internal
loops plus two wave-function integrations. If we are to
obtain a contribution to the orders of interest (i.e., rela-
tive orders 1, a, or a ), then the loop integrations must
yield at least two factors of 1/y. These factors of 1/y
can arise from individual loop integrations that converge
independently or from coupled loop integrations. In ei-

ther case, nonrelativistic loop momenta (of order y) are
involved and the insertion of a form-factor correction
into such a loop results in the replacement of a factor
1/y by a factor of order 1/A. Except in conjunction
with the leading-order term, where all the loops give fac-
tors 1/y, such corrections are negligible. Even in the
case of the leading-order term, it can be seen that the
form-factor corrections can involve at most one loop ad-

jacent to the V photon. This result follows from power
counting and from the form of the structure functions at
small momentum, as given in (5.2). Of course, important
contributions can also arise from regions of integration
in which one or two loop momenta are relativistic with

respect to the electron mass. Because of the two-photon
subtraction kernel, such relativistic loops must be inter-
nal loops. In the case of a single relativistic loop, the in-

sertion of a form-factor correction produces a contribu-
tion of the order of interest. If two relativistic loops
occur, then, because of the Caswell-Lepage cancellation„
the characteristic momenta must be of order m, or less.
In the absence of form factors, such a two-loop integra-
tion gives a contribution of relative order a (m, /m~).
The insertion of a form-factor correction into one of the
relativistic loops leads to a suppression factor m, /A,
and the resulting contribution is negligible.

We conclude that, to the order of present interest, one
need consider form-factor corrections only in the case of
the one-loop contributions to the hfs. All contributions
through one loop are represented diagramatically in Fig.
4. They may be derived either by making suitable ap-
proximations on the terms arising from Figs. 3(a) and
3(b), or by an ab initio analysis. The latter approach is
probably more transparent. Starting from Fig. 4 we find
that a further small simplification is necessary in order
to obtain a convenient form. Our objective is to omit
the form-factor dependence occurring in the wave func-

FIG. 4. The photon-exchange kernels that contribute to the

proton-structure corrections in order EFam, /m~, excluding

the two-photon-proton vertex, which is not treated in this pa-

per.

Fg((p —p, ) )Fb((p —pf ) )~Fg(p )Fb(p ), (5.4)

where the form factors F, and FI, may be F, or F2, as
appropriate.

The proton factor can be worked out using the
methods of Sec. II. We keep only terms that can con-
tribute in leading and one-loop order and find the result

tions, while retaining the relevant physics. By the argu-
ments of the preceding paragraph, this may be done im-
mediately with the part of the kernel producing terms of
relative order a(m, /mz) since a form-factor correction
in the wave-function loop produces a further factor of
a(m, /A). Terms of relative order 1 arise only from a
ladder kernel in which one photon is an 0 photon
without an anomalous-moment interaction and the other
photon is a V photon. A form-factor correction in the
wave-function loop that is adjacent to the 0 photon pro-
duces a correction of relative order a (m, /A ) because,
as may be seen by power counting, two inverse powers
of y are eliminated. The same is true for the contribu-
tion of the last term of (5.3) taken in conjunction with
the one-photon subtraction. Finally, form-factor correc-
tions in the wave-function loop next to a V photon can-
cel between the one-loop kernel and the one-photon sub-
traction kernel.

Thus, ignoring terms of relative order 10 and small-
er, one may use the following prescription to compute
the structure-dependent corrections to the hfs: treat the
form factor dependence inside one-loop kernels, ignoring
dependence on the wave-function momentum, and sub-
tract EF from the result. Ifp is the loop momentum and

p; and pf are the wave-function momenta, then

1 1

Dp( —P) Dp(P)
+ (gm( P+p )y~+g oy ( gf+—

graf )] F, +IAAF, F2+~ z F2 + 2
lr F2

4m 4m

1 1

D~( —p) D~(p)

r.r. . . r PA+fr. . .
p F, +2~F,F, — ~F, (5.5)

where the arguments of all F; are p . Here we have dropped terms that do not give a contribution to the hfs and cer-
tain terms which are too small for our present purposes. For an hfs contribution, a term must have two or four y ma-
trices with spatial indices.

To relate this to the preceding sections we identify the terms of (5.5) which correspond either to terms of BYG with
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the I+z factor included or to those terms treated in Sec. IV. In the first line of (5.5) the combination of F i +xFi F2,
with F; ~1, corresponds to the main part of VO of BYG. The part of the first term of the second line that contains
the same combination corresponds to the main piece of VV of BYG. Hence, except for form-factor dependence, these
contributions were worked out completely by BYG, including decoupling corrections. The remaining KF]F2 part of
the first term of the second line is partly in (3.14a) and partly in (3.14b), and the corresponding decoupling corrections
are described in Sec. IV. The a terms in the first line are nominally higher-order recoil contributions and have no
correspondence to terms of BYG or of Sec. IV. They have no decoupling corrections of the order of interest. The
last term of the second line occurs in (3.14a) and its decoupling correction is also described in Sec. IV. We have to
treat the leading-order contribution in (5.5) accurately enough to obtain the Zemach correction. Other terms can be
approximated by their pure one-loop parts.

Various options exist for rearranging this expression into a suitable form for analytic/numerical evaluation of the
corrections due to form factors. In the following, we freely drop terms which do not contribute to the form-factor
corrections to the order of interest. We also try to arrange expressions so as to be able to make use of results already
found by BYG. As a first step we rewrite

r PA+17'. =p'r.r.+par Px.
Then, using the identity

(5.6)

1 1

D~( —p) D~(p)
p

2

+ + 1

2m~ 2m D~( —p) D (p)
(5.7)

for the terms containing the po factor, we may rearrange (5.5) to obtain

1 1+ D t [g~( —P+P'; )y +g oy, ( —P+Pf )]FiGM ]

1+
Dp( —p)

1

D~(p)

7 vVcr 2 2 2K2

p GM )'g—r, F2 .
2m 4m

(5.&)

It is easy to work out the electron factor to sufficient accuracy for our present purposes. The result is

1
[g~V P; )r.+g.or—.V Pf) Por.r.—]D, p

Then, contracting the electron factor into the proton factor and extracting the hfs contribution, we obtain

(5.9)

7, XP~=' —3(o, o~) —[(p —p;)'+(p —pf)'] + F, (p')GM(p )

2m D~( —p)
[GM(p )] + ~(2p +po) a [F2(p )]

D~ p D, p 2m D, p

(5.10)

This expression contains three main terms. Notice that the last term does not have a D denominator. If the form
factors are replaced by their static values, then this term leads to a logarithmic divergence; it also yields a logarithmic
dependence on the electron mass. All other terms are convergent even without the intervention of a form factor. For
practical calculations, it seems convenient to arrange the work so that terms containing a factor In(m~/m, ) can be
calculated analytically; the remainder, which is then much less sensitive to low-momentum behavior, may be evalu-
ated numerically. To this end, we make the rearrangement in the last term of (5.10):

1

D, (p')
1 1 1

D, (p') D~(p') D~(p')
(5.11)

The first piece of this expression leads to a ln(m /m, ) contribution in the absence of form-factor dependence, and the
second piece leads to a contribution known as "correction No. 1."

The first main term of (5.10) contains, among other things, the Zemach correction. Since it is conventional to write
the Zemach correction in terms of the form-factor combination Gz GM, we arrange the form factor for this term as
follows:

F]GM ——GEGM —
2 vF2GM .

4m
(5.12)
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For the contribution to the hfs that corresponds to the first term in (5.12), we set up the integral in a convenient form

by substituting an identity from Appendix B of BYG:

1
—2m i 5(po ) Vl ~ PPl

+
Dl, ( —p) Dz(p) D, (p) 2(m, +mz)( —p —y ) m —m, D, (p) Dz(p) po+ie

(5.13)

Here we have made use of the symmetry properties of the integrand under po~ —po. For the contribution to the hfs
that corresponds to the second term of (S.12) we substitute the identity

—m —m

D (p) D ( —p) Dp(p) m~ m,2 D (p) D (p)

In treating the second main term of (5.10) we make use of yet another identity from Appendix B of BYG:

(5.14)

D~ ( —p)
po mp

D, (p) D, (p) m' —m,' D, (p) D, (p)
(5. 1 5)

Taking into account all of these arrangements of (5.10) we now write the contribution of the one-loop kernel to the
hfs:

Ptl Pl d' 4p
bE(one loop) ='EF

I+z m —m, —(2m) i (p y+i—e)

X (m —m, )( 2ni )5—(po )G~ (p )GM (p )

2p2 me

po+i e D, (p)
G~(p')GM(p')

D p

+ P
2

Plp

m m
+ ~F (p')GM(p"'

1 1 2 2+-,p —
D ( )+D ( )

[GM(p»)]
ep pp

+-,'(2p'+po)
D, p

~2[F (p 2)]2
Dp p

+-'(2p~+po~) a [F2(p )]
1

D~ (p)
(5.16)

(For uniformity, we have taken the liberty of replacing
some of the denominators m~ with m~ —m, .) Here we
have decoupled the wave-function integrations in the fol-
lowing manner:

(p —p;)'

(P —P ) +le P —7' +E e
(5.17a)

1 1

(p —p ) p r+ie—2 2 2
(5.17b)

with similar expressions for p, ~pf. The corrections to
these decoupling formulas can contribute in relative
order-a (m, /m ). Indeed, in our previous discussion of
the relative order —a (m, jm ) contributions, we re-
tained such decoupling corrections, although the details
of the decoupling procedure did not correspond exactly
to the method used here. In this section, we are interest-
ed in computing the effects that arise from the difference

I

between the form factors and their static values. How-
ever, the decoupling corrections contribute to the order
of interest only when the momenta in the integrals are
small; that is, they are insensitive to the proton's struc-
ture. Thus, in the terms corresponding to the form-
factor corrections, the decoupling corrections lead to
contributions that are suppressed by a factor m, /A rela-
tive to the order of interest. Hence, we drop the decou-
pling corrections in this section.

Equation (5.16) contains six main terms. The first
term, which is proportional to 5{po), contains twice the
Fermi splitting plus the Zernach correction. The second
term corresponds to one photon index spatial and one
photon index temporal. It was worked out analytically

by BYG for the case of constant form factors. Follow-

ing BYG, we call this term "VO." The third term of
(S.16) contains a correction to VO due to the difference
between F] and Gz, which we call "correction No. 2."
In the older work such terms were simply dropped
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(i.e., the difference between F, and GE was overlooked).
They appeared to be a part of the corrections of higher
order in the recoil, which were very difficult to incorpo-
rate consistently at that time. Actually, as will be seen,
correction No. 2 is not unimportant at the present level
of comparison between theory and experiment. The
fourth term of (5.16) corresponds to both indices spatial
for the exchanged photons. It was also worked out
analytically by BYG for the case of constant form fac-
tors. Following BYG, we call it "VV." The fifth term
of (5.16) arises from two photon indices spatial or one
spatial and one temporal. We denote it by "the ~
correction. " A correction to this term, which contains
no m, dependence, is given in the sixth term of (5.16),
which is called "correction No. 1."

Zemach correction. W'e now describe the computation
of the Zemach correction in the present formalism. We
focus on the first main term of (5.16). If the form factors

I

b,E(Zemach) =EF5 (Zemach)

are replaced by their static values, the result is twice the
leading contribution EF to the hyperfine splitting. One
of these contributions of EF is canceled by the contribu-
tion from one photon subtraction kernel; we set aside
the other, since it does not depend on the proton's struc-
ture. The remaining contribution to the hfs is

bE(Zemach) =EF
2(xm 1

2
( 2+ 2)2

d p

GE( —P )GM( —P )
X 1+v

(5.18)

The y dependence is actually negligible, but we retain it
temporarily as a limiting procedure. Then we may write
the expression in terms of the three-dimensional Fourier
transforms of the form factors to obtain

~PE( 2 )PM( 3 ) ~( 2)~ 3r

—r~
1

=2am„EE lim f d r, d r2d r35(r, +r2+r3)

=EF( 2am„—) f d'r2d'r3
~
r2+r3

~
PE(r2)pM(r3) =EF( 2am„R~—) . (5.19)

This is the usual result. Here pz and pM are normalized
to unity upon spatial integration, and R is the mean ra-
dius of their convolution. As an illustration, and a point
of reference for future work, (5.19) may be evaluated us-

ing a common parametrization of these form factors, ex-
perimentally valid in the spacelike region (q &0), given
by

GM
GE ——

1+& A —q —i@
(5.20)

The relationship between GE and GM is called "form-
factor scaling, " and this particular parametrization of
the experimental data is known as the "dipole form. "
Fits to the experimental data ' give the value
A=(0. 898+0.013)m . We have introduced the ie in-
the denominator of (5.20) to provide the correct analyti-
city in the timelike region; note, however, that the func-
tions F, and F2 have spurious poles at q =4m . As we
mentioned previously, the exact form factors have
branch cuts for 4m 2 &q . We use this approximate
form only for purposes of illustration; it was used by
Grotch and Yennie, among others, so we may make
comparisons with that earlier work. Iddings and Platz-
man used the form on the RHS of (5.20) to represent
F, and F2. In practice, we use the analytic properties of
the form factors to convert the necessary integrals to
ones which depend only on knowledge of the form fac-
tors in the spacelike (i.e., q &0) region. This gives the
spatial distributions

3

pE(r) pM(r)
8m

With this choice, one finds R~ =35/(8A), giving a
correction 5& (Zemach) = ( —38.72+0. 56) ppm for
A=(0. 898+0.013)m~. The error that we quote here
corresponds only to the uncertainty in the determination
of A and does not reflect any systematic errors that
might arise from the inadequacy of the one-parameter
dipole fit. The variations of the contributions from
different terms in (5.16) with respect to changes in A are
highly correlated. In order to display these correlations,
here, and in the remainder of this section, we adopt the
convention that the upper sign in the error term corre-
sponds to a positive change in A.

Now we turn to a description of the various remaining
contributions from (5.16). It will turn out that their net
contribution is much smaller than that of the Zemach
correction; but, individually, they are quite comparable.
The small net contribution seems to be due purely to a
fortuitous compensation. It is not our aim to make a
new precision calculation here. Rather, we try to
present the method in a convenient form for application
to experimentally determined form factors. In each
case, the discussion follows a fixed pattern: the complete
four-momentum integral for the contribution is present-
ed first. Then, assuming the usual analyticity of the
form factors, the po contour is rotated and a form that is
more appropriate to numerical evaluation is presented.
Next, if the integral can be evaluated analytically for
constant form factors, the result is given. Finally, the
contribution including the effect of the dipole form fac-
tors (5.20) is given.

VO contribution The secon.d term of (5.16) gives
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—32m'umemp d p p me
bE( VO) =EF

m m—, —(2m } i (po+ie)(p~~ie) D, (p) D~(p)

Gx(p')GM(p')

1+v
(5.21)

Now we rotate the po contour to the imaginary axis and call the new (real) variable g. The only pole that requires

special attention is the one from the denominator po+ie, which becomes i (/+i') . The other integrand factors are

modified as follows:

and

1 1

p +i@ p+(
(5.22a)

p—S—i 2—m, S

D, (p} (p'+g')'+4m, 'g'
(5.22b)

with a similar expression for D . With a factor of g in the numerator, the pole at (=0 is canceled. With no such
numerator factor of g, the integrand is even in g except for the pole, and we may substitute ((+ie) ~ im—5(g) Fi.-

nally, it turns out that the effect of the 5 function can be simulated by setting (=0 everywhere except in the electron
(or proton} denominator, for which one makes the replacement

n5(g) 2m

(p +g) +4m g [(p ) +4m2$2]p2
(5.23)

The advantage of this manipulation is that it improves the accuracy of the numerical integrations by producing
point-wise cancellations in certain regions which would otherwise be singular. The result of all this is that (5.21) be-
comes

—8am, m
bE(VO)=EF J dgdp p

m (mz —m, )

2m

(p 2+g2)2+ 4 2(2

2m

(p 2)2+4m 2(2

2mp GE( p g)GM(—p g )

(p'+ g')'+ 4m~ (' (p '+ g')'(1+ 1~)

2m/ GE( —p')GM( —p')

(p ) +4m&( p (1+a)
(5.24)

If the form factors are replaced with their static values, then the integral is easily evaluated analytically, with the re-
sult

a memp mpbE( VO no structure) =EF( —6)— ln
m2 m2 m

p e

(5.25)

The size of this correction is —57.04 ppm. The change due to the form factor is most easily computed by making the
replacement

GE GM GE GM —1.1+a' 1+K
(5.26)

The resulting integral is no longer sensitive to m„making its evaluation quite straightforward using, for example,
Chebyshev integration or an adaptive Monte Carlo technique such as vEGAS (Ref. 39}. Using (5.20) we find that the
correction is reduced in size to ( —43.98+0.09) ppm. The uncertainty in this correction is relatively small in compar-
ison with the similar uncertainty in the Zemach correction. The reason is that the dependence of the VO correction
on A is mainly logarithmic. That is, the approximate effect of the form factor is to replace m by A in the argument
of the logarithm in (5.25).

VV contribution The fourth term. of (5.16) gives the contribution

24m+me mp d 4
bE( VV) =EF

m —m, —(2m. ) i p2+iE
lGM(p'))'

D, (p) Dz(p) 1+a.+ (5.27)

As before, we rotate the po contour to the imaginary axis:

6am, m 1 1bE( VV) =EF dgdp p
m. (m —m, ) (p2+g2)2+4m 2(2 (

2 p$+2)2+4m 2(2
(5.28)

This integral is also easily evaluated analytically with constant form factors; the result is
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memp mp
QE( VV no structure)=EF[3(1+K)]

77 m2 m2 m
(5.29)

This reference integral gives a correction of 79.66 ppm. The change due to the form factor is computed by subtract-
ing (1+x.) from the last factor of (5.28). Again, the resulting integral is easily evaluated by numerical techniques. Us-
ing (5.20), we find that this correction becomes (70.05+0. 10) ppm.

x contribution T.he fifth term of (5.16) gives

8m+m, m d4p 2p +po 1hE(x )=EF
2 2 4 2 2

— [F2(p )]
m2 m—, (—2n) i (p +i@) D, (p) D~(p) 1+v

(5.30)

After we rotate the po contour, the integral becomes

—2amem ~ 3hE( )=E J dgdp pn(m —m, ) o p+(
2 2 2

(p2+(2)2+4m 2(2(p2+(2)2+4m 2(21 (5.31)

To define a reference integral which is easily evaluated analytically, we set the form factor equal to its static value.
The result is

2 9 „om, mz mz2

6 E(x. no structure) =EF —— — ln41+& ~m —m, m,
(5.32)

The size of this correction is —24. 62 ppm. The change due to the form factor is taken into account by subtracting 1

from the last factor of (5.31), and the resulting integral is easily evaluated by numerical techniques. Using (5.20), we
find that the contribution is ( —21.36+0.03) ppm.

Correction No. 1. The last term of (5.16) gives a contribution

8mam, m d4p 2P +Pa 1 K2
(5.33)

m m, ——(2m. ) i (p +is) Dp p 1+&

Since the momentum scale is governed by m and the form factors, the integral is well behaved numerically. Rotating
the po contour, we obtain

2

n. (m —m, ) o p +g (p +g ) +4m~/ 1+&
(5.34)

(5.35)

which we can rewrite as

For the illustrative example (5.20), the contribution is ( —1.08+0.01) ppm.
Correction No. 2. For the third main term of (5.16), it is easy to see that the contribution involving D, is smaller

than the contributions already studied by a factor of m, /m~, so we ignore it. Thus we are left with

bE(N 2o)=EF
2 J 4 2 2

F2(p')GM(p'),
16 ™em~ dp & 1 ~ 2 z

m —m, —(2n) i (p +is) D~(p) 1+x

2

m. (m~ —m, ) 0 p 2+$2 (p 2+$2)2+4m 2/2 1+~ (5.36)

For the illustrative example (5.20), the contribution is
(1.59+0.02) ppm.

The net one-loop contribution, as defined here, turns
out to be ( —33.50+0.55) ppm. As mentioned earlier,
the uncertainty arises entirely from the uncertainty in A
and it does not take into account systematic deviations
from the simple dipole fit. The bulk of the uncertainty
comes from the Zemach term alone, since the recoil un-
certainties are individually quite small and tend to can-
cel among themselves. The one-loop contribution that

we obtain differs from the values of —35 ppm given by
Iddings and Platzman and of —34.6 given by Grotch
and Yennie. Let us now try to account for these
differences by examining the assumptions that were
made about the form factors in the earlier treatments.
First, we note that in the earlier work a slightly different
value of A was used: namely, A=0. 91m . Replacing
this value with A=0. 898m would shift the results of
the earlier work by —0.50 ppm. Iddings and Platzman
present their analysis in terms of F, and F2 and take the
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dipole form on the RHS of (5.20) to represent both of
them. In the language of our analysis, this would corre-
spond to reexpressing GM in (5.10) in terms of F& and Fz
and using the expression on the RHS of (5.20} for F, and

Fz. As a consequence, Iddings and Platzman have no
correction No. 2; also, their calculations of the ~ contri-
bution and correction No. 1 do not contain the kinemat-
ic denominator factor [I—p /(4m' )] . Including
correction No. 2 in their result gives a change of +1.61
ppm. The kinematic factor in the ~ contribution pro-
duces a change of +0.13 ppm, and the kinematic factor
in correction No. 1 produces a change of +0.07 ppm.
Since Iddings and Platzman quote their result to the
nearest ppm, these changes would bring their result into
agreement with ours. It is difficult to establish an exact
correspondence between the calculation of Grotch and
Yennie and the present one. As we remarked earlier,
Grotch and Yennie ignored correction No. 2. It appears
that the effect of their approach was to ignore the dis-
tinction between the F's and the 6's in other respects as
well. Thus, our best guess is that the Grotch and Yen-
nie calculation should be corrected in the same manner
as described for the Iddings and Platzman calculation.
Their result corrected in this manner would be —33.3
ppm, in satisfactory agreement with the result of the
present calculation.

5&(BYG one kernel)=a 21n
m,

m 2o;
—6 ln2+ 1—',

=0.17 ppm . (6.1)

5 (BYG second order) =a (1+x)(1» )

=0.16 ppm . (6.2)

The total A+ contribution from (4.10) and (4.14) is given

by

5 (A+)=a
m

7 1
x —ln

4 2o,
—ln2 —1 —,

'

We also mentioned in Sec. III that, owing to the particu-
lar way that our starting equation is defined, the contri-
bution that is of second order in the perturbation kernels
involves just two hyperfine interactions, each with a fac-
tor of the total magnetic moment. Accordingly, we may
take over the result of BYG by multiplying it by a factor
of (1+a.), giving

=0.29 ppm . (6.3)

VI. SUMMARY AND DISCUSSION OF RESULTS
The total A contribution from (4.17), (4.25), and (4.32)
is given by

In this section we summarize the principal results of
this paper, compare the theoretical and experimental re-
sults for the hydrogen hfs, and discuss briefly the current
status of the theory.

We have carried out a systematic computation, to the
order of current interest, of the recoil corrections to the
hydrogen hfs that arise from the non-QED nature of the
proton —namely, the anomalous moment corrections
and structure function corrections (excluding the polar-
ization correction). The calculation of the new anoma-
lous moment recoil corrections, which appear in relative
order a (m, /m ), involves loop momenta of order m, or
less and, thus, is independent of structure function varia-
tions. We were able to obtain analytic expressions for
these contributions. The structure function dependence
is contained in the relative order-a(m, /m ) contribu-
tions. These have been computed previously. However,
we felt it necessary to redo the calculation in order to
ensure that no terms had been omitted in matching it
onto the structure-independent part. All these contribu-
tions are part of 5F (recoil}, which is introduced in (1.8).

In Secs. III and IV we computed the order-
EFa (m, /m ) corrections to the proton hfs, with the
aim of obtaining the new contributions that arise from
the proton's anomalous magnetic moment. As we men-
tioned in Sec. III, a part of this anomalous-moment con-
tribution is given by z times the one-kernel part of the
result of BYG. Hence, there is a contribution to the hy-
drogen hfs that is given by (1+v) times the one-kernel
part of the result of BYG. This contribution yields

5 (A )=a
m 1+~

——ln +4 ln2 —3—'7 1

4 2o. 8

= —0. 16 ppm . (6.4)

Adding (6.1)—(6.4) we find for the total contribution in
relative order a (m, /m ):

fi (a (m, /m ) }=0.46 ppm . (6.5)

In Sec. V we computed the order-EFa(m, /m ) contri-
butions that depend on the proton's structure. We have
succeeded in reducing these contributions to two-
dimensional integrals that are suitable for numerical in-
tegration. The integral expressions are presented in Eqs.
(5.24), (5.28), (5.31), (5.34), and (5.36), and they represent
a convenient starting point for incorporating form-factor
data into the computation of the hydrogen hfs. In order
to make a comparison with previous calculations of the
structure dependence and also to establish a point of
reference for future work, we have evaluated the in-
tegrals numerically, using the dipole parametrization of
the form factors given in (5.20). Our result is

5 (a(m, /m ) structure)=(5. 22+0.01) ppm . (6.6)

As we discussed in Sec. V, our value for the structure-
dependent contribution differs slightly from those given
previously ' because it is based on a somewhat
different parametrization of the form factors. In particu-
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lar, our result (including the Zemach correction)
represents an increase of 0.9 ppm compared with the re-
sult of Grotch and Yennie.

Our principal new results, (6.5) and (6.6), may be com-
bined to give the total recoil correction to the hfs, ex-

cluding the proton polarizability, through relative order
a(m, jm ):

fi ( recoil ) = 5.68 ppm,

where 6 (recoil) is defined in (1.8). This is a net increase
of 1.4 ppm compared with the result of Grotch and Yen-
nie. When our result (6.7) is combined with the Zemach
correction of ( —38.72+0.56) ppm, the difference be-

tween theory and experiment becomes

v(theory) —v(expt } =( —0.48+0. 56+unknown) ppm .
VF

(6.8)

The error of 0.56 ppm contains a small contribution
from the uncertainty in n, but it arises mainly from the
uncertainty in the parameter A in the dipole fit to the
proton's elastic form factors. The primary effect of this
uncertainty in A is in the Zernach correction, where it
enters through the mean radius of convolution of the
proton's electric and magnetic form factors R . As was
seen in the analysis of Sec. V, the corresponding uncer-
tainties in 5~(recoil} are much smaller, both because the
A dependence is essentially logarithmic and because
there is a partial cancellation between the various terms.

The part of the error labeled "unknown" in (6.8)
represents all remaining uncertainties in v(theory). The
most important sources of these uncertainties are the ra-
diative corrections to the structure-dependent contribu-
tions, the systematic errors in the parametrization of the
proton's form factors, and 6 (recoil). The radiative
corrections to the structure-dependent contributions,
which we discuss below, could potentially contribute at
the level of 1 ppm. However, they could probably be
calculated to a precision of 0.01 ppm or better. More
closely related to the analysis of this paper are the sys-
tematic errors in the parametrization of the proton's
form factors, which are evidenced by statistically
significant deviations of the scaling assumption and di-
pole parametrization of (5.20) from the elastic-scattering
data. We have made use of (5.20) in our analysis be-
cause it represents a convenient way to surnrnarize the
gross behavior of the form factors over the region of q
that seems most significant for the structure-dependent
corrections. Also, we wished to make comparisons be-
tween our results and the results of previous analyses
that made use of the dipole form. It would be desirable
to reduce this part of the systematic uncertainty in the
theory by carrying out the numerical integrations of Sec.
V with a more precise pararnetrization of the proton's
form factors. Based on our experience with the A
dependence of the corrections, it seems likely that a
refinement in the treatment of the form factors would
have a larger effect on the Zemach correction than on

pln3' m e

(6.9)

One can estimate the size of this vacuum-polarization
correction when it is taken in conjunction with the
Zemach contribution by replacing —p with A in (6.9)
and doubling the result to allow for the two ways of in-
serting the vacuum polarization. This yields a correc-
tion factor

ln =0.023,3' me
(6.10)

which would lead to a correction of about —1 ppm.
The total result for all the radiative corrections to the
Zemach contribution would probably be somewhat
smaller, since the corrections on the electron line tend to
contribute with the opposite sign. In the case of radia-

6 (recoil). It is difficult to estimate how much the use of
more precise expressions for the form factors might shift
the central value of v(theory) or how large the remaining
statistical uncertainty in that determination might be.
As we remarked in Sec. I, a value of 0.9 ppm has ap-
peared in the literature as an estimate of the complete
uncertainty in the 6 (Zemach)+6 (recoil). We have
been unable to determine the basis for that estimate, but
we have traced the value 0.9 ppm to a review by Brod-
sky and Drell. ' The present work has shifted the
theory by more than that amount (by =1.5 ppm). Our
subjective impression is that a statistical uncertainty of 1

ppm seems to be a reasonable estimate of what might be
achieved through a more precise treatment of existing
form-factor data, together with an evaluation of radia-
tive corrections that are significant at that level. It
would not be surprising if such an analysis were to lead
to a shift of as much as 1 pprn in the central value of
v(theory). However, it is unlikely that the analysis
would reveal any incompatibility with the estimate

~

5&(polarizability)
~

g4 ppm,

which is based on data from deep-inelastic scattering
with a polarized beam and target. ' In fact, by incor-
porating the refinements in the computation of v(theory)
that we have already mentioned, one could use the hy-
drogen hfs to determine 5 (polarizability) with a pre-
cision of roughly 1 ppm.

Finally, let us discuss in somewhat more detail the un-
calculated radiative corrections. In the case of radiative
corrections that do not involve the proton's structure,
the most important contributions have already been tak-
en into account; we mention some additional refinements
in a moment. The structure-dependent radiative correc-
tions arise from radiative corrections to exchanged-
photon lines or to the electron line, taken in conjunction
with structure effects. As Caswell and Lepage pointed
out, the most important corrections of this type arise
from the insertion of a vacuum-polarization correction
into an exchanged-photon line. In the region where the
photon four-momentum p is very large compared to the
electron mass, the vacuum polarization introduces a fac-
tor
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tive corrections to 5 (recoil), the p integration is approx-
imately logarithmic over the range m, to A, so (6.9)
yields a factor

ln =0.0113' me
(6.11)

in conjunction with any of the recoil contributions of
Sec. V. In (6.11) we have taken into account a factor of
2 for the two ways of inserting the vacuum polarization
and a factor of —,

' that arises from the integration. An
estimate of the size of the largest radiative-recoil correc-
tion may be obtained by multiplying the results of Sec. V
by the factor (6.11). The largest individual correction is
then about 1 ppm. The individual terms are likely to
cancel as in Sec. V, giving a contribution at the level of
0.03 pprn. The radiative corrections that do not contain
the leading logarithm of (6.9), including corrections on
the electron line, are potentially more problematic, since
they would likely affect the various recoil corrections in

different ways. However, their size is intrinsically small-
er than that of the leading-logarithmic correction.
Hence, the corresponding radiative-recoil corrections
would probably contribute less than 0.1 ppm.

In addition to the radiative-Zemach and radiative-
recoil corrections, there are uncalculated pure-QED
corrections of relative order a /m; they are represented
by the D, term of (1.2). They arise from various
sources: a higher-order vacuum-polarization correction

I

without recoil effects, two-photon corrections to the
electron line which cannot be absorbed into the
electron's anomalous magnetic moment, light-by-light
scattering diagrams, etc. These corrections should not
be sensitive to the proton's structure. Their nominal size
is 0.12 pprn, so, unless the individual contributions con-
spire to give a large total, these radiative corrections
should also be masked by the uncertainties in the
proton's size.
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APPENDIX: TABULATION
OF CERTAIN INTEGRALS

Certain dimensionless integrals K„(P)that occur fre-
quently in the BYG paper are tabulated there. They
take the general form

d'p'd'p G. (P0 Po m. )P(p p r)
K„(P)= (4m ) —2m p' —y +ieD, p' p —p +it D, p p —y +ig

TABLE I. Tabulation of the integrals (a) E1 and K3 and (b) K7, K8, K9, Klp K11 and E». The
underscored headings indicate the polynomial P that appears in the numerator of the integrand, as ex-
plained in the Appendix.

(a)

K1

K3

PP
me 11—ln +-
2y 16
me 7—ln +-
2y 8

P P'P

m,——ln +—
2 2y 8
me 9——ln —21n2+—

2 2y 8

P P'P

1 me 5——ln +—
2 2y 16

me 9——ln —2 ln2+—
2 2y 8

(p''p)

me 7——ln +—
2 2y 16

1 me 9——ln —2 ln2+—
2 2y 8

K, K3

py
3
16

p y
3
16

p.p'y'

1

16
1

16

K7

K8
K9
K„
K13

p& 2

1

8

32

1n2

m,—ln
2 2y 8

PP

32
1

32
1

32

1n2 ——,
'

m,—ln
4 2y 4

(b)

P

1

8
3

32

ln2

K lp
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Here the 6„,which are given below, are certain general-
ized functions of the specified arguments. The result K„
is actually a functional of the polynomial P. These poly-
nomials are indicated in the main text as they occur.
The first and last factors of the denominator of the in-
tegrand result from the method of decoupling the wave
functions described in Sec. III. Fifteen categories of K„
are worked out analytically by BYG; that calculation
makes use, wherever possible, of the approximation
a &&1. The integrals required in the present work corre-
spond to the subset of forms

26, = 2—vari 5(p o ) —2n.i 5(po )—
Pp+lE

263
— —2rri 5(po —p o ) —2rri 5(po )—

Pp+l E

G 7 2—rri 5(p o )p o, 6
&
———2 rri 5(p o )p o

G9 = —2m. t 5(p o
—p o )p o,

6]o= 27Tl5(po po)po

6» —— 2n—i 5(po po )2m, ,

6 ] 3 2n—i 5(p o )2m,

For the convenience of the reader, we tabulate the re-
sults E„(P)for these integrands in Table I.

'H. Hellwig, R. F. C. Vessot, M. W. Levine, P. W. Zitzewitz,
D. W. Allan, and D. J. Glaze, IEEE Trans. Instrum. Meas.
IM-19, 200 (1970).

L. Essen, R. W. Donaldson, M. J. Bangham, and E. G. Hope,
Nature (London) 229, 110 (1971).

E. Fermi, Z. Phys. 60, 320 (1930).
4G. T. Bodwin, D. R. Yennie, and M. Gregorio, Phys. Rev.

Lett. 48, 1799 (1982).
5G. T. Bodwin, D. R. Yennie, and M. Gregorio, Rev. Mod.

Phys. 57, 723 (1985).
G. Breit, Phys. Rev. 35, 1447 (1930).

7N. Kroll and F. Pollock, Phys. Rev. 84, 594 (1951).
N. Kroll and F. Pollock, Phys. Rev. 86, 876 (1952).
R. Karplus, A. Klein, and J. Schwinger, Phys. Rev. 84, 597

(1951).
' J. R. Sapirstein, E. A. Terray, and D. R. Yennie, Phys. Rev.

Lett. 51, 982 (1983); Phys. Rev. D 29, 2990 (1984).
A. J. Layzer, Bull. Am. Phys. Soc. 6, 514 (1961).

' A. J. Layzer, Nuovo Cimento 33, 1538 (1964).
D. Zwanziger, Bull. Am. Phys. Soc. 6, 514 (1961).
D. Zwanziger, Nuovo Cimento 34, 77 (1964).

'5S. J. Brodsky and G. W. Erickson„Phys. Rev. 148, 26 (1966).
' J. R. Sapirstein, Phys. Rev. Lett. 51, 985 (1983).

E. R. Cohen and B. N. Taylor, CODATA Bulletin No. 63
(Pergamon, Oxford/New York, 1986).

A. C. Zemach, Phys. Rev. 104, 1771 (1956).
' S. J. Brodsky and S. D. Drell, Annu. Rev. Nucl. Sci. 20, 147

(1970)~

2pR Arnowitt, Phys. Rev. 92, 1002 (1953).
'G. P. Lepage, Phys. Rev. A 16, 863 (1977).
G. T. Bodwin and D. R. Yennie, Phys. Rep. 43C, 267 (1978).
W. E. Caswell and G. P. Lepage, Phys. Rev. A 18, 810

(1978).
W. E. Caswell and G. P. Lepage, Phys. Lett. 167B, 437
(1986).
G. T. Bodwin, D. R. Yennie, and M. Gregorio, Phys. Rev.
Lett. 41, 1088 (1978).
W. E. Caswell and G. P. Lepage, Phys. Rev. Lett. 48, 1092
(1978).
W. A. Newcomb and E. E. Salpeter, Phys. Rev. 97, 1146
(1955).
C. K. Iddings and P. M. Platzman, Phys. Rev. 113, 192
(1959).
H. Grotch and D. R. Yennie, Z. Phys. 202, 425 (1967); Rev.
Mod. Phys. 41, 350 (1969).
C. K. Iddings, Phys. Rev. 138, B446 (1965).

'S. D. Drell and J. D. Sullivan, Phys. Rev. 154, 1477 (1967).
V. W. Hughes and J. Kuti, Annu. Rev. Nucl. Part. Sci. 33,
611 (1983).
E. de Rafael, Phys. Lett. 37B, 201 (1971).
P. Gnadig and J. Kuti, Phys. Lett. 42B, 241 (1972).
S. Love, Ann. Phys. (N.Y.) 113, 153 (1978).
We have also analyzed the spin-independent contributions to
the energy shift, which contribute in second-order perturba-
tion theory in the case of the hfs and in first-order perturba-
tion theory in the case of the Lamb shift. The second-order
perturbation theory contribution cancels, just as in the BYG
work. A careful analysis shows that the anomalously large
part of the first-order perturbation theory contribution also
cancels between the various perturbation kernels.
L. H. Chan et al. , Phys. Rev. 141, 1298 (1966).
P. N. Kirk et al. , Phys. Rev. D 8, 66 (1973).
G. P. Lepage, Comput. Phys. 27, 192 (1978); Cornell Univer-

sity Report No. CLNS-80/477 (unpublished).


